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Background: Tongue squamous cell carcinoma (TSCC) is a prevalent tumor that

affects many people worldwide. Radiotherapy is a common treatment option,

but its efficacy varies greatly. This study seeks to validate the identified gene

signature associated with radiosensitivity in TSCC, and its potential in predicting

radiotherapy response and prognosis.

Methods: We analyzed 122 TSCC patients from TCGA database using the

radiosensitivity signature and classified them into radiosensitive (RS) and

radioresistant (RR) groups. Immune infiltration analysis methods were applied

to invest igate the immune status between different subgroups.

Immunophenotype Score (IPS) and pRRophetic algorithm were employed to

estimate the efficiency of treatment. A radioresistant TSCC cell line was

established by gradually increasing radiation doses. Cell radiosensitivity was

evaluated using the CCK-8 and colony formation assays. The expression of

radiosensitivity-related genes was validated by qRT-PCR.

Results:Our study validated the predictive capacity of a previously identified “31-

gene signature” in the TCGA-TSCC cohort, which effectively stratified patients

into RS and RR groups. We observed that the RS group exhibited superior overall

survival and progression-free survival rates relative to the RR group when treated

with radiotherapy. The RS group was significantly enriched in most immune-

related hallmark pathways, and may therefore benefit from immune checkpoint

inhibitors. However, the RS group displayed lower sensitivity to first-line

chemotherapy. A radioresistant TSCC cell line (CAL-27R) exhibited increased

clonogenic potential and cell viability following irradiation, accompanied by
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downregulation of three radiosensitivity-related genes compared to its parental

non-resistant cell (CAL-27). In addition, we constructed and validated a

radiosensitivity-related prognostic index (PI) using 4 radiosensitivity-related

genes associated with TSCC prognosis.

Conclusion: We assessed the ability of the radiosensitivity gene signature to

predict outcomes in TSCC patients. our research provided valuable insights into

the molecular pathways associated with radiosensitivity in TSCC and offered

clinicians a practical tool to predict patient radiotherapy effectiveness

and prognosis.
KEYWORDS

tongue squamous cell carcinoma, radiosensitivity, radiotherapy, prognosis,
prognostic index
1 Introduction

Tongue squamous cell carcinoma (TSCC) is a highly prevalent

malignant tumor of head and neck region. It is known for its more

aggressive behavior compared to conventional squamous cell

carcinoma (1). Despite the progress made in cancer diagnosis and

therapeutics over the past few decades, the recurrence of TSCC is

common and the prognosis remains unsatisfactory (2). Surgery and

perioperative radiotherapy are the most common treatment options

for TSCC. For most of TSCC patients, radiotherapy is a highly

effective modality for treating TSCC of different stages, and it plays

a critical role in reducing mortality rate of TSCC patients (3).

Although significant advancements in radiotherapy, radioresistance

remains a significant challenge that restricts the clinical efficacy of

radiotherapy. Tumor radioresistance is an important risk factor for

developing locoregional relapse and distant metastasis, especially

for TSCC patients (4). Unfortunately, there are no efficient

radiosensitivity biomarkers that can help select TSCC patients

who are more likely to respond effectively to radiotherapy.

Further research is still necessary to improve radiotherapy efficacy

and establish new biomarkers for better selection of TSCC patients.

It is widely acknowledged the genomic feature could be a

potential factor contributing to the heterogeneity of radiotherapy

efficiency (5). In recent years, there has been much attention given

to identifying radiation-specific biomarkers at the genome level to

improve the effectiveness of radiotherapy (6). Constructing a gene

signature is a reliable and practical way to screen for radiosensitive

patients and support clinical decision-making. Several gene

signatures have been developed to predict radiosensitivity in

diverse cancer types, including head and neck squamous cell

carcinoma (HNSCC) (7), breast cancer, and lung cancer (8). In

addition, several teams have focused on constructing pan-cancer

radiation-specific models that could transform the medical practice
02
of radiation oncology (9, 10). Therefore, identifying radiosensitivity

genes as biomarkers holds great potential for optimizing

radiotherapy strategies.

With the advent and commercialization of high-throughput

technology, gene sequencing has become an important tool in

developing radiosensitivity prediction models and understanding

the mechanism of radiosensitivity in various types of cancer. A

notable example is the radiosensitivity signature, a set of 31 genes

derived from the radiosensitivity profiling of the NCI-60 cell line

panel (11). This signature can stratify patients into radioresistant

(RR) and radiosensitive (RS) groups, which have varying clinical

outcomes and effectiveness of radiotherapy. The signature has been

validated in multiple types of tumors, including breast cancer, lower

grade glioma, and pancreatic cancer. Additionally, combined

immunotherapy and radiotherapy, specifically utilizing immune

checkpoint blockade, may be beneficial for a subset of patients

with high PD-L1 expression within the radioresistant group,

particularly in breast cancer and low-grade glioma (12–14).

However, the 31-gene signature has not been validated for

TSCC patients.

