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Background: Radiomics can capture microscale information in medical images

beyond what is visible to the naked human eye. Using a clinically relevant mouse

model for endometrial cancer, the objective of this study was to develop and

validate a radiomic signature (RS) predicting response to standard chemotherapy.

Methods: Mice orthotopically implanted with a patient-derived grade 3

endometrioid endometrial cancer organoid model (O-PDX) were allocated to

chemotherapy (combined paclitaxel/carboplatin, n=11) or saline/control (n=13).

During tumor progression, the mice underwent weekly T2-weighted (T2w)

magnetic resonance imaging (MRI). Segmentation of primary tumor volume

(vMRI) allowed extraction of radiomic features from whole-volume tumor

masks. A radiomic model for predicting treatment response was derived

employing least absolute shrinkage and selection operator (LASSO) statistics at

endpoint images in the orthotopic O-PDX (RS_O), and subsequently applied on

the earlier study timepoints (RS_O at baseline, and week 1-3). For external

validation, the radiomic model was tested in a separate T2w-MRI dataset on

segmented whole-volume subcutaneous tumors (RS_S) from the same O-PDX

model, imaged at three timepoints (baseline, day 3 and day 10/endpoint) after

start of chemotherapy (n=8 tumors) or saline/control (n=8 tumors).

Results: The RS_O yielded rapidly increasing area under the receiver operating

characteristic (ROC) curves (AUCs) for predicting treatment response from

baseline until endpoint; AUC=0.38 (baseline); 0.80 (week 1), 0.85 (week 2),

0.96 (week 3) and 1.0 (endpoint). In comparison, vMRI yielded AUCs of 0.37

(baseline); 0.69 (w1); 0.83 (week 2); 0.92 (week 3) and 0.97 (endpoint). When

tested in the external validation dataset, RS_S yielded high accuracy for

predicting treatment response at day10/endpoint (AUC=0.85) and tended to

yield higher AUC than vMRI (AUC=0.78, p=0.18). Neither RS_S nor vMRI

predicted response at day 3 in the external validation set (AUC=0.56 for both).
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Conclusions: We have developed and validated a radiomic signature that was

able to capture chemotherapeutic treatment response both in an O-PDX and in a

subcutaneous endometrial cancer mouse model. This study supports the

promising role of preclinical imaging including radiomic tumor profiling to

assess early treatment response in endometrial cancer models.
KEYWORDS

patient-derived organoids, MRI radiomics, endometrial cancer, preclinical imaging,
patient-derived model
1 Introduction

Endometrial cancer is the most common gynecological cancer

in high-income countries and the incidence is increasing, primarily

due to growing societal obesity and ageing populations (1, 2). The

primary treatment for endometrial cancer is surgery which is

curative in most patients with low-risk, early-stage disease. Albeit,

about 15% of endometrial cancer patients experience recurrence

and have a poor prognosis (3–5).

Adjuvant chemotherapy, using a combination of paclitaxel and

carboplatin, is recommended in patients with high-risk histology

(endometrioid grade 3 and non-endometrioid endometrial

carcinoma) or advanced stage disease (6). Unfortunately,

chemotherapy only moderately improves the survival in endometrial

cancer patients and causes adverse side-effects (7–9). Furthermore,

evaluation of treatment response is routinely carried out by imaging,

weeks to months after start of the treatment, and is presently based on

changes in tumor size or appearance of new metastases. Earlier

prediction of treatment response may allow prompt treatment

modifications and reduce unnecessary side-effects affecting the

quality of life in non-responders (7).

Pelvic magnetic resonance imaging (MRI) is a key part of the

clinical management of endometrial cancer, and is recommended

for preoperative local staging (10). In the past few years, MRI

radiomic tumor profiling has been introduced, promoting non-

invasive markers of tumor heterogeneity from whole-volume

primary tumors. Radiomic tumor profiling is based on

computational extraction of large numbers of quantitative

imaging features that inherently characterize tumor tissue and

tumor microenvironment. Commonly derived radiomic features

describe tumor shape (i.e. size, circularity, spicularity), and tumor

texture (i.e. higher order statistics quantifying spatial distribution of

pixel/voxel intensity values in the region of interest) (11). MRI

radiomic models have been reported to predict response to

chemotherapy in breast cancer and osteosarcoma (12, 13),

chemoradiotherapy in gliomas and rectal cancer (14, 15), and

immunotherapy in brain metastases (16). In endometrial cancer

patients, MRI radiomics has been shown to predict aggressive

disease and is thus promising for serving as a supplement in

preoperative risk assessment (17–19). In preclinical models of
02
pancreatic cancer, MRI radiomic profiling has been shown to

predict treatment response (20, 21). To our knowledge, no former

study has explored whether radiomics from preclinical endometrial

cancer models may be used to predict treatment response.

