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Accuracy of radiomics in the
diagnosis and preoperative high-
risk assessment of endometrial
cancer: a systematic review and
meta-analysis
Junmei He †, Yurong Liu †, Jinzhu Li and Shuang Liu*

The Fifth People’s Hospital of Jinan, Jinan, Shandong, China
Background:With the increasing use of radiomics in cancer diagnosis and treatment,

it has been applied by some researchers to the preoperative risk assessment of

endometrial cancer (EC) patients. However, comprehensive and systematic evidence

is needed to assess its clinical value. Therefore, this study aims to investigate the

application value of radiomics in the diagnosis and treatment of EC.

Methods: Pubmed, Cochrane, Embase, and Web of Science databases were

retrieved up to March 2023. Preoperative risk assessment of EC included high-

grade EC, lymph node metastasis, deep myometrial invasion status, and

lymphovascular space invasion status. The quality of the included studies was

appraised utilizing the RQS scale.

Results: A total of 33 primary studies were included in our systematic review, with

an average RQS score of 7 (range: 5–12). ML models based on radiomics for the

diagnosis of malignant lesions predominantly employed logistic regression. In

the validation set, the pooled c-index of the ML models based on radiomics and

clinical features for the preoperative diagnosis of endometrial malignancy, high-

grade tumors, lymph node metastasis, lymphovascular space invasion, and deep

myometrial invasion was 0.900 (95%CI: 0.871–0.929), 0.901 (95%CI: 0.877–

0.926), 0.906 (95%CI: 0.882–0.929), 0.795 (95%CI: 0.693–0.897), and 0.819

(95%CI: 0.705–0.933), respectively.

Conclusions: Radiomics shows excellent accuracy in detecting endometrial

malignancies and in identifying preoperative risk. However, the methodological

diversity of radiomics results in significant heterogeneity among studies.

Therefore, future research should establish guidelines for radiomics studies

based on different imaging sources.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

display_record.php?RecordID=364320 identifier CRD42022364320.
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1 Introduction

Endometrial cancer (EC), also known as uterine corpus cancer,

is the most prevalent gynecological cancer in high-income

countries, with an increasing global incidence rate. This cancer

mainly occurs in perimenopausal and postmenopausal women.

Current lifestyle leads to the rising prevalence of obesity, thereby

increasing the risk of EC (1–3). The annual mortality risk for EC

patients exhibits an upward trend (4).

Surgical intervention remains the primary treatment approach

for EC patients, with total hysterectomy combined with bilateral

salpingo-oophorectomy being the standard procedure. Surgery can

be performed through open or minimally invasive methods. Some

EC patients may require adjuvant therapies (4). There is

considerable variation in the postoperative prognosis of EC

patients. Two reviews have indicated that tumor diameter,

myometrial invasion, lymphovascular space invasion, and lymph

node metastasis are significantly associated with poor prognosis (5,

6). However, in clinical practice, achieving an accurate preoperative

diagnosis of high-grade tumors, myometrial invasion, lymph node

metastasis, and lymphovascular space invasion remains a

daunting challenge.

Radiomics, an emerging field based on quantitative imaging

techniques, can extract high-throughput quantitative radiological

features from medical images (7, 8). Radiomics is the process of

extracting quantifiable features from large amounts of data that may

be relevant to potential biological or clinical outcomes using

advanced machine learning analysis techniques. It is carried out

based on 2D, 3D or 4D medical images. There are two main

branches of the field, namely, manual radiomics and deep

learning radiomics (9). In manual radiomics, firstly, clinical staff

use specialized software (commonly 3D-slicer (10) or ITK-snap

(11)) to segment the region of interest (ROI) and extract texture

features in the ROI region from established medical images.

Secondly, in the process of feature filtering or dimensionality

reduction, a large number of features will be generated in the

process of extracting texture features of the ROI region, thus

creating a “dimensionality disaster”. Therefore, it is necessary to

combine with reasonable feature fi ltering methods or

dimensionality reduction methods (e.g., principal component

analysis). Thirdly, machine learning models (e.g., Random Forest,

Support Vector Machines, Artificial Neural Networks) are then

constructed based on the filtered features or dimensionality

reduction results to make predictions about disease state or

treatment outcomes. Fourthly, the constructed machine learning

method is then validated. As for radiomics carried out by deep

learning, researchers can directly construct deep learning models

based on images (12, 13). Currently, manual radiomics is dominant

in radiomics research.