In our study, we aimed to validate the 31-gene signature

associated with radiosensitivity in TSCC patients using the TCGA

database. Patients were categorized into RS and RR groups using the

31-gene signature and observed significant survival differences

when TSCC patients received radiotherapy. To gain a deeper

understanding of radiosensitivity in TSCC, we investigated the

differences in functional enrichment, immune infiltration status,

and response to different treatment strategies between the two

groups. Additionally, we constructed a prognostic index to

predict the prognosis of TSCC patients. Our research

demonstrates the potential predictive value of the 31-gene

radiosensitivity signature and may pave the way for more

personalized approaches to cancer therapy in the future.
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2 Materials and methods

2.1 Public data acquisition and the
unsupervised clustering

The TCGA-TSCC dataset was sourced from the UCSC Xena

database (https://xena.ucsc.edu/). The TCGA (The Cancer Genome

Atlas) is a comprehensive cancer research program that provides a

vast repository of genomic, clinical, and pathological data from over

33,000 cancer patients across 33 different cancer types. This

comprehensive dataset has been a valuable resource for advancing

cancer research, providing insights into the molecular mechanisms

driving different cancer types. For this study, 122 TSCC patients

were selected for further analysis based on the availability of both

RNA-seq data and clinical information. Somatic variant mutation

annotation format (MAF) was obtained using the “maftools” R

package. The prognostic validation cohort, GSE41613 (n=97),

comprised TSCC microarray data and associated clinical

information obtained from the Gene Expression Omnibus (GEO)

database (15).

The study leveraged a 31-gene signature, previously identified

through a meta-analysis of four NCI-60 cancer cell line microarrays,

for patient stratification based on predicted radiosensitivity (11, 16).

This signature was selected due to its established association with

radiosensitivity and its potential as a biomarker for predicting

response to radiation therapy. The classification of patients into

two groups or “clusters” was based on the 31-gene signature and

was accomplished using a consensus clustering algorithm.

Subsequently, the study examined whether survival outcomes

following radiotherapy differed between the two clusters. The

clusters were designated as the RS group or the RR group based on

their respective prognoses following primary radiotherapy. Principal

Component Analysis (PCA) and University Mobility in Asia and the

Pacific (UMAP) analyses were utilized to assess the capability of the

31-gene signature to distinguish samples. The “ggplot2” and “umap”

R packages were utilized for PCA and UMAP, respectively.

Differentially expressed genes (DEGs) between the RS and RR

groups were analyzed based on the cutoff criteria of |log2-fold

change (FC)| > 1.5 and an adjusted p-value < 0.05.
2.2 Estimation of infiltration of immune
cells and immune status

In this study, we conducted an analysis of tumor immune

microenvironment using several computational tools. Firstly, We

employed the “ESTIMATE” algorithm to assess immune score,

stromal score, and tumor purity in each tumor sample, using gene

expression profiles as input (17). This approach allowed us to

determine the extent of immune cell infiltration and the overall

purity of the sample. Then, we performed single-sample Gene Set

Enrichment Analysis (ssGSEA) to assess the enrichment levels of 29

immunity-related signatures, encompassing various immune

pathways and functions (18). TSCC patients were classified into

high-immunity and low-immunity groups using unsupervised
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hierarchical clustering based on the ssGSEA scores of 29 immune

signatures. Furthermore, we uti l ized the CIBERSORT

computational tool to estimate the relative abundances of 22

types of tumor-infiltrating immune cells in each sample based on

gene expression data (19). Results with a p-value ≤ 0.05 were

considered eligible for further study. This approach allowed for a

comprehensive evaluation of the immune status of each tumor

sample and provided insights into the potential role of immune cell

infiltration in tumor progression and response to treatment.
2.3 Functional enrichment and gene set
variation analysis

GSVA was employed to evaluate the variation of pathway

activity across different clusters in an unsupervised manner using

the GSVA package. The gene set, ‘c2.cp.kegg.v7.5.1.symbols.gmt’,

was retrieved from the Molecular Signatures Database (MSigDB)

and selected as the background gene set for this analysis. Differential

analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway between two clusters was performed using the “limma” R

package (20, 21). Patients were clustered based on their pathway

enrichment scores, with statistical significance determined by an

adjusted p-value below 0.05.
2.4 Predicting immunotherapy response
and assessing drug sensitivity

The Immunophenotype Score (IPS) is a comprehensive

measure that quantifies the immunogenicity of solid tumors,

which serves as an indicator of the potential response to

immunotherapy. The IPS score ranges from 0 to 10 and is

determined by the expression of specific gene sets. The Cancer

Immunome Atlas (TCIA) database uses machine learning to

develop a scoring system that quantifies the IPS (22). The efficacy

of immunotherapy using anti-CTLA-4 and anti-PD-1 antibodies

was predicted using the IPS for these blockers. To predict patient

responses to chemotherapy and targeted therapies, we employed the

“pRRophetic” R package (23). This package leverages data from the

Genomics of Drug Sensitivity in Cancer (GDSC) database, which

contains information on the responses of various cancer cell lines to

chemotherapeutic and targeted agents. The pRRophetic package

utilizes this data to predict the sensitivity of a specific cancer cell line

to a particular drug (24). The IC50 value represents the

concentration of a drug required to inhibit 50% of cell growth,

with lower IC50 values indicating greater sensitivity of tumor cells

to specific chemotherapeutic and targeted agents.
2.5 Construction of the radiosensitivity-
related prognostic index

