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Identification of colon cancer
subtypes based on multi-omics
data—construction of
methylation markers
for immunotherapy
Benjie Xu1†, Jie Lian1†, Xiangyi Pang1, Yue Gu2, Jiahao Zhu1,
Yan Zhang2,3* and Haibo Lu1*

1Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, China,
2School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of
Technology, Harbin, China, 3College of Pathology, Qiqihar Medical University, Qiqihar, China
Background: Being the most widely used biomarker for immunotherapy, the

microsatellite status has limitations in identifying all patients who benefit in

clinical practice. It is essential to identify additional biomarkers to guide

immunotherapy. Aberrant DNA methylation is consistently associated with

changes in the anti-tumor immune response, which can promote tumor

progression. This study aims to explore immunotherapy biomarkers for colon

cancers from the perspective of DNA methylation.

Methods: The related data (RNA sequencing data and DNA methylation data)

were obtained from The Cancer Genome Atlas (TCGA) and UCSC XENA

database. Methylation-driven genes (MDGs) were identified through the

Pearson correlation analysis. Unsupervised consensus clustering was

conducted using these MDGs to identify distinct clusters of colon cancers.

Subsequently, we evaluated the immune status and predicted the efficacy of

immunotherapy by tumor immune dysfunction and exclusion (Tide) score.

Finally, The Quantitative Differentially Methylated Regions (QDMR) software

was used to identify the specific DNA methylation markers within

particular clusters.

Results: A total of 282 MDGs were identified by integrating the DNA methylation

and RNA-seq data. Consensus clustering using the K-means algorithm revealed

that the optimal number of clusters was 4. It was revealed that the composition of

the tumor immune microenvironment (TIME) in Cluster 1 was significantly

different from others, and it exhibited a higher level of tumor mutation burdens

(TMB) and stronger anti-tumor immune activity. Furthermore, we identified three

specific hypermethylation genes that defined Cluster 1 (PCDH20, APCDD1,

COCH). Receiver operating characteristic (ROC) curves demonstrated that

these specific markers could effectively distinguish Cluster 1 from other

clusters, with an AUC of 0.947 (95% CI 0.903-0.990). Finally, we selected

clinical samples for immunohistochemical validation.
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Conclusion: In conclusion, through the analysis of DNA methylation, consensus

clustering of colon cancer could effectively identify the cluster that benefit from

immunotherapy along with specific methylation biomarkers.
KEYWORDS

colon cancer, DNA methylation, microsatellite status, immunotherapy, specific DNA
methylation markers
1 Introduction

Colon cancer, being one of the prevalent malignancies of the

digestive system, exhibits the second highest mortality rates globally

and ranks third in terms of incidence. This medical challenge poses a

significant threat to human health (1). Systemic therapy is the primary

treatment for advanced colon cancers. Unfortunately, the five-year

overall survival (OS) is currently estimated at only 30% (2).

Immunotherapy significantly prolonged the survival of patients with

deficiency of mismatch repair (dMMR) or microsatellite instability –

high (MSI -H) (3–5). However, the detection rate of dMMR orMSI-H

only accounts for 5%-10% in colon cancers (6, 7). Additionally,

approximately 25% of detected patients do not benefit from

immunotherapy (8). It is worth noting that some patients with

microsatellite stability (MSS) also experienced prolonged OS after

immunotherapy (9). In a word, microsatellite status had certain

limitations as a criterion for predicting the effectiveness of

immunotherapy. The current research priorities are focused on

identifying additional biomarkers in order to expand the

accessibility of immunotherapy.

DNA methylation is a crucial epigenetic modification that plays

a substantial function in regulating gene expression (10, 11). DNA

methylation is the process of adding a methyl group to the 5’

positions of a cytosine and guanosine (CpG) with the participation

of DNA methyltransferase (DNMT). CpGs are typically abundant

in the promoter region of CpG islands. Hypermethylation of

promoter region always leads to the silencing of tumor

suppressor gene expression (12, 13) and DNA methylation plays

a regulatory role in tumor antigen presentation and the release of

immune factors (14–16). To summarize, aberrant DNA

methylation, especially hypermethylation of promoter regions, is

frequently associated with altered anti-tumor immune responses,

leading to tumor progression.

Currently, diagnostic and prognostic related methylation

markers have been identified in colon cancer (17). This study is

the first to identify immunotherapy biomarkers for colon cancer

from the perspective of methylation. Through the identification of

methylation-driven genes (MDGs), performing cluster analysis and

verified by clinical samples. We identify a specific cluster of colon

cancer that could be benefit from immunotherapy. Furthermore, we
02
discovered beneficial-cluster of specific DNA methylation markers

that can be used as a valuable supplement to the microsatellite status.
2 Materials and methods

2.1 Data acquisition and processing

RNA sequencing (RNA-Seq) data, somatic mutation data,

clinicopathological data (including microsatellite status) of colon

cancers were downloaded from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov). DNA methylation data

(Illumina Human Methylation 450) were obtained from the UCSC

XENA database (https://xena.ucsc.edu/). For each probe site,

methylation levels ranged from 0 (fully unmethylated) to 1 (fully

methylated). Firstly, the DNA methylation data was screened,

eliminating probes that exhibited missing information in over 70

percent of the samples. Secondary, probes in the sex chromosome and

single nucleotide polymorphisms were also excluded. Finally, the K-

nearest neighbors (KNN) algorithmwas utilized to impute the missing

values, implemented through the (knn) imputation procedure. Since

DNAmethylation in the promoter region could regulate expression of

genes, we specifically analyzed the CpGs in the promoter region. The

promoter was defined as the upstream 2.5 kb to downstream 0.5kb

region of the transcription start site. For the expression data, we

focused on analyzing the protein-encoding mRNA.
2.2 Differential analysis and identification
of DNA methylation-driven genes