Preclinical models represent a vital tool for developing and

accessing new therapeutic strategies in endometrial cancer (22).

Recently, an organoid-based patient-derived xenograft mouse

models (O-PDX) that recapitulate the histopathology- and genetic

profiles of the donor tumor tissue has been developed (23).

Furthermore, clinically relevant imaging methods including

preclinical MRI to quantify tumor progression and assess treatment

response in these models as been established (24). The development

of non-invasive tools for early detection of treatment response is

essential for rapid adaptation of treatment strategies in non-

responding endometrial cancer patients. In this study, we explore

the temporal change in MRI-derived tumor volume (vMRI) andMRI

tumor radiomic features in orthotopically implanted O-PDX mice,

allocated to either chemotherapy or no treatment (control group).

We aim to develop a radiomic signature (RS) predicting treatment

response to chemotherapy and to assess whether the RS enables early

prediction of treatment response in the orthotopic O-PDX model.

Finally, we aim to validate the RS in an independent subcutaneous O-

PDX model from the same O-PDX model.
2 Materials and methods

2.1 Animal model

All animal experiments were conducted in accordance with

Norwegian and European regulations (approval ID 20194,

Mattilsynet) an Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC)-approved facility. Hysterectomy

tumor specimen donated by one consenting patient (approval ID 2015/

2333 and 2018/548, REK vest) diagnosed with grade 3, endometrioid

endometrial cancer, and International Federation of Gynecology and

Obstetrics (FIGO) stage IIIC1 was used to establish a patient-derived

organoid model (23). Organoids were immersed 1:1 in matrigel and

orthotopically implanted (2x106 cells) into the left uterine horn in n=24

female NOD/SCID IL2rgnull (NSG) mice to generate the mouse model
frontiersin.org
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(O-PDX) as previously described (25). The mice were monitored for

disease symptoms including lethargy, ataxia and weight loss following a

scoring system, and were sacrificed when the score met the pre-

determined threshold or at the end of the study.
2.2 Study design

The orthotopically implanted mice (n=24) underwent weekly MRI

from 21 days post-implantation until euthanization by cervical

dislocation. When MRI-measured tumor volume (vMRI) reached

~0.145 ml, the mice were allocated into treatment- (n=11) or control

groups (n=13) (Figure 1A). A small to moderate tumor size of

approximately 0.150 ml at baseline balances growth rate and

treatment sensitivity in our model. The allocation timepoint was

defined as the baseline/week 0 (a detailed timeline is given in

Supplementary Table 1). The treatment group received

intraperitoneal injections of combined carboplatin (15 mg/kg) and

paclitaxel (12 mg/kg), according to the current international guideline

for management of endometrial cancer (6). The control group received

saline (100 ml) intraperitoneally. The first treatment/saline injections
Frontiers in Oncology 03
were given immediately after the baseline MRI (week 0), and then

continued twice a week for both groups throughout the study.
2.3 MR imaging and tumor segmentation