Our study employed a univariate Cox regression analysis in the

training set to screen for radiosensitivity-related prognostic genes.
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Statistical significance was established at a p-value threshold of 0.05,

and genes meeting this criterion were selected for further analysis. We

employed least absolute shrinkage and selection operator (LASSO)-

penalized Cox regression analysis to identify the most reliable

predictors and construct a prognostic model. This approach allowed

us to determine the most important genes for prognostic purposes. The

final genes were selected, and a PI was generated using the formula:

prognostic index (PI) = coef 1 × expgene1 + coef 2 × expgene2……coef

n × expgene n. Patients with TSCC were divided into high-PI and low-

PI groups based on the median PI, and survival was analyzed using the

Kaplan-Meier method. The predictive value of the nomogram was

verified using decision curve analysis (DCA) in comparison to other

independent factors (25). The performance of the PIs was evaluated

using a time-dependent receiver operating characteristic (ROC) curve

analysis. The ROC curves for the four previously reported models were

obtained based on the TCGA-TSCC dataset. The riskscore was

calculated for each TCGA-TSCC sample using the corresponding

genes in the four models. The samples were then stratified into high-

PI and low-PI groups based on the riskScores. Subsequently, time-

dependent ROC curves were plotted, and the area under the curve

(AUC) for 1-year, 3-year, and 5-year overall survival (OS) in the

TCGA-TSCC datasets was calculated to evaluate the prognostic

accuracy of the four models.
2.6 Cell culture and establishment of
radioresistant TSCC cells

The Human TSCC cell line, CAL-27, was procured from the China

Center for Type Culture Collection (CCTCC, Wuhan, China). The

CAL-27 cell line was cultured in RPMI medium 1,640 (Corning,

United States) supplemented with 10% fetal bovine serum (Corning,

United States) and 1% antibiotics (Gibco-BRL, Gaithersburg, MD,

United States) and incubated at a temperature of 37°C with saturated

humidity and 5% CO2. Prior to use, CAL-27 cells were screened for

mycoplasma contamination. Radioresistant CAL-27R was established

by subjecting CAL-27 cells to repeated radiation exposure. Briefly,

CAL-27 cells received a total radiation dose of 50 Gy, administered in

seven fractions with increasing doses: 2 Gy, 4 Gy, 6 Gy, 8 Gy, and then

three consecutive doses of 10 Gy (26). The radio-resistance of CAL-27R

was assessed through cell proliferation assays.
2.7 Cell proliferation assays

The assessment of cell viability was conducted utilizing the

CCK-8 assay in adherence to the manufacturer’s guidelines. The

cells were seeded and placed in 96-well plates, followed by

incubation. After 24 hours of incubation, the cells were exposed

to 4 or 8 Gy irradiation. CAL-27 and CAL-27R cells were exposed to

radiation for a total of 48 hours. Following the radiation, the optical

density at 450 nm was measured using a microplate reader after

adding 10 ml of Cell Counting Kit-8 solution (Dojindo, Kumamoto,

Japan) to the cells and incubating them for three hours.
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2.8 Colony formation assay

To assess clonogenic survival, both cell lines were seeded at a

density of 500 cells per well in six-well plates and incubated

overnight to allow for cell attachment. The following day, cells

were irradiated with increasing doses of radiation (5 and 10 Gy).

Cultures were maintained for 14 days, at which point colonies were

visible. After fixation with 4% paraformaldehyde for 30 minutes,

colonies were stained with 1% (w/v) crystal violet for 30 minutes,

with the dye solution being reused. Colony efficiency was calculated

as the number of colonies divided by the initial number of seeded

cells, multiplied by 100%.
2.9 Quantitative real-time polymerase
chain reaction

The RNA extraction process involved the use of Trizol reagent,

following the protocol provided by the manufacturer (Invitrogen,

San Diego, CA, USA). The concentration of the extracted RNA was

determined using a NanoDrop 2000 spectrophotometer

(ThermoFisher, USA). The cDNA synthesis was performed using

the Transcriptor First Strand cDNA Synthesis Kit (Roche,

Germany) on the extracted RNA. The SYBR Prime Script RT-

PCR Kit (Invitrogen, USA) was utilized for quantitative real-time

PCR (RT-qPCR), with primer sequences listed in Supplementary

Table S1. The 2-DDCT method was used to calculate relative

expression levels, with all results presented as fold changes

relative to the internal control genes. Ct values were normalized

to the geometric mean of GAPDH, an internal control gene, and all

experiments were conducted in triplicate. The data obtained from

this study were derived from three independent experiments,

ensuring accuracy and reliability.
2.10 Statistical analysis

The statistical methods used for data calculation and comparison

were incorporated into the analysis using R software version 4.1.3. To

compare normally distributed data between two groups, a Student’s t-

test was used. For categorical and pairwise features across different

groups, the Chi-square test was employed. TheMann-Whitney U test

was used to analyze statistically significant differences between two

groups, and the Kruskal-Wallis test was utilized to evaluate

statistically significant differences among multiple independent

groups. When performing multiple dependent or independent

statistical tests, a Bonferroni correction was applied to adjust for

multiple comparisons. Pearson’s correlation test was used to assess

correlations between normally distributed variables, and Spearman’s

correlation test was used to evaluate correlations between variables

that were not normally distributed. The Kaplan-Meier method and

log-rank test were applied to analyze survival differences between two

or more groups. All tests were two-sided, and statistical significance

was defined as a p-value less than 0.05, unless otherwise specified.
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3 Results