Radiomics has gradually been used to help develop tumor

treatment strategies (14). Against this backdrop, radiomics has

been introduced into the detection of endometrial malignancies
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and the preoperative risk assessment of EC patients. However,

comprehensive systematic evidence is required to explore its

feasibility and accuracy. Therefore, the present study was carried

out to investigate the application value of radiomics in the diagnosis

and treatment of EC patients.
2 Methods

2.1 Study registration

The current study was conducted following the Preferred

Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) statement (15). The study protocol has been registered

in the International prospective register of systematic reviews

(ID: CRD42022364320).
2.2 Eligibility criteria

2.2.1 Inclusion criteria
1. Studies that had reasonable diagnostic criteria for (EC).

2. Studies that comprehensively constructed radiomics-based

machine learning (ML) models for the detection of

endometrial malignancy or risk assessment, including

high-grade EC, lymph node metastasis, deep myometrial

invasion, and lymphovascular space invasion.

3. Primary studies in which independent external validation

was not performed.

4. Studies that used different ML approaches published on the

same dataset.

5. Study designs: case-control studies, cohort studies, cross-

sectional studies, or randomized controlled trials (RCTs).

6. Studies reported in English.
2.2.2 Exclusion criteria
1. Meta-analyses, reviews, expert opinions, guidelines, and

similar types of studies.

2. Studies that only conduct differential factor analysis

without constructing complete ML models.

3. Studies lacking the following outcome measures for

evaluating the predictive accuracy of ML models: ROC

curve, c-statistic, c-index, sensitivity, specificity, accuracy,

recall, precision, confusion matrix, diagnostic fourfold

table, F1 score, and calibration curve.

4. Studies with a small sample size (<20 cases).

5. Studies that solely focused on image segmentation or

texture extraction without constructing complete

ML models.
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2.3 Data sources and search strategy

PubMed, Cochrane, Embase, and Web of Science databases

were retrieved up to July 24, 2022. A combination of MeSH terms

and free-text terms was used for the search, without restrictions on

publication year or region. To mitigate the risk of missing newly

published primary studies, we conducted additional searches in all

databases in March 2023. Detailed search strategies are presented in

Supplementary Table 1.
2.4 Study selection and data extraction

The retrieved articles were imported into EndNote software.

Duplicate studies were identified and excluded using both

automated and manual methods. Titles and abstracts were

screened to select potentially eligible studies. Full texts of these

articles were then downloaded and read to determine eligible

primary studies.

Prior to data extraction, a standardized form was used to collect

the following information: first author, country, year of publication,

type of artificial intelligence model, sample size, mean/median age

of patients, histological grading of EC, depth of myometrial

invasion and cervical invasion, assessment of lymph node

metastasis, source of imaging data, number of segmenters for ROI

segmentation and software used, number of cases in the training set,

generation method of validation set, number of cases in the

validation set, feature selection method, model type, modeling

variables, and outcome measures for model evaluation.

The aforementioned literature screening was conducted

independently by two researchers, with cross-checking performed

upon completion. Discrepancies, if any, were resolved by consulting

a third researcher.
2.5 Assessment of study quality

The methodological quality of the included studies was

appraised by two independent researchers using the Radiomics

Quality Score (RQS) (8). After completion, a cross-check was

carried out. Dissents, if any, were resolved by consulting a

third researcher.
2.6 Outcomes

The primary outcome measure is the c-index, which reflects the

overall accuracy of ML models. In many primary studies, only the c-

index was reported. However, when the number of cases is severely

imbalanced, it becomes challenging to interpret the specific

accuracy of the model for positive and negative events based on

the c-index alone. Therefore, our main outcome measures also

include sensitivity and specificity at the optimal threshold value of

the model.
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2.7 Synthesis methods

A meta-analysis of c-index was carried out to assess the overall

accuracy of the ML models. For primary studies where the 95%

confidence interval and standard error were missing for the c-index,

we estimated the standard error following the approach described

by Debray et al. (16). A random-effects model was preferred for the

meta-analysis of c-index, given the variations in the included

variables and inconsistent parameters across different ML models.