T2-weighted (T2w) images were acquired on a preclinical 7

Tesla MRI scanner (PharmaScan, Bruker Biospin, Ettlingen,

Germany) using a mouse body quadrature volume resonator in a

single-coil configuration. Mice were anesthetized by sevoflurane

(2.5%) mixed in oxygen and respiration and body temperature were

monitored during scanning. The T2w images were acquired

coronally with TE/TR 25/2500 ms, 5 averages, 160x160 matrix,

32x32 mm field of view, 1 mm slice thickness and 0.2x0.2 mm

resolution. Choice of MRI sequence was based on previous finding

(24), showcasing T2w-imaging as a robust MRI method for tumor

visualization and tumor delineation in orthotopic endometrial

cancer models. We did not include any T1-weighted sequences

due to intravenous contrast agent toxicity in mice, especially

considering the significant number of imaging time points in the

study. Segmentation of vMRI were conducted for all timepoints, by
A

B

FIGURE 1

Study design. Mice (n=24) with orthotopically implanted patient-derived organoids, underwent weekly MRI from 21 days post implantation (A). When
tumor volume (vMRI) segmented on T2 weighted (T2w)-MRI reached a threshold of ≥0.145 ml (defined as baseline/week 0), mice were either
allocated to chemotherapy- (combined carboplatin/paclitaxel) (n=11) or control (saline) (n=13) groups. MRI scanning was continued weekly during
week 1-5, until euthanization/endpoint (varied from week 3-5 for the individual mice). Radiomic features were extracted from all timepoints from
baseline to endpoint, using manually segmented whole-volume tumor masks from the T2w images (B). A radiomic signature (RS) predicting
treatment groups (chemotherapy vs. control) was generated at endpoint using least absolute shrinkage and selection operator (LASSO) statistics. GL,
grey level; GLCM, GL co-occurrence matrix; GLDM, GL dependence matrix; GLRLM, GL run length matrix; GLSZM, GL size zone matrix, NGTDM,
neighboring gray tone difference matrix.
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manually delineating the tumor borders slice by slice, covering the

entire tumor, using the open-source software ITK-SNAP (Version

3.8) (26). To assess interreader agreement, vMRI segmentations

were performed independently by two readers, with >10 years and

~3 months experience in preclinical MRI reading, respectively. The

masks from the most experienced reader were used for further

radiomic analyses.
2.4 Radiomic feature extraction and
model selection

T2w images with corresponding tumor volume masks were

imported into the software application Radiomics Frontier (Siemens

Healthineers, Erlangen, Germany), which is based on the open source,

image biomarker standardization initiative (IBSI (27))-compliant

PyRadiomics library (28). Prior to feature extraction, all images were

resampled to an isotropic voxel size of 1 mm using a Gaussian

interpolator and bin width set to 20. In total, 110 radiomic features

were extracted from each tumor at all timepoints; 18 grey level (GL)

histogram features; 24 GL co-occurrence matrix (GLCM) features; 14

GL dependence matrix (GLDM) features; 16 GL run-length matrix

(GLRLM) features; 16 GL size zone matrix (GLSZM) features; 5

neighboring grey tone difference matrix (NGTDM) features; and 17

shape features (Figure 1B). Using the extracted radiomic features at

study endpoint (varying fromweek 3-5 for individual mice), a radiomic

signature (RS) predicting treatment groups (chemotherapy vs. control)

was constructed using logistic least absolute shrinkage and selection

operator (LASSO) statistics (29). The regularization parameter (l) was
optimized by 5-fold cross validation, and the RS was constructed by a

linear combination of the LASSO selected features (f1-f6, Table 1)

multiplied by their respective model coefficients (RS, Table 1). The

performance of the RS for predicting treatment groups/response (all

mice in the treatment group were classified as responders) was further

evaluated at all study timepoints (baseline, week 1-3, endpoint) in the

orthotopic model (RS_O).
Frontiers in Oncology 04
2.5 Histological analyses

Animals were euthanized immediately following the last

imaging timepoint (endpoint). Uterine tumors were formalin

fixed and embedded in paraffine before tissue slice sections (5

mm) were cut. Sections were stained with standard hematoxylin

and eosin (HE) or subjected to immunohistochemistry for detection

of Ki-67 expression. Briefly, for Ki-67 staining sections were

dewaxed with xylene and rehydrated in ethanol before microwave

antigen retrieval in target retrieval solution, pH 6. Following

peroxidase block, the sections were incubated for 1 hour at room

temperature with rabbit monoclonal antibody to Ki-67 (1:100;

Abcam, ab16667) followed by 30 min of incubation with

secondary HRP-conjugated anti-rabbit antibody and 5-8 min with

DAB-chromogen (EnVision detection system, Dako). Sections were

counterstained in hematoxylin before dehydration and mounting.