3.1 Validation of radiosensitivity gene
signature in TSCC

We first validated the radiosensitivity predictive capacity of the

31-gene signature in TCGA-TSCC cohort. Using the consensus

clustering algorithm, we divided TSCC patients into two clusters:

cluster 1 (n = 51, 41.8%) and cluster 2 (n = 71, 58.2%), based on the

gene expression levels of the 31-gene signature (Figure 1A). These

clusters represented two different types based on the 31-gene

signature. To validate these two clusters and identify the RS and

RR groups, we performed survival analysis. The Kaplan-Meier

curve showed no significant difference in OS and progression-free

interval (PFI) between the cluster 1 and cluster 2 groups

(Figure 1B). However, patients who received radiotherapy

exhibited better OS and PFI in cluster 1 than cluster 2

(Figure 1C). No survival differences were observed in patients
Frontiers in Oncology 05
without radiotherapy between the two clusters (Figure 1D).

Therefore, the 31-gene could potentially serve as a predictive

biomarker for predicting the prognosis of TSCC patients after

radiotherapy. We defined cluster 1 as the RS group and cluster 2

as the RR group. The RS group may benefit more from radiotherapy

than the RR group.
3.2 The correlation between
radiosensitivity group and
tumor characteristics

The clinicopathological characteristics of patients were

presented in Table 1. No statistically significant differences were

found in clinical characteristics between the RS and RR groups

(Figure 2A). The radiosensitivity signature was validated using PCA

and UMAP, which classified TSCC patients into two clusters

(Figure 2B). We subsequently compared the tumor characteristics
FIGURE 1

Survival analysis that compares the OS and PFI between two clusters of patients receiving radiotherapy and not. (A) The TSCC patients were
subjected to consensus clustering based on 31 radiosensitivity-related genes, and the optimal number of clusters was verified using cumulative
distribution function (CDF) curves. (B) The Kaplan-Meier plot illustrated that there was no significant difference in OS and PFI between the two
clusters in all the patients. (C) patients in cluster 1 (RS group) who received radiotherapy had better OS and PFI compared to those in cluster 2 (RR
group). (D) there was no significant difference in OS and PFI between the two clusters in the patients who did not receive radiotherapy.
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between the RS group and the RR group. Tumor stemness, which

represents the capacity for self-renewal and differentiation, has been

shown to affect treatment resistance. We found that the stemness

index (mRNAsi) and TMB were significantly lower in the RS group

compared to the RR group (Figure 2C). Waterfall plots showed

significant differences in the frequency of mutations across various

genes between the two groups. The mutation frequency of TP53 was

higher in the RR group compared to the RS group. On the other
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hand, the RS group was characterized by high-frequency mutations

of NOTCH1, while the RR group had high mutation frequency of

CDKN2A and FAT1 (Figure 2D). Furthermore, the ESTIMATE

algorithm demonstrated that the estimate score, stromal score and

immune scores of RS group were increased compared to those of

the RR group, while tumor purity was decreased (Figure 2E). These

results indicated that genomic differences between these two groups

might influence tumor immune infiltration status and

immunotherapy responsiveness.
3.3 Functional annotations and tumor
immune infiltration status of TSCC
associated with the radiosensitivity

To investigate the molecular pathways associated with

radiosensitivity in TSCC, we used GSVA enrichment analysis to

compare KEGG pathway activity between the RS and RR groups.

Our findings revealed that pathways linked to immune responses,

such as antigen processing and presentation, T-cell receptor

signaling pathway and natural killer cell mediated cytotoxicity

pathway, were enriched in RS group (Figure 3A). Subsequently,

ssGSEA algorithms was used to assess tumor immune infiltration

based on the enrichment of 29 immune hallmarks. Our results

indicated that the RS group was significantly enriched in most of

immune-related hallmark pathways (Figure 3B). We clustered

TSCC patients into high-immunity and low-immunity subgroups

and found that the RS group consisted mostly of high-immunity

patients (Figure 3C). Then, CIBERSORT was employed to quantify

the abundances of 22 immune-infiltrating cells between the two

groups. Our results demonstrated that CD8 T cells, regulatory T

cells and T follicular helper (Tfh) cells were significantly enriched in

the RS group, while activated dendritic cells and activated mast cells

were mainly enriched in the RR group (Figure 3D).
3.4 Correlation between radiosensitivity
signature and treatment sensitivity

We further explored the relationship between radiosensitivity

signature and patient response to immunotherapy. Our findings

revealed that the RS group demonstrated significantly elevated

expression levels of immune checkpoint genes (Figure 4A),

indicating that patients in RS group may be more responsive to

immune checkpoint inhibitor. We further employed the

Immunophenoscore (IPS) algorithm to validate our previous

findings, which implied that patients in the RS group exhibited a

superior response to both PD-1 and CTLA-4 inhibitors compared

to those in the RR group (Figure 4B). In addition, we investigated if

these two groups could have vary ing responses to

chemotherapeutics and targeted drugs. To achieve this, we

utilized the pRRophetic R package, which leverages the GDSC

pharmacogenomic database to predict drug sensitivity. Our

results demonstrated that the RS group had higher IC50 values

for first-line chemotherapy, including paclitaxel, cisplatin, and
TABLE 1 Relationship between radiosensitivity group and
clinicopathological characteristics in TCGA-TSCC cohort.