Additionally, the meta-analysis of sensitivity and specificity was

performed utilizing a bivariate mixed-effects model. The meta-

analysis of sensitivity and specificity was based on the diagnostic

fourfold table. However, as many primary studies did not report the

diagnostic fourfold table, we constructed it using sensitivity,

specificity, precision, and the number of cases, or using sensitivity

and specificity derived from the best Youden’s index and the

number of cases. R4.2.0 was employed for meta-analysis (R

development Core Team, Vienna, http://www.R-project.org).
3 Results

3.1 Study selection

We retrieved a total of 290 articles (183 from the initial search

and 107 from the supplementary search), out of which 172 were

identified as duplicates (141 by automated software and 31 by

manual identification). After screening titles and abstracts, 54

articles remained. After reading the full text, 33 studies were

ultimately included in our systematic review (17–49) (Figure 1).
3.2 Study characteristics

This study includes 33 articles published within the past five

years. These studies were conducted in countries such as Italy,

France, Norway, China, Spain, Japan, and Canada. Among the 33

studies included, two studies (18, 32) were prospective cohort

studies, while the other studies were case-control studies. Eleven

studies (24, 30, 35, 36, 38, 41, 42, 44–46, 48) were multicenter

studies, while the other 23 studies were conducted at a single center.

Three studies (17, 21) utilized 18F-FDG PET/CT as the imaging

modality, while the rest of the studies utilized MRI. The

predominant models in the included studies were logistic

regression (LR), with only a few studies utilizing artificial neural

networks (ANN), support vector machines (SVM), and decision

trees (DT). Detailed information on the included studies is provided

in Supplementary Table 2.
3.3 Assessment of study quality

The included primary studies achieved no scores due to a lack of

description of the differences between imaging scanners, vendor
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dependencies, imaging at multiple time points with collection of

individual images at other time points, reducing overfitting by

reducing functionality or multiple testing, prospective registration

in trial databases, comparison with the “gold standard,” and open

science and data—open code and data. The validation set was

generated by random sampling. Overall, the average score for the 33

studies was 7 (range: 5–10) (Table 1).
3.4 Meta-analysis

3.4.1 Preoperative diagnosis of malignant lesions
ML models based on radiomics for the diagnosis of malignant

lesions predominantly employed logistic regression. In the training

dataset, the pooled c-index, sensitivity, and specificity of ML models

based solely on clinical features were 0.733 (95%CI: 0.674–0.791),

0.55–0.73, and 0.67–0.77, respectively. The pooled c-index,

sensitivity, and specificity of ML models constructed solely using

radiomics features were 0.869 (95%CI: 0.809–0.928), 0.88 (95%CI:

0.81–0.93), and 0.73 (95%CI: 0.63–0.82), respectively. The pooled c-

index, sensitivity, and specificity of ML models constructed based

on radiomics and clinical features were 0.924 (95%CI: 0.910–0.937),

0.83 (95%CI: 0.80–0.87), and 0.88 (95%CI: 0.85–0.90), respectively

(Tables 2, 3).

In the validation dataset, the pooled c-index, sensitivity, and

specificity for ML models based solely on clinical features were

0.664 (95%CI: 0.599–0.729), 0.67 (95%CI: 0.48–0.82) and 0.65 (95%

CI: 0.53–0.75), respectively. The pooled c-index, sensitivity, and

specificity of ML models constructed solely using radiomics features

were 0.860 (95%CI: 0.801–0.919), 0.78 (95%CI: 0.62–0.89) and 0.86

(95%CI: 0.78–0.91), respectively. The pooled c-index, sensitivity,

and specificity of ML models constructed based on radiomics and

clinical features were 0.900 (95%CI: 0.871–0.929), 0.82 (95%CI:

0.77–0.86), and 0.87 (95%CI: 0.85–0.90), respectively (Tables 2, 3).

3.4.2 Diagnosis of high-grade tumors
ML models based on radiomics for the diagnosis of high-grade

ECs predominantly employed logistic regression. In the training

dataset, the pooled c-index, sensitivity, and specificity of ML models

based solely on clinical features were 0.785 (95%CI: 0.734–0.836),

0.73 (95%CI: 0.62–0.82), and 0.74(95%CI: 0.68–0.79), respectively.