Stained tissue slides were scanned at 20X magnification using a

slide scanner (VS120, Olympus). Automatic quantification of tumor

cells (HE) and proportion (%) of Ki-67 positive cells was performed

using the open-source QuPath software (V0.2.0) using 1-3 regions

of interest (number depending on tumor size) placed in

representative areas of the tumor.
2.6 Validation dataset

The RS for predicting treatment groups in the orthotopic mouse

model was further validated in an independent imaging dataset of

subcutaneous tumors from the same O-PDX model. The mice in

the validation cohort underwent longitudinal imaging at a 7 Tesla

MRI system (DRYMAG 7017, MR Solutions, Guildford, United

Kingdom) and started an identical treatment protocol (combined

carboplatin/paclitaxel or control/saline) as in the orthotopic model

when tumor size (vMRI) reached >0.07 ml (baseline). Four mice

with bilateral tumors were randomized to treatment (n=8 tumors)

and four mice to control (n=8 tumors). Further details on the

subcutaneous O-PDX model are given in Supplementary Method

Description and Supplementary Figure 2.

T2w-MRI was acquired at baseline (prior to treatment), early

treatment (day 3) and endpoint (day 10). The T2w images were

further used for whole-volume tumor segmentations and radiomic

feature extraction utilizing the same software application and

software settings as for the orthotopic model. The RS developed

in the orthotopic model (Table 1) was applied for prediction of

treatment groups (chemotherapy vs. control) and evaluated at the

different imaging time points (RS_S at baseline, early and endpoint)

in this separate and independent subcutaneous O-PDX study.
2.7 Statistical analyses

Intraclass correlation coefficients (ICCs) from a two-way random

effects model were used to assess interreader agreement for measuring

vMRI, with the tumors being segmented by two different readers in

both the orthotopic and subcutaneousmodel. The readers were blinded

to study groups. Differences in vMRI, tumor cell density and Ki-67
TABLE 1 Radiomic features (f1-f6) selected by least absolute shrinkage
and selection operator (LASSO) for prediction of treatment response
(chemotherapy vs. control) at endpoint in the orthotopic mouse model.
A radiomic signature (RS) for predicting treatment response was
constructed by linear combination of LASSO model coefficients and
f1-f6.

Radiomic features LASSO model coefficients

f1 (TotalEnergy) 0.406

f2 (GLCM_IDMN) 0.412

f3 (GLCM_MCC) 0.174

f4 (GLRLM_RunEntropy) 1.030

f5 (Shape_LeastAxisLength) 0.205

f6 (Shape_VoxelVolume) 0.085

Model constant 0.240

RS = (0.406*f1)+(0.412*f2)+(0.174*f3)+(1.030*f4)+(0.205*f5)+(0.085*f6)+0.240
f, radiomic feature; GLCM, grey level co-occurrence matrix; GLRLM, grey level run length
matr ix ; IDMN, inverse di fference moment normal ized; MCC, Matthew ’s
correlation coefficient.
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expression between the groups were assessed using a Student’s t- or

Mann–Whitney test following normality assessment by the Shapiro–

Wilk test. The RS for prediction of treatment groups was constructed

using LASSO statistics. The penalty parameter (l) was selected by 5-

fold cross-validation andminimization of the cross-validation function.

RS_O, RS_S and vMRI were compared for prediction of treatment

group using area under the receiver operating characteristics curves

(AUCs) and DeLongs’ test of equality. Weekly change in the radiomic

signature features was assessed by calculating fold change normalized

to baseline values (Dchange) (Microsoft Excel), and weekly differences

were tested by Mann-Whitney tests. Correlations between vMRI,

tumor cell density, Ki-67 and RS_O and the radiomic features

incorporated in the RS, were assessed using Spearman’s rank order

correlation test. Statistical analyses were conducted in STATA 17.0

(StataCorp, College Station, TX) and GraphPad Prism v9 (GraphPad

Software, San Diego, California USA). Reported p-values were

generated by two-sided tests and considered significant when <0.05.
3 Results

3.1 Orthotopic tumor progression in the
treatment/control groups

All the orthotopically implanted O-PDX mice developed

intrauterine tumors visible at MRI after 21 days. The tumors were

hyperintense with distinct tumor boundaries on T2w-MRI

(Figure 2B). At baseline (start of treatment), vMRI was similar in

the two study groups (chemotherapy vs. control) (p=0.2,

Supplementary Figure 1A). The control group had increasing
Frontiers in Oncology 05
vMRI from baseline to endpoint (median vMRI=0.19 ml