Type Total RR group RS group P-value

Age

<=65 91 (74.59%) 56 (78.87%) 35 (68.63%) 0.284

>65 31 (25.41%) 15 (21.13%) 16 (31.37%)

Gender

female 38 (31.15%) 21 (29.58%) 17 (33.33%) 0.8075

male 84 (68.85%) 50 (70.42%) 34 (66.67%)

Grade

G1 19 (15.57%) 14 (19.72%) 5 (9.8%) 0.2581

G2 76 (62.3%) 44 (61.97%) 32 (62.75%)

G3 23 (18.85%) 12 (16.9%) 11 (21.57%)

G4 4 (3.28%) 1 (1.41%) 3 (5.88%)

Stage

Stage I 9 (7.38%) 4 (5.63%) 5 (9.8%) 0.1636

Stage II 31 (25.41%) 20 (28.17%) 11 (21.57%)

Stage III 36 (29.51%) 25 (35.21%) 11 (21.57%)

Stage IV 46 (37.7%) 22 (30.99%) 24 (47.06%)

M_stage

M0 119 (97.54%) 70 (98.59%) 49 (96.08%) 0.7707

M1 3 (2.46%) 1 (1.41%) 2 (3.92%)

N_stage

N0 62 (50.82%) 41 (57.75%) 21 (41.18%) 0.0785

N1 25 (20.49%) 16 (22.54%) 9 (17.65%)

N2 33 (27.05%) 13 (18.31%) 20 (39.22%)

N3 2 (1.64%) 1 (1.41%) 1 (1.96%)

T_stage

T1 13 (10.66%) 6 (8.45%) 7 (13.73%) 0.736

T2 45 (36.89%) 28 (39.44%) 17 (33.33%)

T3 48 (39.34%) 27 (38.03%) 21 (41.18%)

T4 16 (13.11%) 10 (14.08%) 6 (11.76%)

Radiation

NO 47 (38.52%) 26 (36.62%) 21 (41.18%) 0.7478

YES 75 (61.48%) 45 (63.38%) 30 (58.82%)
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docetaxel, compared to the RR group, indicating patients in the RS

group may be less responsive to chemotherapy (Figure 4C).

Additionally, we estimated the IC50 of targeted therapy drugs,

which revealed that the IC50 values of VEGFR (Axitinib,

Pazopanib, and Sunitinib) and PARP1 (ABT888 and AZD.2281)

inhibitors were lower in the RS group. Conversely, the IC50 values

of EGFR inhibitors in TSCC patients were significantly higher in the

RS group compared to those in the RR group (Figure 4D and

Supplementary Figure S1A).
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3.5 Validation of the radiosensitivity
signature through in vitro experiments

To confirm the predictive capacity of the radiosensitivity

signature in TSCC, we conducted differential expression analysis

between RS and RR groups. Analysis of the two groups identified a

total of 108 DEGs, with 19 upregulated and 89 downregulated genes

(Supplementary Figure S2A). Notably, four genes (LAPTM5,

CORO1A, PTPRC and CXCR4) overlapped with the 31
FIGURE 2

Relationship between radiosensitivity group and tumor characteristics. (A) The heatmap displayed the correlation between the expression levels of 31
genes and the clinical-pathological features of TSCC patients. (B) The PCA and UMAP plots are based on radiosensitivity gene signature of 31 genes
in TSCC patients. (C) Comparisons of mRNAsi scores and TMB values between the RS group and RR group. (D) The waterfall plots depicted the most
frequently mutated genes in the RS and RR groups, respectively. (E) Comparisons of the infiltration levels of estimate, stromal, immune scores and
tumor purity in between two groups using boxplots.
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radiosensitivity genes that were increased in the RS group

(Supplementary Figure S2B). To further investigate these findings,

we established a radioresistant TSCC cell line (CAL-27R) from a non-

radioresistant TSCC cell line (CAL-27). Clonogenic assays similarly

demonstrated a significant reduction in colony formation in CAL-27

cells compared to CAL-27R cells following irradiation. Interestingly,
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the colonies formed by CAL-27R cells were larger than those derived

from CAL-27 cells (Figure 5A). CCK-8 assays revealed that CAL-27R

cells exhibited increased cell viability compared to CAL-27 cells after

exposure to 4 and 8 Gy radiation, confirming the acquisition of

radioresistance in CAL-27R (Figure 5B). Finally, we verified the

expression of the four identified DEGs in CAL-27 and CAL-27R
FIGURE 3

These two groups possessed different functional annotations and tumor immune infiltration status. (A) The heatmap of GSVA result showed the top
20 KEGG enriched pathways between RS and RR groups. (B) The immune subgroups of TSCC patients were categorized based on the enrichment of
29 immune hallmarks. (C) A stacked histogram illustrated the proportions of high-immunity and low-immunity patients in the two groups.
(D) Comparisons of the proportions of 22 immune-infiltrating cells between the two groups. * p<0.05, ** p<0.01, *** p<0.001.
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FIGURE 4