The pooled c-index, sensitivity, and specificity of ML models

constructed solely using radiomics features were 0.804 (95%CI:

0.737–0.871), 0.87 (95%CI: 0.70–0.95), and 0.80 (95%CI: 0.71–

0.86), respectively. The pooled c-index, sensitivity, and specificity

of ML models constructed based on radiomics and clinical features

were 0.936 (95%CI: 0.910–0.962), 0.86 (95%CI: 0.81–0.91) and 0.86

(95%CI: 0.81–0.90), respectively (Tables 2, 3).

In the validation dataset, the pooled c-index, sensitivity, and

specificity of ML models based solely on clinical features were 0.754

(95%CI: 0.683–0.826), 0.66 (95%CI: 0.47–0.80) and 0.80 (95%CI:

0.64–0.90), respectively. The pooled c-index, sensitivity, and

specificity of ML models constructed solely using radiomics

features were 0.781 (95%CI: 0.744–0.818), 0.77 (95%CI: 0.71–
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0.82), and 0.76 (95%CI: 0.62–0.86), respectively. The pooled c-

index, sensitivity, and specificity of ML models constructed based

on radiomics and clinical features were 0.901 (95%CI: 0.877–0.926),

0.88 (95%CI: 0.82–0.91) and 0.86 (95%CI: 0.74–0.85), respectively

(Tables 2, 3).

3.4.3 Preoperative diagnosis of lymph
node metastasis

ML models utilizing radiomics for the diagnosis of lymph node

metastasis predominantly employed logistic regression. In the

training dataset, the pooled c-index, sensitivity, and specificity of

ML models based solely on clinical features were 0.658 (95%CI:

0.591–0.726), 0.65–0.98 and 0.34–0.66, respectively. The pooled c-

index, sensitivity, and specificity of ML models constructed solely

using radiomics features were 0.799 (95%CI: 0.733–0.864), 0.77

(95%CI: 0.63–0.86), and 0.87 (95%CI: 0.81–0.92), respectively. The

pooled c-index, sensitivity, and specificity of ML models

constructed based on radiomics and clinical features were 0.912

(95%CI: 0.878–0.946), 0.92–0.95 and 0.64–0.84, respectively

(Tables 2, 3).

In the validation dataset, the pooled c-index, sensitivity, and

specificity of ML models based solely on clinical features were 0.733

(95%CI: 0.678–0.788), 0.78 (95%CI: 0.66–0.86) and 0.75 (95%CI:

0.65–0.83), respectively. The pooled c-index, sensitivity, and

specificity of ML models constructed solely using radiomics

features were 0.823 (95%CI: 0.756–0.891), 0.86 (95%CI: 0.73–

0.94), and 0.80 (95%CI: 0.67–0.88), respectively. The pooled c-

index, sensitivity, and specificity of ML models constructed based

on radiomics and clinical features were 0.906 (95%CI: 0.882–0.929),

0.87 (95%CI: 0.79–0.92) and 0.81 (95%CI: 0.75–0.85), respectively

(Tables 2, 3).

3.4.4 Preoperative diagnosis of lymphovascular
space invasion

ML models utilizing radiomics for the diagnosis of

lymphovascular space invasion predominantly employed logistic

regression. In the training dataset, the pooled c-index, sensitivity,

and specificity of ML models based solely on clinical features were

0.728 (95%CI: 0.682–0.774), 0.68–0.98 and 0.37–0.71, respectively.

The pooled c-index, sensitivity, and specificity of ML models

constructed solely using radiomics features were 0.798 (95%CI:

0.735–0.862), 0.85 (95%CI: 0.76–0.91), and 0.76 (95%CI: 0.66–

0.84), respectively. The pooled c-index, sensitivity, and specificity

of ML models constructed based on radiomics and clinical features

were 0.850 (95%CI: 0.778–0.923), 0.76–0.92 and 0.74–0.76,

respectively (Tables 2, 3).

In the validation dataset, the pooled c-index, sensitivity, and

specificity of ML models based solely on clinical features were 0.696

(95%CI: 0.613–0.778), 0.56–0.98 and 0.35–0.81, respectively. The

pooled c-index, sensitivity, and specificity of ML models

constructed solely using radiomics features were 0.786 (95%CI:

0.746–0.825), 0.76 (95%CI: 0.64–0.84) and 0.76 (95%CI: 0.65–0.84),

respectively. The pooled c-index, sensitivity, and specificity of ML

models constructed based on radiomics and clinical features were
frontiersin.org
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TABLE 1 Quality evaluation results of inclusion in the original study using RQS.