Between tumor and normal tissues, RNA-Seq data was analyzed

using the “Deseq2” package implemented in R to detect

differentially expressed genes (DEGs). The criteria for DEGs were

set at a threshold of P< 0.05 and | log2FC | > 1 (18). On the other

hand, methylation data was analyzed using the limma package to

identify differentially methylated genes (DMGs), with a set of P<

0.05 (19). The overlapped portion of the DEGs and DMGs,

representing differentially expressed genes with aberrantly

methylation, which were visualized using a Venn diagram.
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TheDNAmethylation and RNA-Seq data of differentially expressed

genes with aberrantly methylation were integrated for correlation

analysis using the Pearson coefficient. A threshold of Pearson

coefficient< -0.3 and P< 0.05 was set to identify MDGs for further

analysis. The scatter plot of MDGs was created using ggplot2 in R (20).
2.3 Analysis of function enrichment
construction of the PPI network

The”clusterProfiler”, “org.Hs.eg.db”, and “enrichplot” R

package were used to evaluate the most significantly enriched

function and pathway. The Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis considered

results with P< 0.05 and q< 1 as the differentially enriched (21, 22).

These results were visualized using the ‘ggplot2’ R package.

To construct the Protein-Protein interaction network (PPI), the

MDGs were uploaded to the Interactive Gene/protein Retrieval

Tool Database (STRING) (https://string-db.org/). The

identification of key genes and major modules in the PPI network

was performed using the Cytoscape software.
2.4 Consensus clustering analysis

Consensus clustering was performed (ConsensusClusterPlus R

package) to identify clusters of colon cancer with distinct molecular

features (23). The K-means algorithm and Euclidean distance were

employed in clustering.

d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

k=1

xk − ykð Þ2
s

The optimal number of clusters (k) were tested from 2 to 9 in this

study. The procedure of clustering was conducted over 1000

iterations, in which 80% of the data was sampled in each iteration.

The selection criteria for determining the optimal k value included the

cluster’s internal consistency, low coefficient of variation, and stability

of the area under the cumulative distribution function (CDF) curves.

The optimal number of clusters was determined using Principal

component analysis (PCA) in this study. The Cumulative Density

Function (ECDF) was used to calculate the area between 0.1 and 0.9

of the X-axis, the k value corresponding to the minimum ECDF area

was the optimal number of clusters. Subsequently, survival analysis

was used to evaluate the prognosis. The statistical significance among

the clusters was evaluated using the log-rank test, with P< 0.05

considered significant. The performance of classification was

evaluated using the receiver operating characteristic (ROC) curves.
2.5 Evaluation of the immune status
among different colon cancer clusters

Unsupervised consensus clustering was performed to identify

distinct clusters of colon cancers. Subsequently, we evaluated the

immune status of these clusters.
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The stromal score and immune score were calculated using the

ESTIMATE algorithm based on expression data, which represented

the presence of stromal and immune cells. The sum of stromal and

immune scores was used as the estimate score to evaluate tumor

purity. This evaluation was performed using the R language

‘estimate’ package (24). Immune checkpoint inhibitors (ICIs)

could guide the immunotherapy of colon cancers. This study

statistically analyzed the expression of the most common ICIs

(PD-1, PD-L1, PD-L2, CTLA4, LAG3) among different clusters.

Additionally, we quantified the abundance of tumor-infiltrating

immune cells (TIICs) using the CIBERSORT algorithm (25). This

study analyzed the immune status of clusters to determine if there

was statistical difference, with P< 0.05 considered significant.

The Cancer-Immunity Cycle, commonly referred to as the anti-

cancer immune response, consists of seven steps. These steps begin

with the release of cancer cell antigens and end with the killing of

cancer cells (26). The website Tracking Tumor Immunophenotype

(TIP) (http://biocc.hrbmu.edu.cn/TIP) specialized in the study of

the Cancer-Immunity Cycle and had calculated the immune activity

scores for each step through large sample analysis (27). In the

present study, we collected immune activity scores of colon cancer

samples from the TIP website to analyze the differences in clusters

within the Cancer-Immunity Cycle.

In addition, the somatic mutation data of colon cancers were

analyzed and visualized using the R language “maftools” package (28).

We specifically accessed themutation frequencies and the level of tumor

mutation burdens (TMB) from different clusters. The statistical results

were depicted through the boxplots, with P< 0.05 considered significant.
2.6 Prediction of immunotherapy by
Tide score

Immune evasion, a key factor in tumor development, significantly

contributed to the failure of immunotherapy. There are two mainly

mechanisms in the process of immune evasion. Firstly, tumors

characterized by a substantial infiltration of cytotoxic T lymphocytes

(CTLs) exhibited the induction of T cell inactivation, leading to

dysfunction of immune cells. Secondly, in tumors with diminished

levels of CTLs, T cell infiltration was prevented and the ability of killing

tumor cells was weakened (29, 30). Based on sequencing data, the

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm (http://

tide.dfci.harvard.edu/) could reveal the characteristics of tumor

immune evasion. By utilizing CTLs observed in tumor samples, the

TIDE score can be calculated to predict the efficacy of immunotherapy.