Different sensitivity to immunotherapy, chemotherapy and targeted therapy between two groups. (A) Box plots showed the expression level of
immune checkpoint genes in the two groups (B) Violin diagram showed the Immunophenoscore for CTLA-4 and PD-1 inhibitors between two
groups. (C) The IC50 values of three first-line chemotherapeutic drugs for TSCC between two groups. (D) Difference in IC50 values of targeted
therapy drugs for TSCC between two groups. **p < 0.01, ***p < 0.001. ns, not significant.
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cells. The expression levels of LAPTM5, CORO1A, and PTPRC were

significantly higher in the non-resistant CAL-27 cells compared to

the resistant CAL-27R cells (Figure 5C), which was consistent with

our bioinformatics analysis.
3.6 Construction of a radiosensitivity-
related PI for TSCC patients

Since the 31 radiosensitivity genes were derived from the NCI-

60 cancer cell line panel which is not specific to tongue cancer, we

constructed a radiosensitivity-related prognostic index (PI) for

TSCC patients using 31 radiosensitivity genes (11, 16).

The univariate Cox regression analysis identified 5 genes

associated with the prognosis of TSCC (Figure 6A). Subsequently,

The LASSO-Cox regression analysis identified that 4 genes were

used to build the prognostic model, which were CBR1, CCND1,

RAB13 and RALB (Supplementary Figure S3A). The prognostic

index formula was as follows: PI = (-0.4096 × mRNA level of

CBR1) + (0.2129 ×mRNA level of CCND1) + (-0.7336 ×mRNA

level of RAB13) + (0.7147 ×mRNA level of RALB) (Supplementary

Figure S3B). Patients were classified into the high-PI group and

low-PI group based on the median value of the PI score

(Supplementary Figure S3C). The statistical analysis revealed a
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significant difference in the expression levels of these four genes

between the high-PI and low-PI groups (Supplementary Figure

S4A). The Kaplan-Meier survival curve demonstrated that patients

of low-PI group exhibited better OS than those in the high-PI group

(Figure 6B). Receiver operating characteristic (ROC) curves

illustrated that the AUC values for 1-, 3- and 5-year were 0.67,

0.76 and 0.751, respectively (Figure 6C). The C-index of the PI was

higher than other clinical characteristics, including gender, age,

grade, stage and radiotherapy, suggesting that the model has better

discriminative ability than other clinical characteristics (Figure 6D).

To assess the predictive accuracy of our prognostic model, the

GSE41613 dataset was utilized as an external validation cohort.

TSCC patients from this dataset were divided into low-PI and high-

PI groups according to the PI formula. These findings aligned with

those observed in the TCGA-TSCC cohort, there was a consistent

trend and statistically significant difference in the expression levels

of these hub genes between the high-PI and low-PI groups in

GSE41613 dataset (Supplementary Figure S4B). Notably, the low-PI

group showed a notably better survival rate compared to the high-

PI group (Figure 6E). To further assess the model’s validity, we

compared its performance to four previously published prognostic

signatures for TSCC. Our results revealed that our PI had a higher

C-index and AUC value than the other signatures (Figure 6F and

Supplementary Figure S5).
FIGURE 5

Validation of the radiosensitivity signature through in vitro experiments. (A) Clonogenic survival of CAL-27 and CAL-27R cells after exposure to 4
and 8 Gy of Radiation. Data presented as bar graph. (B) The proliferation ability of CAL-27 and CAL-27R cells after radiation was assessed using the
CCK8 assay. (C) The expression levels of LAPTM5, CORO1A and PTPRC in CAL-27 and CAL-27R cells were quantified by qRT-PCR. ***p < 0.001.
ns, not significant.
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3.7 Development of a nomogram to
predict the prognosis of TSCC patients

Consequently, we evaluated the independent prognostic impact

of our radiosensitivity-related prognostic model on OS using both

univariate and multivariate Cox regression analyses. The results

demonstrated that the PI was an independent factor for TSCC

patient (Figure 7A). We developed a nomogram to enhance the

clinical applicability of the PI prognostic model by incorporating PI
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and common clinical characteristics, such as gender, age, grade,

stage, and radiotherapy (Figure 7B). The calibration curves

exhibited excellent agreement between the predicted probabilities

from the nomogram and the survival rates (Figure 7C). The ROC

and decision curve analysis (DCA) curves also indicated that the

nomogram had a relatively high discriminative ability in predicting

the prognosis of TSCC patients (Figure 7D). Taken together, these

findings suggest that the nomogram could serve as a practical tool

and offer valuable guidance for TSCC patients in clinical practice.
FIGURE 6

Construction of a prognostic index using 31 radiosensitivity genes for TSCC patients. (A) Identification of five prognostic genes based univariate Cox
regression analysis. (B) Kaplan–Meier curve showing that patients in the low-PI group had a better prognosis than those in the high-PI group in
TCGA-TSCC cohort. (C) Time-dependent ROC for 1-, 3- and 5-year survival predictions for TSCC patients. (D) C-index of the PI and other clinical
characteristics. (E) Kaplan–Meier curve confirming that patients in the low-PI group had a better prognosis than those in the high-PI group in the
GSE41613 cohort. (F) The C-index of our PI and four previously prognostic model for TSCC.
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3.8 Immune profile differences in high-PI
and low-PI groups