No. Author Year v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 overall

1 Elisabetta
De
Bernardi
(17)

2018

1 0 0 0 0 1 0 0 1 0 0 2 0 0 0 0 5

2 Sigmund
Ytre-
Hauge (18)

2018
1 0 0 0 0 1 0 0 0 1 0 2 0 1 1 0 7

3 M. Bereby-
Kahane
(19)

2020
1 1 0 0 0 1 0 0 0 1 0 2 0 0 0 0 6

4 Cinzia
Crivellaro
(21)

2020
0 1 0 0 0 1 0 0 0 1 0 2 0 1 0 0 6

5 Yuqing
Han (22)

2021
1 1 0 0 0 1 0 0 0 1 0 2 0 0 0 0 6

6 Yan
Luo (23)

2020
1 1 0 0 0 1 0 1 0 1 0 2 0 0 0 0 7

7 Bi Cong
Yan (24)

2020
1 1 0 0 0 1 0 1 0 1 0 5 0 1 1 0 12

8 Jingya
Chen (20)

2021
1 1 0 0 0 1 0 0 0 1 0 2 0 0 0 0 6

9 Ling
Long (25)

2021
1 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 5

10 Alejandro
Rodrıǵuez-
Ortega
(26)

2021

1 1 0 1 0 1 0 1 0 0 0 2 0 0 0 0 7

11 Çiğdem
SOYDAL

2021
1 1 0 1 0 1 0 1 0 0 0 2 0 0 0 0 7

12 Arnaldo
Stanzione

2020
1 1 0 1 0 1 0 0 1 0 0 2 0 0 0 0 7

13 Yuquan
Xu (29)

2021
1 0 0 0 0 1 0 0 0 1 0 2 0 1 0 0 6

14 Bi Cong
Yan (24)

2020
1 1 0 0 0 1 0 0 0 0 0 5 0 0 0 0 8

15 Bi
Cong Yan

2021
1 1 0 0 0 1 0 1 0 1 0 2 0 0 0 0 7

16 Lan-Yan
Yang (32)

2021
1 0 0 0 0 1 0 1 0 0 0 2 0 0 0 0 5

17 Kaiyue
Zhang (33)

2021
0 1 0 0 0 1 0 0 1 1 0 2 0 1 1 0 8

18 Tao
Zheng (34)

2021
1 1 0 0 0 1 0 0 1 0 0 2 0 0 0 0 6

19 Xiaojun
Chen

2021
1 1 0 0 0 1 0 0 1 0 0 3 0 1 0 0 8

20 Thierry L.
Lefebvre
(36)

2022
1 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 5

21 Xue-Fei
Liu (37)

2022
1 1 0 0 0 1 0 0 0 1 0 2 0 0 0 0 6

(Continued)
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0.795 (95%CI: 0.693–0.897), 0.56–0.63 and 0.75–0.96, respectively

(Tables 2, 3).

3.4.5 Preoperative diagnosis of deep
myometrial invasion

ML models utilizing radiomics for the diagnosis of deep

myometrial invasion predominantly employed logistic regression.

In the training dataset, the pooled c-index, sensitivity, and

specificity of ML models based solely on clinical features were

0.727 (95%CI: 0.669–0.786), 0.69–0.91 and 0.38–0.69, respectively.

For ML models constructed solely using radiomics features, the

pooled c-index, sensitivity, and specificity were 0.845 (95%CI:

0.807–0.883), 0.80 (95%CI: 0.74–0.84), and 0.81 (95%CI: 0.76–

0.86), respectively. For ML models constructed based on

radiomics and clinical features, the pooled c-index, sensitivity,

and specificity were 0.914 (95%CI: 0.856–0.973), 0.82 (95%CI:

0.74–0.88) and 0.93 (95%CI: 0.87–0.96), respectively (Tables 2, 3).