Specifically, In the case of melanoma, the TIDE score demonstrates

greater predictive accuracy compared to biomarkers like PD-L1 (31).

Consequently, the present study employed the TIDE score to predict

the efficacy of immunotherapy within distinct clusters.
2.7 Identification of specific DNA
methylation markers

In our study, we utilized Quantitative Differentially Methylated

Regions (QDMR) software to identify the specific DNAmethylation
frontiersin.org
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CpGs within particular clusters of colon cancer. QDMR was an

effective tool developed based on the Shannon entropy model,

which allowed for the detection of DMRs across multiple DNA

methylation profiles (32). The entropy difference reflected the

influence of sample S on the overall methylation difference:

DHr=s = HQ=
�S −HQ

When region r is specifically methylated in sample S, the value

of △Hr=S is greater than 0. The categorical sample-specificity CSr=S
can be defined as:

CSr=S =
DHr=S � signr,S,DHr,S > 0

0,DHr=S ≤ 0

( )

Therefore, CSr=S can be utilized to analyze identify specific DNA

methylation markers in samples. CSr=S greater than 0 indicates

specifically hypermethylated, while a value less than 0 indicates

specifically hypomethylated.
2.8 Immunohistochemistry

To investigate the prediction of immunotherapy response using

specific markers, our study conducted a review of colon cancer patients

in our center. We retrospectively collected their follow-up and

treatment records, including postoperative recurrence,

immunotherapy duration and cycles, and efficacy evaluation. These

records successfully helped us to screen out the validation objects. The

corresponding tumor paraffin sections were analyzed by

immunochemistry. After roasting the sections at 60°C for 20

minutes, they were deparaffinized with xylene and rehydrated. The

antigen was then recovered from the sections by heating the EDTA

buffer (100°C for 15 minutes) and the endogenous peroxidase activity

was inactivated using 3%H2O2 (10 minutes). The sections were treated

with 5%BSA and incubated at room temperature for 1 hour. They were

then incubated overnight at 4°C with primary antibodies (APCDD1,

1:20, Thermo, PA535063; PCDH20, 1:25, Thermo, PA598605). After

washing the sections with PBS, secondary antibodies (1:500) were

added to sections and incubated at room temperature for 1 hour.

Finally, color development was achieved using the DAB kit (CWBIO-

CW0125), and hematoxylin solution was used for counterstaining the

paraffin sections. An open-source biological image analysis platform

(Fiji/ImageJ) was utilized for analyzing the sections. The evaluation of

immunohistochemical was based on both the staining intensity and the

percentage scores. Staining intensity was graded on a scale of 0 (absent),

1 (weak), 2 (moderate), and 3 (marked), while the percentage scores

was determined by the proportion of stained cells in a chosen field: 1

(0-25%), 2 (26-50%), 3 (51-75%), and 4 (76-100%). Each tumor sample

was independently scored by two observers, and the results were

reported as the mean score (ranging from 0 to 14).
2.9 Statistical analysis

The statistical analyses in this study were performed by R

software (4.13 version) and GraphPad Prism 8 (GraphPad
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Software, La Jolla, CA, USA). The correlation between the two

variables was assessed by the Pearson coefficient. For continuous

data, the independent Student’s t-test was conducted. Additionally,

the chi-square test was applied to analyze categorical data. To

compare non-normally distributed variables across clusters, we

utilized the Wilcoxon test. The Kruskal–Wallis test was used for

multiple groups. Statistical significance was determined based on a

two-tailed P-value of less than 0.05 and we also reported the hazard

ratios (HRs) and 95% confidence intervals (CIs).
3 Results

3.1 DNA methylation-driven genes

The flow diagram and analytic procedure are shown in Figure 1.

The data of colon cancers were downloaded from the relevant

database. A total of 301 samples had both DNA methylation and

RNA-seq data (282 tumor and 19 normal). For RNA-seq data, we

selected mRNA (19,938 genes) for differential analysis, detecting a

total of 4830 DEGs at last. The expression of DEGs between colon

cancers and normal samples was showed in the heatmap (Figure 2A).

In the case of DNA methylation data, we selected CpGs (164,610

sites) and corresponding genes (18,510 genes) in the promoter region

for difference analysis. If multiple CpGs correspond to the same gene,

the mean value of b was selected to represent the methylation level of

that gene. Similarly, a total of 8547 DMGs were detected. The

heatmap showed the methylation of DMGs between colon cancers

and normal samples (Figure 2B). Subsequently, 2217 differentially

expressed genes with aberrantly methylation were identified by

overlapping DEGs and DMGs (Figure 2C, Table S1).

We conducted correlation analysis by integrating the DNA

methylation and RNA-seq data of 2217 differentially expressed

genes with aberrantly methylation in colon cancers. The Pearson

coefficient was utilized to access the correlation. Finally, we

identified 282 MDGs for further analysis based on a Pearson

coefficient< -0.3 and P< 0.05 (Table S2).
3.2 Function enrichment and PPI
network construction

We conducted GO and KEGG analyses on 282 MDGs to analyze

their potential functions and pathways. The results of GO analysis were

significantly enriched in fibroblast growth factor receptor binding,

digestive system process, etc(P<0.05, Figure 2D). Additionally, KEGG

pathways analysis revealed significant enrichment in virus infection

(Herpes simplex virus 1, Staphylococcus aureus), intestinal immune

network for IgA production, etc(P<0.05, Figure 2E).