As radiosensitivity is associated with immune status of tumors, we

investigated the tumor immune microenvironment of the high-PI and

low-PI groups. Firstly, we utilized the CIBERSORT algorithm to

estimate 22 tumor-infiltrating immune cells of TSCC. Consistent

with the RS group, the low-PI group exhibited higher proportions of

CD8 T cells, regulatory T cells, and Tfh cells, while the high-PI group

showed elevated levels of resting memory CD4 T cells, activated

dendritic cells, and resting NK cells (Figure 8A). A negative
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correlation was observed between PI and CD8 T cells, regulatory T

cells, and Tfh cells, while resting memory CD4 T cells, activated

dendritic cells, and resting NK cells showed a positive association

with PI (Figure 8B). We found that patients with higher CD8 T cell

abundances in the low-PI group had better survival rates than those

with lower CD8 T cell abundances in the high-PI group (Figure 8C).

The associations between the expression level of the 4 genes of PI and

22 tumor-infiltrating immune cells in TSCC was shown in Figure 8D.

Moreover, we further estimated immune cell infiltrations of TSCC

through QUANTISEQ, XCELL, EPIC and MCPCOUNTER

algorithms to systematically explored the relationship between PI
FIGURE 7

Development of a predictive nomogram based on radiosensitivity PI. (A) Univariate and multivariate Cox regression analyses demonstrated that the PI
was an independent prognostic factor for patients with TSCC. (B) The prognostic nomogram was based on the PI and common clinical characteristics.
(C) The calibration plot displayed that the nomogram-predicted probabilities were closely aligned with actual survival rates. (D) The ROC and DCA
curves showing the performance of the nomogram and different clinical characteristics. **p < 0.01.
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FIGURE 8

Landscape of tumor immune profile between high-PI and low-PI groups. (A) Comparisons of the proportions of 22 immune-infiltrating cells
between the high-PI and low-PI groups. (B) Correlation analysis between immune-infiltrating cells and PI. (C) Kaplan-Meier survival curves in
different groups according to the abundances of CD8 T cells. (D) Associations between the expression level of the four genes of PI and 22 tumor-
infiltrating immune cells. (E) Correlations between PI and tumor-infiltrating immune cells of TSCC analyzed by QUANTISEQ, XCELL, EPIC and
MCPCOUNTER. * p<0.05, ** p<0.01, *** p<0.001.
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and tumor-infiltrating immune cells. The results exhibited that

radiosensitivity-related PI was negatively correlated with abundance

of CD8 T cells in all five algorithms (Figure 8E).
4 Discussion

Radiation therapy is a crucial treatment modality for patients

with TSCC (27). However, patients demonstrate significant

variability in their sensitivity to radiotherapy, with some

responding more favorably to radiat ion than others .

Consequently, it is imperative to identify predictive markers of

radiosensitivity to optimize radiation therapy. Precision medicine

has emerged as a powerful approach to personalize treatment

strategies, and identifying potential biomarkers is a key focus of

this field (28). This study aimed to evaluate the predictive power of a

31-gene signature, proposed to reflect radiosensitivity, using the

TCGA-TSCC dataset. Our findings indicate that this gene signature

may have potential as a predictive marker for radiotherapy response

in TSCC patients. Additionally, we developed the radiosensitivity-

related prognostic index and nomogram that could provide valuable

guidance for TSCC patients in clinical practice. These tools could

serve as practical aids to optimize treatment strategies and improve

clinical outcomes for TSCC patients.

Radiosensitivity is a term whose definition varies depending on

the context in which it is used. In clinical settings, radiosensitivity is

defined based on two criteria: firstly, the survival rate of the RS group

should not be better than that of the RR group when neither group

receives radiotherapy. Secondly, when both groups receive

radiotherapy, the RS group should experience significantly more

survival benefits than the RR group (29). The 31-gene signature has

been validated for predicting radiosensitivity in glioblastoma, breast

cancer, and low-grade gliomas (12–14). In this study, we tested the

31-gene signature as a predictive biomarker for predicting

radiosensitivity in patients with TSCC receiving radiotherapy,

which to our knowledge, is the first such study. In recent years,

several studies have identified radiosensitive biomarkers for

predicting radiotherapy outcomes in HNSCC patients. For example,

Liu et al. developed a 12-gene signature using multiple omics data,

which showed superior predictive power for radiosensitivity (30).

Similarly, Ma et al. developed a methylation-based signature

consisting of four genes, which proved to be a valuable predictor of

survival in HNSCC patients receiving radiotherapy (31). However,

selecting TSCC patients who will benefit most from radiotherapy

remains a challenge due to the lack of reliable radiosensitivity

biomarkers. Our study employed consensus clustering to classify

patients into RS and RR groups. We found that the RS group had

better OS and PFI rates than the RR group when treated with

radiotherapy, but not when untreated. Our findings suggest that the

radiosensitivity gene signature could be a valuable tool for predicting

the response to radiotherapy in TSCC patients.