In the validation dataset, the pooled c-index, sensitivity, and

specificity of ML models based solely on clinical features were 0.684

(95%CI: 0.585–0.782), 0.28–0.96 and 0.33–0.94, respectively. For ML

models constructed solely using radiomics features, the pooled c-

index, sensitivity, and specificity were 0.818 (95%CI: 0.781–0.854),

0.75 (95%CI: 0.68–0.82), and 0.81 (95%CI: 0.73–0.88), respectively.

For ML models constructed based on radiomics and clinical features,
Frontiers in Oncology 06
the pooled c-index, sensitivity, and specificity were 0.819 (95%CI:

0.705–0.933), 0.52–0.78 and 0.79–0.92, respectively (Tables 2, 3).
4 Discussion

4.1 Summary of the main findings

This work examined the application value of radiomics-based

methods in the preoperative detection of malignant endometrial

lesions, high-grade tumors, lymph node metastasis, lymphovascular

space invasion, and deep myometrial invasion in EC patients.

Additionally, we meta-analyzed the c-index values of ML models

constructed using clinical features alone, radiomics features alone,

and a combination of radiomics and clinical features, and the

sensitivity and specificity at the optimal cut-off values were also

meta-analyzed. Our findings demonstrate that radiomics features

have shown promising accuracy in the diagnosis of malignant

endometrial lesions, high-grade ECs, lymph node metastasis in

EC patients, lymphovascular space invasion, and deep myometrial

invasion. In particular, radiomic features combined with clinical

features show a more favorable performance, yielding the best

results. Importantly, no overfitting phenomenon was observed in

our analysis.
TABLE 1 Continued

No. Author Year v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 overall

22 Pier Paolo
Mainenti
(38)

2022
1 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 5

23 Satoshi
Otani (39)

2022
1 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 5

24 Yaoxin
Wang

2022
0 1 0 0 0 1 0 0 1 1 0 2 0 1 1 0 8

25 Mingli
Zhao (41)

2022
1 1 0 0 0 0 0 0 0 1 0 3 0 0 0 0 6

26 Xue-Fei
Liu (42)

2022
1 1 0 0 0 1 0 1 1 1 0 2 0 1 0 0 9

27 Juan
Bo (43)

2022
1 1 0 0 0 1 0 1 1 0 0 5 0 1 1 0 12

28 Qiu
Bi (44)

2022
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 5

29 Thierry L.
Lefebvre
(36)

2022
1 1 0 0 0 1 0 0 1 1 0 3 0 0 0 0 8

30 Veronica
Celli (46)

2022
1 1 0 0 0 1 0 0 1 0 0 3 0 1 1 0 9

31 Jieying
Zhang (47)

2022
1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 5

32 Maura
Miccò (48)

2022
1 1 0 0 0 1 0 0 1 0 0 3 0 1 0 0 8

33 X.-F.
Liu (49)

2023
1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 7
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4.2 Comparison with previous studies
(other reviews)

Current non-invasive preoperative diagnosis of endometrial

malignancies mainly involves ultrasound, which appears to rely on

different cut-off values for endometrial thickness. A systematic review

by Breijer et al. (50) focusing on the detection of endometrial

malignancies in asymptomatic postmenopausal women reported a

sensitivity of 0.83 (95%CI: 0.19–1.00) when using a threshold of

5 mm for endometrial thickness. However, with a threshold of 6mm,

the sensitivity dropped to only 0.33 (95%CI: 0.04–0.85). Similarly,

Vitale et al. (51), in their systematic review on the detection of

endometrial malignancies in asymptomatic postmenopausal women,

did not recommend a specific cut-off value for endometrial thickness.

Instead, they suggested a range of 3.0–5.9 mm, which seemed to have

higher sensitivity and specificity. Furthermore, Long et al. (52), in

their systematic review focusing on endometrial malignancy detection

in postmenopausal women with bleeding, had excellent sensitivity of

0.96 (95%CI: 0.92–0.98) but sacrificed specificity (0.52 (95%CI: 0.42–

0.61)). These findings indicate that endometrial thickness remains an

important diagnostic criterion in the ultrasound-based diagnosis of

endometrial malignancies. Moreover, we also observed that certain

clinical features hold significant diagnostic value in detecting EC. For
Frontiers in Oncology 07
example, Li et al. (53) reported in their systematic review that human

epididymis protein 4 demonstrated a sensitivity of 0.71 (95%CI: 0.56–

0.82) and specificity of 0.87 (95%CI: 0.80–0.92). Our systematic

review demonstrated that ML models solely based on radiomics for

detecting endometrial malignancies achieved a sensitivity of 0.78

(95%CI: 0.62–0.89) and specificity of 0.86 (95%CI: 0.78–0.91) in the

validation set. For models constructed using radiomics and clinical

features, there was a modest improvement in sensitivity (0.82, 95%CI:

0.77–0.86) and specificity (0.87, 95%CI: 0.85–0.90) in the

validation set.