A PPI network was conducted to illustrate the interactions and

connections of 282 MDGs in colon cancers. The degree algorithm

was employed to determine the significance of different genes in the

PPI network, while the size and color of nodes were utilized for

visualization. Among these genes, IL-10 and FGF2, as core genes,

playing a crucial role in the interconnection network (Figure 2F). By

employing the MCODE plugin in Cytoscape, we identified key sub-
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networks within the PPI network, which included genes such as IL-

10, CD3E, MET, and others that were associated with anti-tumor

immune response (Figure 2G).

Overall, our findings indicated that strong interconnections

among the 282 MDGs in colon cancers, with IL-10 and FGF2

acting as core genes that are closely linked to tumor angiogenesis

and anti-tumor immune response.
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3.3 Consensus clustering in colon cancers

In this study, we performed consensus clustering based on the b
values of the 282 MDGs to identify distinct DNA methylation

molecular clusters of colon cancers. Subsequently, 282 samples were

randomly divided into training (n = 197) and validation cohorts

(n = 85) in a 7:3 proportion. The Chi-square test indicated that the
A B D

E F G

C

FIGURE 2

Screening for DNA Methylation-Driven Genes (MDGs). (A) Heatmap of Differentially Expressed Genes (DEGs) in normal samples and colon cancer
samples. (B) Heatmap of Differentially Methylated Genes (DMGs) in normal samples and colon cancer samples. (C) Venn diagram for overlapping of
DEGs and DMGs. (D) Gene Ontology (GO) enrichment results of three ontologies (including biological processes, cellular components, and
molecular functions) of MDGs. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of MDGs. (F, G) Protein-Protein
Interaction (PPI) network of MDGs.
FIGURE 1

Flow diagram and analytic procedure of our study.
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clinicopathologic features of the training and validation cohorts

were evenly distributed (Table S3).

The K-means algorithm was utilized for consensus clustering.

According to the relative alteration observed under the CDF curve,

the PCA method was finally employed to ascertain the optimal

number (Figures 3A, B, Figure S1A, B). It was found that K = 4 was

the optimal clustering with best stability (Figure 3C, Figure S1C).

Which were termed Cluster 1 (44 patients, 22.4%), Cluster 2 (70

patients, 35.5%), Cluster 3 (52 patients, 26.4%) and Cluster 4 (31

patients, 15.7%), respectively. The K-M survival analysis revealed

significant difference among the four clusters (P<0.05, Figure 3D,

Figure S1D). The heatmaps displayed the significant differences

among the clusters in terms of gene expression and methylation

levels for 282 MDGs (Figures 3E, F). Moreover, both the training

cohort and the validation cohort exhibited excellent performance in

discriminating the clusters of colon cancer using the MDGs, with an

AUC of 0.984 (95%CI 0.970-0.999) and 0.990 (95%CI 0.976-1.000),

respectively (Figures 3G, H). The chi-square test revealed significant

differences in clinicopathological characteristics among these

clusters. Patients in Cluster 1 were found to be associated with

age (P<0.001) and microsatellite status (P<0.001). The remaining

clinicopathological characteristics showed no distribution

differences among clusters (Table S4). Similar distribution was

found in the validation cohort (Table S5).
3.4 Distinct immune status among colon
cancer clusters

Through a series of analyses, significant differences in the

immune status of different clusters were revealed. First, the

composition of tumor immune microenvironment (TIME) was

analyzed. Significant differences were observed in the immune

score, stromal score, and tumor purity among clusters of colon

cancer (P<0.001, Figures 4A, B, Figure S1E, F). Cluster 1 exhibited
Frontiers in Oncology 06
with a relative higher immune score and lower tumor purity,

indicating a greater infiltration of immune cells. Subsequently, the

expression levels of several common ICIs (PD1, PDL1, PDL2,

CTLA4, LAG3) were compared among clusters. The findings

illustrated that the ICIs expression in cluster 1 exhibited a

significantly greater level compared to cluster 2 and 3 (P<0.001,

Figure 4C, Figure S1G). Finally, the CIBERSORT algorithm

was employed to visualize the infiltration abundances of

TIICs in colon cancers. In cluster 1, there was a significant

abundance of CD8+T cells, activated natural killer cells and M1

macrophages, which were associated with anti-tumor immune

response, compared to other clusters. The abundant of

immunosuppression-related Tregs cells in cluster 1 was relative

lower (P<0.05, Figure 4D, Figure S2A).

The immune activity scores of colon cancers were used to

evaluate the Cancer-Immunity Cycle. The results showed

significant differences in the procedure of Cancer-Immunity Cycle

among the clusters. The mean scores of Step1 (release of specific

cancer cell antigens), Step 3 (priming and activation) and Step 7

(killing cancer cells) were significantly higher in Cluster 1,

compared to Cluster 2 and 3 (P<0.01, Figure 4E). Additionally,

Step 4 (trafficking of immune cells to tumors), which played a major

role in the Cancer-Immunity Cycle, showed a higher abundance of

CD8+ T cells, macrophages, and natural killer cells in Cluster 1

(P<0.05, Figure 4F).