(baseline/w0); 0.71 ml (week 1/w1); 1.27 ml (w2); 2.25 ml (w3);

2.90 ml (w4) and 1.99 ml (w5)), whereas the treatment group had

relatively stable vMRI throughout the study (median vMRI=0.27 ml

(baseline); 0.48 ml (w1); 0.57 ml (w2); 0.51 ml (w3); 0.60 ml (w4)

and 0.57 ml (w5)) (Figure 2A). From week 2, the median vMRI was

significantly lower in the mice receiving chemotherapy vs. control

(p ≤ 0.002, w2-w4). In week 4, three mice with large tumors were

euthanized, explaining the apparent decline of median vMRI from

week 4 (n=5 mice) to week 5 (n=2) in the control group (Figure 2A;

Supplementary Figure 1B). Individually, all tumors in the control

group had increasing volumes from baseline to endpoint/euthanasia

(Supplementary Figure 1B).

At endpoint, ranging from week 3-5 after baseline for the

individual mice (Supplementary Table 1), median vMRI was

significantly lower in the chemotherapy group compared to the

control group (p<0.001, Figure 2C). Cell density (fromHE-staining)

and proliferation scores (from Ki67 immunohistochemistry)

confirmed treatment effect at the cellular level with significantly

lower median cell density (p=0.03) and median proliferation

(p<0.001) in the chemotherapy versus the control group at

endpoint (Figure 2C).
3.2 Radiomic signature predicts treatment
response in the orthotopic model

The interreader agreement for vMRI segmentation in the

orthotopic model was excellent with an ICC of 0.98 (95%

confidence interval (CI):0.97-0.99) (Supplementary Table 2).
A B

C

FIGURE 2

Orthotopic tumor progression in the two groups (chemotherapy vs control). MRI-derived tumor volumes (vMRI, median ± 95% confidence interval)
in mice allocated to chemotherapy (carboplatin/paclitaxel, n=11) or control groups (saline, n=13) (A). All mice with the orthotopically implanted
patient-derived organoids (O-PDX) were imaged weekly from baseline (w0) until euthanization/endpoint (w3-w5 for individual mice). From w2-w4,
the median vMRI was significantly lower in the chemotherapy group compared to the controls (*p ≤ 0.002, Mann-Whitney test, w5 not tested
because of group size) (A). The O-PDX models exhibit characteristic imaging findings with hyperintense tumors (arrows; b, bladder) on T2w-MRI
coronal series (a representative tumor is shown at endpoint) (B). At endpoint, tumor tissue from all mice were stained using hematoxylin and eosin
(HE) for tumor cell density quantification, and immunohistochemistry for Ki-67 expression (C). Median vMRI (ml), tumor cell density (cells/mm2) and
tumor Ki67 (%-positive cells) at endpoint were significantly lower in the chemotherapy- compared to the control group (p ≤ 0.03, Mann-
Whitney test).
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From the endpoint data set, six radiomic features (f1-f6) were

selected by LASSO and used to construct a RS predicting treatment

(chemotherapy vs. control); four of these were texture features (f1-

f4) and two were shape features (f5-f6) (Table 1).

Applied at endpoint (model construction timepoint), the RS

yielded an excellent prediction of treatment groups, i.e., treatment

response (RS_O AUC=1.00), although not significantly higher than

tumor volume (vMRI AUC=0.97, p=0.36) (Figure 3E). At baseline,

no difference was expected between the treatment and control

groups, which was confirmed by low AUCs for both RS_O

(AUC=0.38) and vMRI (AUC=0.37) (Figure 3A). However,

already at w1, RS _O yielded high accuracy for prediction of

treatment (AUC=0.80), which tended to be higher than that of

vMRI (AUC=0.69, p=0.18) (Figure 3B). In w2 and w3 the AUCs

were further increasing for both RS_O (AUC=0.85 (w2) and 0.96

(w3)) and vMRI (AUC=0.83 (w2) and 0.92 (w3)) (Figures 3C, D).
3.3 Delta radiomics