For preoperative risk assessment of EC, three-dimensional

vaginal ultrasound, MRI, and 18F-FDG PET/CT are the main

imaging modalities commonly used. They primarily contribute to

the preoperative diagnosis of lymph node metastasis (54, 55),

lymphovascular space invasion (56), deep myometrial invasion

(56), and cervical stromal invasion (57, 58). In our study, the

majority of included imaging data were derived from MRI, with

only two studies utilizing 18F-FDG PET/CT for identifying lymph

node metastasis. A recent systematic review by Di Donato et al. (59)

on MRI in EC focused on the diagnosis of high-grade tumors, deep

myometrial invasion, lymph node metastasis, and lymphovascular

space invasion. There are notable differences between our findings

and those reported by Di Donato et al., mainly due to a broader
TABLE 2 Meta-analysis results of the c-index for radiomics-based models in the detection of malignant endometrial lesions and preoperative
identification of risks in EC patients.

Modeling variable: Detected event:
Training set: Validation set:

n c-index(95%CI) n c-index(95%CI)

Clinical features

Malignant lesions 2 0.733(0.674–0.791) 4 0.664(0.599–0.729)

High-grade 5 0.785(0.734–0.836) 6 0.754(0.683–0.826)

Lymph node metastasis 2 0.658(0.591–0.726) 10 0.733(0.678–0.788)

Lymphovascular space invasion 2 0.728(0.682–0.774) 2 0.696(0.613–0.778)

Deep myometrial invasion 3 0.727(0.669–0.786) 2 0.684(0.585–0.782)

Radiomics features

Malignant lesions 4 0.869(0.809–0.928) 5 0.860(0.801–0.919)

High-grade 9 0.804(0.737–0.871) 17 0.781(0.744–0.818)

Lymph node metastasis 5 0.799(0.733–0.864) 5 0.823(0.756–0.891)

Lymphovascular space invasion 9 0.798(0.735–0.862) 9 0.786(0.746–0.825)

Deep myometrial invasion 14 0.845(0.807–0.883) 11 0.818(0.781–0.854)

Radiomics + clinical features

Malignant lesions 4 0.924(0.910–0.937) 9 0.900(0.871–0.929)

High-grade 5 0.936(0.910–0.962) 6 0.901(0.877–0.926)

Lymph node metastasis 2 0.912(0.878–0.946) 6 0.906(0.882–0.929)

Lymphovascular space invasion 2 0.850(0.778–0.923) 2 0.795(0.693–0.897)

Deep myometrial invasion 4 0.914(0.856–0.973) 2 0.819(0.705–0.933)
n indicates the number of models.
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scope of systematic search and comprehensive consideration of the

importance of clinical variables in radiomics research.

Clinical features play a significant role in existing radiomics

models. Reijnen et al. (60) highlighted in their systematic review

that CA125 and other clinical variables can assist in identifying

lymph node metastasis in EC patients. In our study, the accuracy of

models solely based on clinical features was limited in the diagnosis

and risk assessment of endometrial malignancies. However, models

constructed based on radiomic and clinical features showed

improved diagnostic performance compared to those based solely

on radiomics. This finding underscores that effective modeling

variables still serve as a key factor in enhancing the accuracy of

ML models. In future research, exploring efficient predictive factors

remains an important direction for advancing automation diagnosis

of diseases.