These results indicated that the composition of the TIME in

Cluster 1 was significantly different from others, and it exhibited a

higher level of immune infiltration and stronger anti-tumor

immune activity.
3.5 Somatic mutation landscape of clusters

In previous research, the critical involvement of genetic

mutations in the initiation and progression of colon cancers has
A B D

E F G H

C

FIGURE 3

Consensus analysis for DNA methylation based on 282MDGs. (A) Consensus cumulative distribution function (CDF) of different clusters for colon
cancer. (B) Delta area curve of consensus clustering. (C) Consensus clustering matrix for colon cancer at k = 4. (D) The survival curves in four DNA
methylation clusters. (E) Heatmap of gene expression levels of 282 MDGs in the four clusters. (F) Heatmap of methylation levels of 282 MDGs in the
four clusters. (G) Receiver operating characteristic (ROC)curves of the 282 MDGs in distinguishing four clusters in the train cohort. (H) ROC curves in
the validation cohort.
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been investigated. Consequently, we conducted an analysis of

somatic mutation information to investigate the genomic

variations within distinct clusters. Among these clusters, APC,

TP53, and PIK3CA were the most common gene aberrations

(Figures 5A-D). This study specifically focused on the distribution

of the mutation frequency of KRAS and BRAF genes across different

clusters, which were important for targeted therapy in patients with

colon cancer. Interestingly, the prevalence of BRAF mutations was

significantly higher in Cluster 1 compared to other clusters, and a

similar trend was observed for KRAS mutations in Cluster 3

(P<0.05, Figure 5E, Figure S2B). In addition, we also assessed the

TMB, a predictive biomarker for immunotherapy. It was found that

patients in Cluster 1 had a significantly higher level of TMB

compared to other clusters (P<0.001, Figure 5F, Figure S2C). This

suggested that Cluster 1 may exhibit a better response to

immunotherapy (33).
3.6 Prediction of immunotherapy response
among colon cancer clusters

The TIDE score was calculated to predict the efficiency of

immunotherapy by analyzing the correlation between gene

expression and CTLs infiltration level. In this study, the average

expressions of CD8A, CD8B, GZMA, GZMB, and PRF1 genes were

used to represent level of CTL in colon cancers. Based on the

findings, it was observed that the Cluster 1 exhibited noticeably

higher level of CTLs compared to Cluster 2 and 3 (P<0.001,

Figure 5G, Figure S2E). Furthermore, a higher Tide score

indicated a greater likelihood of immune evasion and no benefit

from immunotherapy. It was found that Cluster 1 was more likely to

benefit from immunotherapy as its score was significantly lower

compared to Cluster 2 and 3 (P<0.05, Figure 5H, Figure S2F).
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In this study, we compared the immune status of different

clusters and found no statistical difference between Cluster 1 and

Cluster 4 in the composition of TIME and the expression of ICIs.

However, there were significant differences in the TMB level between

Cluster 1 and Cluster 4. In addition, we used the TIDE score to

predict immunotherapy responses in different clusters and found that

Cluster 1 had a significantly lower score compared to Cluster 2 and 3.

While, Cluster 4 exhibited a TIDE score that did not exhibit

significant difference from that in Cluster 2 and 3 (P>0.05).
3.7 Comparison of immune status among
different clusters of MSS patients

The study has confirmed that Cluster 1 was more likely to

benefit from immunotherapy. It was observed that the distribution

frequency of dMMR/MSI-H in Cluster 1 was significantly higher

(50%) compared to other clusters (P<0.05, Figure 6A, Figure S2D).

To investigate whether the distinct distribution of dMMR/MSI-H

contributed to the varying immune status of each cluster, data from

MSS patients from clusters were collected for further analysis.

It was found that the stromal, immune score and tumor purity

were significantly different among clusters (P< 0.01, Figures 6B, C).

Cluster 1 exhibited higher immune score with increased immune

cell infiltration, while having relatively lower tumor purity. The

expression level of ICIs in cluster 1 were significantly higher than

cluster 2 and 3(P<0.05, Figure 6D). Among the clusters, Cluster 1

showed significantly higher abundance of CD8+T cells compared to

others (P<0.001, Figure 6E). Moreover, the abundance of

immunosuppression-related Tregs cells among clusters varied

statistically among clusters, with Cluster 1 showing relatively

lower infiltration (P<0.05, Figure 6E). Although there was no

significant difference in the TMB levels among clusters of colon
A B

D E F

C

FIGURE 4

Analysis of tumor immune microenvironment and immune status during four clusters. (A, B) Comparisons of stromal score, immune score,
ESTIMATE score and tumor purity during four clusters. (C)The expression level of immune checkpoints (PD1, PDL1, PDL2, CTLA4, LAG3) in the four
clusters of colon cancer. (D) The abundance of immune cells in the four clusters of colon cancer patients evaluated by CIBERSORT algorithm. (E, F)
Comparisons of the immune activity score from Tracking Tumor Immunophenotype (TIP) database in four clusters. ‘ns’ means P > 0.05, * means P<
0.05, ** means P< 0.01, *** means P< 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1335670
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1335670
cancer (P=0.051, Figure 6F), the average of TMB in Cluster 1 was

higher than in other clusters. Finally, the Tide score was calculated

using CTL levels to predict immunotherapy response. The CTL

levels of each cluster showed significant differences (P<0.05,

Figure 6G), with cluster 1 having the highest CTL level.

According to the Tide score, it was anticipated that Cluster 1

patients had a higher probability of experiencing favorable

outcomes with immunotherapy, even among those with MSS

status (P<0.05, Figure 6H).