The temporal change in the radiomic values (Dchange) from
baseline to endpoint for the features included in the RS (Table 1) is

depicted according to treatment groups (chemotherapy vs. control)

in Figure 4. The texture feature GLCM_IDMN, showed significantly
Frontiers in Oncology 06
higher Dchange in the control group compared to the

chemotherapy group already at w1 (p=0.007), and throughout the

study (p ≤ 0.01, w2-w4) (Figure 4B). GLRLM_RunEntropy

(Figure 4D), and the two shape features Shape_LeastAxisLength

(Figure 4E) and Shape_VoxelVolume (Figure 4F), showed

significantly higher Dchange in the control group in w2 (p ≤ 0.03

for all), in w3 (p ≤ 0.01 for all), and for Shape_LeastAxisLength, also

in w4 (p=0.006, Figure 4E).
3.4 Correlations between radiomics, tumor
volume and proliferation marker Ki-67

Correlations between the model-selected features (f1-f6) and

corresponding tumor volumes (vMRI) at each timepoint (baseline/

w0-w4) are presented in Table 2. There was an increasing moderate

to strong correlation (r) between vMRI and the radiomic features

TotalEnergy (r=0.59 (w0) – 0.94 (w4) , p ≤ 0 .003) ,

GLRLM_RunEntropy (r=0.57 (w0) – 0.94 (w4), p ≤ 0.004) and

Shape_LeastAxisLength (r=0.69 (w0) – 0.96 (w4), p ≤ 0.002)

throughout the study. GLCM_IDMN was only weakly-to-

moderately correlated to vMRI from week 1 and onwards (r=0.43
(w1) – 0.62 (w4), p ≤ 0.04), and GLCM_MCC only moderately

correlated to vMRI at w3 (r=0.49, p=0.02).
A B

D E

C

FIGURE 3

The radiomic signature and longitudinal area under the receiver operating characteristic curves. The radiomic signature (RS) generated at endpoint
for predicting treatment (chemotherapy vs. control) in the orthotopic mouse model (RS_O), yielded high area under the receiver operating
characteristic curves (AUCs) from one week after start of treatment (week1: AUC=0.80; B). During the treatment course, RS_O yielded increasing
AUCs of 0.85 at week 2 (C), 0.96 at week 3 (D) and 1.00 at endpoint (E). In comparison, MRI derived tumor volume (vMRI) yielded lower AUCs of
0.69 at week 1 (B), 0.83 at week 2 (C), 0.92 at week 3 (D) and 0.97 at endpoint (E) (p>0.05 for all, DeLongs’ test of equality).
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At endpoint, there was a strong positive correlation between

RS_O and vMRI (r=0.90, p<0.001). Further, RS_O showed

moderate positive correlations with both cell density (r=0.44
[p=0.03]) and Ki-67 expression (r=0.55 [p=0.005]), while vMRI

only showed a moderate positive correlation with Ki-67 expression

(r=0.51 [p=0.01]) (Table 3). Individually, the radiomic features

TotalEnergy, GLRLM_RunEntropy, Shape_LeastAxisLength and

Shape_VoxelVolume were all highly positively correlated to vMRI

(r≥0.85; p<0.001), while GLCM_IDMN and GLCM_MCC were

moderately correlated to vMRI (r=0.72 and 0.53, respectively; p ≤

0.006) (Table 3).
3.5 Radiomic signature predicts treatment
response in the validation model

To validate the RS developed in the orthotopic model, we utilized

T2w images from an independent imaging dataset (acquired on a

different 7 T MRI system) of the same O-PDX model (from the same

patient) grown subcutaneously (Supplementary Method Description;

Figure 5). Similar to the orthotopic model, the interreader agreement

for vMRI measurements was excellent for the subcutaneous tumors

(ICC [95% CI]: 0.93 [0.88-0.96]) (Supplementary Table 2).

At endpoint, the median vMRI was significantly lower in the

chemotherapy (median vMRI=0.07 ml) versus the control group

(median vMRI=0.19 ml, p=0.01, Figures 5A, B). There was no

significant difference in vMRI between the groups at baseline

(median vMRI=0.07 and 0.08 ml for the control- and chemotherapy

group, respectively) or at early timepoint (day 3; median vMRI=0.12

and 0.09 ml for the control- and chemotherapy group, respectively.
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p≥0.38 for both). The RS, when applied in the subcutaneous model

(RS_S) yielded high AUC for prediction of treatment response

(chemotherapy vs. control group) at endpoint (AUC=0.85), which

tended to be higher than the AUC for vMRI (AUC=0.78, p=0.18)