Radiation is known to activate the immunologic response within

the tumor microenvironment, which dynamically changes in

response to radiotherapy (32). Thus, comprehending the impact of

immune microenvironment function on the efficacy of radiotherapy

is crucial for optimizing treatment strategies. Previous research on
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radiosensitivity has focused primarily on tumor cells, neglecting the

role of stromal and immune cel ls within the tumor

microenvironment (33, 34). Recent studies have revealed the

significant influence of the immune system on cancer patients’

response to treatment and long-term prognosis. For instance, Yan

et al. developed an immune-related radiosensitivity gene signature to

predict the survival of lower grade glioma patients who received

radiotherapy (35), while Mathias Fiedler et al. found that T-cell

activation is associated with radio response and favorable survival in

advanced head and neck cancer treated with definitive radiotherapy

or chemoradiation (36). Consistent with these findings, our results

demonstrate that the RS group had significantly enriched immune-

related hallmark pathways and high T-cell infiltration, particularly

CD8 T cells and Tfh cells, which were prognostic factors for better

outcomes. Among immune cells, CD8+ T cells, also known as

cytotoxic T lymphocytes, play a critical role in targeting and

eliminating cancer cells. One explanation for this is that radiation

dramatically increases cytotoxic T-cell infiltration, which not only

indicates a better response but also results in better tumor

shrinkage (37).

Interestingly, our study found an association between high Treg

cells and the RS group. The immunosuppressive activity of Tregs

within the tumor microenvironment is often associated with

unfavorable outcomes in most solid tumors (38). However, the

contradictory finding of high Treg cells in the RS group may indicate

a robust T-cell response within the tumor, suggesting a more effective

antitumor immunity.While Tregs have immunosuppressive effects, the

presence of a substantial population of CD8+ T cells could have a

dominant influence. Moreover, as a “hot” immune-inflamed

microenvironment is typically associated with high CD8 T cell

counts, predicting benefit from the PD-1/CTLA-4 blockade (33).

Our study observed an enrichment of TCIA in TSCC patients of the

RS group, but not in the RR group. These findings offer a potential

explanation for the limited efficacy of combined radiotherapy and

immunotherapy in certain patients, particularly those in the RR group.

Effective checkpoint inhibitor therapy requires sufficient T-cell

infiltration within the tumor, a factor that may be lacking in these

patients. In contrast, patients in the RR group showed higher sensitivity

to first-line chemotherapeutic drugs, including paclitaxel, cisplatin, and

docetaxel. Accordingly, a combination strategy involving

chemotherapy with radiotherapy has been proposed as a means to

overcome radio-resistance in these patients.

Lastly, we have developed a radiosensitivity-related prognostic

index by utilizing the aforementioned radiosensitivity genes. Our

signature is composed of five radiosensitivity genes, including CBR1,

CCND1, RAB13, PKM, and RALB, which have been extensively

studied and found to play crucial roles in regulating cellular

responses to radiation. For instance, CBR1 has been shown to be

involved in the production of reactive oxygen species (ROS) that can

induce DNA damage (39), while CCND1 has been found to control

the cell cycle and promote DNA repair (40). Similarly, RAB13 has

been implicated in the regulation of DNA damage response

pathways (41), and PKM has been shown to modulate cellular

metabolism and DNA damage repair (42). RALB has been found

to play a role in the regulation of cellular migration and invasion,

which can influence the response to radiation therapy (43).
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The present study was not without its limitations. Firstly, the

retrospective nature of the database used, The Cancer Genome Atlas

(TCGA), may have introduced potential bias due to variations in

follow-up information. Therefore, a prospective study involving a

homogenous cohort of TSCC patients is needed to validate our

findings. Secondly, the relatively small sample size may have limited

the statistical power of our analyses and restricted the generalizability of

our findings to a broader population, underscoring the need for caution

in interpreting the results. Therefore, future research involving a larger

cohort is essential to validate our findings and confirm their

applicability across diverse patient populations. Thirdly, the

est imation of immune cel l infi l trat ion in the tumor

microenvironment, rather than its direct measurement, is a

limitation of the study. Lastly, the selection of the 31 radiosensitivity

genes from the NCI-60 cancer cell line panel, which does not include

tongue cancer cell lines, may raise concerns regarding the relevance and

specificity of these genes in dividing TSCC patients. However, it is

important to note that epithelial malignancies possess certain

commonalities in terms of radiation response. Therefore, the

significance of these genes lies in their ability to provide insights into

the broader mechanisms of radiation response in epithelial tumors.

Nevertheless, additional investigations specifically targeting TSCC

patients are imperative in order to validate the relevance and clinical

applicability of these gene signatures.
5 Conclusion

In summary, this study aimed to validate a previously identified

“31-gene signature” linked to radiosensitivity in TSCC and its potential

in predicting radiotherapy response and prognosis. Patients in the RS

group demonstrated improved overall survival and progression-free

survival rates compared to those in the RR group when treated with

radiotherapy. Moreover, the RS group showed significant enrichment

in most immune-related hallmark pathways, suggesting potential

benefits from immune checkpoint inhibitors. However, the RS group

demonstrated lower sensitivity to first-line chemotherapy. The study

also developed and validated a radiosensitivity-related prognostic index

utilizing four radiosensitivity-related genes associated with TSCC

prognosis. Overall, the study provides valuable insights into the

molecular pathways associated with radiosensitivity in TSCC and

offers clinicians a practical tool to predict patient radiotherapy

effectiveness and prognosis.
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