In summary, Significant differences in the TIME of MSS

patients were observed from different clusters. MSS patients in
Frontiers in Oncology 08
Cluster 1 exhibited a better immune status, making them more

suitable for immunotherapy.
3.8 Identification specific DNA
methylation markers

The QDMR software was used to identify the specific

methylation genes that characterized distinct DNA methylation

clusters of colon cancers. The average DNA methylation level of

samples for all 282 MDGs was calculated, resulting in a
A B D
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C

FIGURE 6

Analysis of immune status during microsatellite stability (MSS) patients from the four clusters. (A) The distribution frequency of microsatellite status
during four clusters. (B, C) Comparisons of stromal score, immune score, ESTIMATE score and tumor purity during MSS patients from different
clusters. (D) The expression level of immune checkpoints (PD1, PDL1, PDL2, CTLA4, LAG3) during MSS patients from different clusters. (E)
Comparisons of the abundances of immune cells evaluated by CIBERSORT algorithm during MSS patients from different clusters. (F) Comparisons of
Tumor Mutation Burdens (TMB) level of the four clusters. (G) Comparisons of cytotoxic T lymphocytes (CTL) level of the four clusters. (H)
Comparisons of Tumor Immune Dysfunction and Exclusion (TIDE) score for predicting the response of immune therapy during MSS patients. ‘ns’
means P> 0.05, * means P< 0.05, *** means P< 0.001.
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FIGURE 5

Somatic variations features during clusters of colon cancer and predicting the response to immune therapy based on Tumor Immune Dysfunction
and Exclusion (TIDE) score. (A–D) Waterfall plots showed somatic mutation landscape and the top 10 mutated in four clusters. (E) Comparisons of
mutation status of APC, KRAS, BRAF, TP53 and PIK3CA during different clusters of colon cancer patients. (F) Comparisons of Tumor Mutation
Burdens (TMB) level of the four clusters. (G) Comparisons of cytotoxic T lymphocytes (CTL) level of the four clusters. (H) Comparisons of Tide score
for predicting the likelihood of response to immune therapy of different clusters. ** means P< 0.01, *** means P< 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1335670
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1335670
282*9dimensional matrix which was then input into QDMR. A

standard deviation (SD) parameter of 0.3 was set to identify the

specific markers for each cluster. Ultimately, 56 specific methylation

genes were identified (Table S6). A heatmap was generated based on

these specific methylation genes, clearly illustrating the

differentiation among clusters (Figures 7A, E). Each cluster had its

own unique set of specific methylation genes. Of particular interest

were the three specific hypermethylation genes that defined Cluster 1

(PCDH20, APCDD1, COCH). Pearson correlation analysis

indicated that methylation in the promoter region regulated the

gene expression level of specific markers. The correlation coefficients

for PCDH20, APCDD1, and COCH were -0.335 (P<0.001, Figure

S3A), -0.309 (P<0.001, Figure S3B), and -0.329 (P<0.001, Figure

S3C), respectively. The Cluster 1 could be clearly distinguished from

the other clusters by three specific makers (Figures 7B, F). The

boxplot analysis revealed significant differences in methylation levels

between Cluster 1 and the remaining clusters (P<0.001, Figures 7C,

G). Finally, ROC analysis showed an AUC of 0.947 (95% CI 0.903-

0.990)for distinguishing Cluster 1 in the training cohort (Figure 7D)

and the specific markers also had an excellent performance in the

validation cohort, with an AUC of 0.912 (95% CI 0.8557-0.966)

(Figure 7H). These findings indicated that the specific methylation

genes (PCDH20, APCDD1, COCH) could effectively distinguish

Cluster 1 from other clusters. Additionally, we aimed to investigate

the relationship between these specific markers and prognosis.

Patients were categorized into two groups based on the average

expression and methylation levels. Survival analysis revealed that

high expression of APCDD1 was associated with a better prognosis

(P<0.05, Figure S4A), while the expression levels of other genes did
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not show statistical significance in relation to prognosis (Figure S4B,

C). Interestingly, high methylation levels of APCDD1 were

associated with a worse prognosis (P<0.05, Figure S4D), whereas

the methylation levels of the remaining genes did not exhibit any

association with prognosis (Figure S4E, F). Further subgroup

analysis revealed a significant increase in the methylation level of

APCDD1 in advanced-stage patients (P<0.05, Figure S5A). In

contrast, the gene expression level exhibited an opposite trend

(P<0.01, Figure S5B).
3.9 Immunohistochemical validation

After screening, we selected the postoperative tumor paraffin

sections of 10 patients for immunohistochemical validation. Based

on the efficacy evaluation results, the patients were divided into two

groups: the response group (partial response (PR), n=2, stable

disease (SD), n =3) and the non-response group (progressive

disease (PD), n=5) (Table S7). The results revealed that the

expression scores of biomarkers (PCDH20, APCDD1) were

significantly downregulated in the response group compared to

the non-response group (P<0.05, Figures 8A, B, D, E). The

hypermethylation of the promoter region could be responsible for

the decrease in gene expression levels. In the beneficial-cluster, the

methylation levels of PCDH20 and APCDD1 were considerably

increased in the benefit cluster, resulting in the repression of the

corresponding genes. However, the results indicated that there was

no significant difference in the expression of COCH between

response group and non-response group (P = 0.75, Figures 8C, F).
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FIGURE 7