Additionally, in our study, the models were primarily predictive

nomograms based on logistic regression, with only a limited

number of ANN, SVM, and DT models. The nomograms and

decision trees are highly interpretable in clinical practice. The

interpretability of models is significant in clinical practice (61),

particularly those constructed based on clinical features. This is

because in some opaque ML models such as SVM, random forest

(RF), ANNs, and deep learning (DL), it becomes challenging to

assess the impact of different levels of a variable on outcome events.
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This poses significant challenges in developing simplified risk

scoring tools. The application of deep learning models based on

imaging data for automatic disease diagnosis remains a daunting

challenge in radiomics research, and its scope is still limited. In this

context, in addition to ensuring accuracy, better interpretability

seems to be an important assessment factor in model selection in

clinical practice.
4.3 Advantages and limitations of the study

Our study explored the value of radiomics methods for the

detection of endometrial malignancies and preoperative risk

assessment from a systematic review perspective for the first time.

However, our study also has the following limitations. (1) Despite a

systematic search, the included studies were limited in quantity for

different risk outcome events, which may have somewhat restricted

the interpretation of our results; (2) The quality assessment of the

included studies revealed concerns about the overall quality.

However, we found that RQS is a stringent radiomics evaluation

tool, with some items being challenging to meet in the primary

studies and not applicable to certain ML models such as RFs, ANNs,

SVMs, and DL (62). This resulted in relatively lower RQS scores in

previously published radiomics-related systematic reviews (63, 64);
TABLE 3 Meta-analysis results of sensitivity and specificity for radiomics-based models in the detection of malignant endometrial lesions and
preoperative identification of risks in EC patients.

Modeling variable: Detected event:
Training set: Validation set:

n sen(95%CI) spe(95%CI) n sen(95%CI) spe(95%CI)

Clinical features

Malignant lesions 3 0.55–0.73 0.67–0.77 4 0.67(0.48–0.82) 0.65(0.53–0.75)

High-grade 5 0.73(0.62–0.82) 0.74(0.68–0.79) 6 0.66(0.47–0.80) 0.80(0.64–0.90)

Lymph node metastasis 2 0.65–0.98 0.34–0.66 10 0.78(0.66–0.86) 0.75(0.65–0.83)

Lymphovascular space invasion 2 0.68–0.98 0.37–0.71 2 0.56–0.98 0.35–0.81

Deep myometrial invasion 2 0.69–0.91 0.38–0.69 2 0.28–0.96 0.33–0.94

Radiomics features

Malignant lesions 4 0.88(0.81–0.93) 0.73(0.63–0.82) 5 0.78(0.62–0.89) 0.86(0.78–0.91)

High-grade 6 0.87(0.70–0.95) 0.80(0.71–0.86) 16 0.77(0.71–0.82) 0.76(0.62–0.86)

Lymph node metastasis 11 0.76(0.69–0.82) 0.83(0.75–0.88) 8 0.87(0.74–0.93) 0.80(0.69–0.87)

Lymphovascular space invasion 9 0.85(0.76–0.91) 0.76(0.66–0.84) 8 0.76(0.64–0.84) 0.76(0.65–0.84)

Deep myometrial invasion 13 0.80(0.74–0.84) 0.81(0.76–0.86) 10 0.75(0.68–0.82) 0.81(0.73–0.88)

Radiomics + clinical features

Malignant lesions 6 0.83(0.80–0.87) 0.88(0.85–0.90) 9 0.82(0.77–0.86) 0.87(0.85–0.90)

High-grade 5 0.86(0.81–0.91) 0.86(0.81–0.90) 6 0.88(0.82–0.91) 0.80(0.74–0.85)

Lymph node metastasis 4 0.95(0.87–0.98) 0.73(0.64–0.81) 7 0.87(0.79–0.92) 0.80(0.75–0.85)

Lymphovascular space invasion 2 0.76–0.92 0.74–0.76 2 0.56–0.63 0.75–0.96

Deep myometrial invasion 4 0.82(0.74–0.88) 0.93(0.87–0.96) 2 0.52–0.78 0.79–0.92
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(3) In the primary studies, validation methods for the models mainly

were random sampling or k-fold cross-validation, with rare external

validation; (4) In the primary studies, effective measures to mitigate

the risk of overfitting were rarely employed when using radiomics.
5 Conclusions

Radiomics-based models appear to have promising diagnostic

performance in the identification of endometrial malignancies and

preoperative risk assessment, but the value of clinical features

should not be overlooked. However, we also observed significant

biases and concerns regarding the implementation of radiomics,

particularly in terms of mitigating the risk of overfitting during the

research process.
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