Specific methylation sites for each DNA methylation cluster. (A) The heatmap for the specific sites during four DNA methylation clusters in the
training cohort. (B) The heatmap for the three specific sites (PCDH20, APCDD1, COCH) of cluster 1 during four clusters in the training cohort. (C)
Comparisons of the methylation level for the three specific sites (PCDH20, APCDD1, COCH) during four clusters in the training cohort. (D) Receiver
operating characteristic (ROC) curves of the three specific sites (PCDH20, APCDD1, COCH) in distinguishing the Cluster1 from other clusters in the
train cohort. (E) The heatmap for the specific sites during four clusters in the validation cohort. (F) The heatmap for the three specific sites of Cluster
1 during four clusters in the validation cohort. (G) Comparisons of the methylation level for the three specific sites during four clusters in the
validation cohort. (H) ROC curves of the three specific sites in distinguishing the Cluster 1 from other clusters in the validation cohort. *** means
P< 0.001.
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3.10 The potential association linking
APCDD1 and immune status

To elucidate the underlying mechanisms between markers and

immune status. we utilized bioinformatics data to investigate the

association between markers and immune scores, immune cell

infiltration (CD8+T cells), and immune checkpoints expression

(PD-1, PD-L1). Pearson correlation analysis revealed that the

methylation level of APCDD1 was positively correlated with

immune score (P<0.001, 0.333) (Figures 9A-D), CD8+T cells

infiltration (P<0.001, 0.383), PD-1 (P<0.001, 0.357), and PD-L1

(P<0.001, 0.383). Similarly, the methylation level of COCH

exhibited a significant positive correlation with immune scores

(P<0.001, 0.233), CD8+ T cells infiltration (P<0.001, 0.203), PD-1

(P<0.01, 0.183), and PD-L1 (P<0.001, 0.280) (Figures S6A-D).

Additionally, the methylation level of PCDH20 showed a

significant positive correlation with immune scores (P<0.01,

0.192), CD8+ T cells infiltration (P<0.001, 0.228), PD-1 (P<0.05,

0.129), and PD-L1 (P<0.01, 0.185) (Figures S6G, H). These findings

indicated a significant correlation between the methylation of

markers and the immune microenvironment and we chose to

focus our research on APCDD1, which demonstrated the

strongest correlation with the immune status.

Subsequently, APCDD1 was divided into high and low groups

based on methylation level for differential analysis with a set of P<

0.05 (Figure 9E). The 2058 of DMGs were then subjected to

enrichment and analysis. The results of GO analysis were

significantly enriched in T cell activation, immune receptor

activity (P<0.05, Figure 9F). Additionally, KEGG pathways

analysis revealed significant enrichment in intestinal immune

network for IgA production, (P<0.05, Figure 9G). After
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conducting a comprehensive Gene Set Enrichment Analysis

(GSEA) (h.all.v2022.1.Hs.symbols.gmt), we observed a significant

positive association between the differentially expressed genes and

the Interferon-GAMMA-Response pathway(P<0.05, Figure 9H).
4 Discussion

The emergence of immunotherapy has marked the beginning of

a new era in cancer therapy. However, the current situation presents

a challenge with the low detection rate of microsatellite status,

which is the primary standard used to guide immunotherapy. Not

all patients with dMMR or MSI-H had a response to

immunotherapy, a subset of MSS patients could also benefit from

immunotherapy. It is essential to search for additional

immunotherapy biomarkers as a supplement.

Abnormal DNA methylation modifications are closely

associated with the tumor immune microenvironment. This study

aimed to identify immunotherapy biomarkers for patients with

colon cancer from the perspective of DNA methylation. Firstly,

the most crucial step in this research is to utilize DEGs for the

identification of MDGs. Our concern lies in the fact that the

expression of DMGs is regulated by methylation and remains in a

low expression state. Upon applying more stringent thresholds, we

observed a substantial reduction in the number of DEGs. However,

this reduction came at the cost of decreased sensitivity. The stricter

thresholds led to the exclusion of potentially relevant MDGs

that could play a crucial role in influencing the immune

microenvironment. In summary, we experimented with various

thresholds and selected one suitable for our study. Although it may

impact sensitivity, we believe it is acceptable considering the
A
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FIGURE 8

Immunohistochemical validation of colon cancers. (A-C) The expressions of (PCDH20, APCDD1 and COCH) in response group and non-response
group. (D, E) Compared to non-response group, the expressions of (PCDH20 and APCDD1) were down-regulated in response group. (F) No
significant difference of COCH expression between response group and non-response group.
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influence of gene expression regulation by DNA methylation.

Subsequently, consensus clustering was conducted to identify

distinct molecular clusters of colon cancers based on the

methylation data. The patients of colon cancer were then divided

into four clusters, and the immune microenvironment of each

cluster was further analyzed. Notably, patients in Cluster 1,

characterized by stronger antitumor immunoactivity, were

predicted to have a better response to immunotherapy based on

the Tide score. Finally, we identified the specific methylation
Frontiers in Oncology 11
markers of Cluster1 (PCDH20, APCDD1, COCH), and ROC

curves confirmed their excellent performance in discriminating

the clusters.

There were several factors could affect the effectiveness of

immunotherapy in colon cancers. The composition and quantity

of infiltrating immune cells in the TIME played crucial roles in the

process of tumor eradication (34). The infiltration of CD8+ T cells

or CTLs had a significant positive association with antitumor

immune activity (35). On the other hand, Tregs could induce the
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FIGURE 9

The association of APCDD1 and immune status. (A) The methylation level of APCDD1 and immune scores. (B) The methylation level of APCDD1 and
CD8 T+ cells. (C) The methylation level of APCDD1 and PD-1 expressions. (D) The methylation level of APCDD1 and PD-L1 expressions. (E) Heatmap
of Differentially Methylated Genes (DMGs) in different methylation level of APCDD1. (F) Gene Ontology (GO) enrichment results of three ontologies
(including biological processes, cellular components, and molecular functions) of DMGs. (G) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of DMGs. (H) Gene Set Enrichment Analysis (GSEA) enrichment analysis was carried out on the DMGs between high and low
methylation of APCDD1.
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apoptosis of cytotoxic T cells, leading to the immunosuppression

(36, 37). In the present study, we statistically analyzed the

infiltration abundance of immune cells from clusters. It was

observed that Cluster 1 had a higher abundance of CD8+ T cells

and CTL, while the infiltration of Tregs was found to be the lowest

among the clusters (P<0.05). Other factors that affect

immunotherapy include the expression of ICIs, TMB, etc. (38, 39)

Compared with Cluster 2 and 3, the expression levels of ICIs were

significantly higher in Cluster 1. Additionally, patients in Cluster 1

had significantly higher TMB than those in remaining clusters

(P<0.05). The Tide scores indicated that Cluster 1 was most likely

to benefit from immunotherapy. Notably, the distribution

frequency of BRAF mutation (70.9%) and MSI-H (52.3%) in

Cluster 1 were significantly higher than that in other clusters.

There was a high overlap of 77.2% between these two groups of

patients. BRAF is a serine/threonine protein kinase located

downstream of RAS/RAF/MAPK pathway (40). The BRAF

mutation, (primarily caused by a missense mutation at V600E)

was a significant mutation in colon cancers. The relationship

between BRAF mutation and MSI-H has been extensively

discussed. It has been confirmed that patients with BRAF

mutations have a higher rate of MSI-H. This may be due to the

tumors with BRAF V600E mutation were associated with a high-

level CpG island methylator phenotype (CIMP) and MLH1

promoter methylation (41, 42). However, the impact of BRAF

mutation on immunotherapy response in dMMR patients has

always been controversial. A recent retrospective study concluded

that there were no significant differences in neoantigen tumor

burden (NTB), immune score, or T cell infiltration between

BRAF wild-type and mutant of colon cancer patients with MSI-H

(43). This suggested that both are likely to benefit from immune

checkpoint inhibitors. In conclusion, Cluster 1, which has a higher

frequency of BRAF mutation and MSI-H, is more suitable for

immunotherapy based on the TIME analysis.

We successfully identified specific methylation markers

(PCDH20, APCDD1, COCH) of immune-beneficial cluster using

the QDMR software. As a tumor suppressor gene, protocadherin 20

(PCDH20) is a member of the cadherin superfamily (44). The

previous studies have shown that the expression of PCDH20 was

frequently decreased or silenced in multiple cancers, primarily

attributed to the methylation of the promoter region. The

expression of PCDH20 was restored after the addition of DNMT

inhibitors to the corresponding tumor cell lines (45, 46). In

addition, it has been observed that inhibition of PCDH20

expression frequently promoted migration and invasion of

tumors (47). Notably, PCDH20 plays a crucial role in

maintaining the balance and structural integrity of the intestinal

epithelium. A decrease in the expression level of PCDH20 can

disrupt the integrity of the intestinal mucosa, which can contribute

to the development of colitis and Crohn’s disease (48). APCDD1

(adenomatosis polyposis down-regulated 1), a negative regulator of

Wnt/b-catenin pathway, its expression was regulated by promotor

methylation (49). It has been demonstrated that the methylation of

WNT target genes (including APCDD1) could be serve as reliable

biomarkers for predicting recurrence in colon cancers (50). As a

DNA methylation marker, COCH has shown effectiveness in
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identifying occult lymph node metastases in non-small cell lung

cancer (51). However, the effect of promoter methylation on the

expression of COCH has not been extensively studied. In contrast to

previous research, this study was the first to discuss the differences

in methylation levels of markers (PCDH20, APCDD1, COCH)

among different clusters. The methylation levels of the three

specific methylation markers in Cluster 1 were found to be

significantly distinct from those in the other clusters. In this

study, we utilized colon cancer samples (immunohistochemistry)

to validate the conclusion. However, we did not observe any

significant difference in the expression of COCH between

response group and non-response group. This might be attributed

to the markers being associated with clustering, while the potential

mechanisms related to the TIME remain unconfirmed.

DNA methylation biomarkers exhibited a better sensitivity

compared to mutation-based cancer detection (52–54). Currently,

DNA methylation markers are predominantly utilized as diagnostic

and prognostic markers. The innovation of this study lies in

exploring biomarkers of immunotherapy in colon cancers from

the perspective of DNA methylation. Ultimately, specific

methylation markers (PCDH20, APCDD1, and COCH) were

identified as effective markers for identifying cluster that would

benefit from immunotherapy in colon cancers. Our study still

had some limitations. Firstly, the sample size used in the

study was mainly derived from the database, we performed

immunohistochemical validation of small samples to verify the

research findings. However, for further validation, large sample

sequencing data will be required in the future. Secondly, the

potential mechanisms linking molecular markers and immune

status has not been fully elucidated. Lastly, we will concentrate on

assessing the markers’ feasibility in clinical practice and making

further enhancements and optimizations.
5 Conclusion

In conclusion, this study successfully identified a specific cluster

that benefited from immunotherapy through 282 MDGs of colon

cancers. Furthermore, we found beneficial-cluster of specific

methylation markers (PCDH20, APCDD1, COCH) that could be

used in conjunction with microsatellite status to expand the pool of

colon cancer patients eligible for immunotherapy.
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