(Figure 5F). At the early timepoint (day 3), neither RS_S nor vMRI was

able to predict response (AUC=0.56 for both) (Figure 5E). As for the

orthotopic model, the treatment and control groups were expected to

be similar at baseline in the subcutaneous model - which was

confirmed by low baseline AUC for both RS_S and vMRI

(AUC=0.44 and 0.45, respectively) (Figure 5D).
4 Discussion

This study describes temporal changes in MRI radiomic tumor

features in a preclinical treatment-sensitive O-PDX endometrial

cancer mouse model stratified to chemotherapy or no therapy. We

present an MRI radiomic signature yielding increasingly high

accuracy for predicting treatment response after start of therapy.

Interestingly, the radiomic signature tended to predict treatment

response earlier than vMRI, already one week after start of

treatment, suggesting that distinct changes in radiomic features,

may parallel and even precede treatment effect on tumor volume.

The MRI radiomic signature also yielded high accuracy for

predicting treatment response in mice with subcutaneous tumors

from the same O-PDX endometrial cancer model. This indicates

that treatment-induced changes in radiomic tumor features are

similar across O-PDX implantation sites (orthotopic vs.

subcutaneous). Importantly, the radiomic tumor features

associated with treatment response in this preclinical study, may
A B

D E F

C

FIGURE 4

Delta radiomics in the chemotherapy vs the control group. Temporal changes in the radiomic values (weekly fold change relative to baseline,
Dchange, median ± 95% confidence interval) plotted separately for the two treatment groups (chemotherapy vs. control) in the orthotopic O-PDX
mouse model. Six radiomic features were included in the RS signature; TotalEnergy (A), GLCM_IDMN (B), GLCM_MCC (C), GLRLM_RunEntropy (D),
Shape_LeastAxisLenght (E) and Shape_VoxelVolume (F). For GLCM_IDMN, GLRLM_RunEntropy, Shape_LeastAxisLength and ShapeVoxelVolume (B,
D-F) the control group exhibited significantly increased Dchange compared to the chemotherapy group (*p ≤ 0.03, Mann-Whitney test) from week
2. GLCM_IDMN, grey level co-occurrence matrix inverse difference moment normalized; GLCM_MCC, grey level co-occurrence matrix Matthew’s
correlation coefficient; GLRLM, grey level run length matrix.
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represent promising markers for clinical translation and further

testing, to provide early prediction of chemotherapeutic response in

patients with advanced endometrial cancer.

In patients with metastatic- or recurrent endometrial cancer in whom

non-surgical treatment (i.e., chemo- radio – or hormonal therapy) is the

mainstay of treatment, there is an immediate need to develop robust and

non-invasive imaging tools for early prediction of therapeutic response.

The preclinical O-PDX model used in this study (23) showed excellent

response to combined carboplatin/paclitaxel treatment, with overall

decreasing or stabilized tumor volumes following treatment, while

untreated tumors had an explosive tumor growth. The derived MRI

radiomic tumor signatures predicted treatment groups with increasingly

high accuracy fromweek 1 to endpoint. At endpoint, tumor tissue analyses

confirmed treatment effect at the cellular level with significantly lower

median cell density (p=0.03) and median proliferation/Ki-67 scores

(p<0.001) in the chemotherapy- versus the control group. Using a

similar MRI radiomics methodology, Eresen et al. (20) showed that MRI

radiomic features predicted early therapeutic response following dendritic

cell vaccination in a preclinical pancreatic ductal adenocarcinoma model.

The derived tumor radiomic features were investigated in relation to

different histological tumor markers, including Ki-67 expression. In line

with our study, Ki-67 was shown to be lower in the treatment group

compared with the control group at endpoint. Eresen and colleagues also

reported a strong positive correlation (Pearson r=0.84) between Ki-67

expression and one of the derived radiomic features (mean vertical wavelet

coefficient). In the present study,moderate positive correlations betweenKi-

67 and the radiomic signature features (f1-f6)were observed, with strongest

correlation (Spearman r=0.65) between Ki-67 and GLRLM_RunEntropy

(f4). Importantly, both studies demonstrate intriguing associations between

radiomic tumor features at the mesoscopic scale, and

immunohistochemical tumor markers at the microscopic scale.

Radiomic tumor profiling may thus bridge the gap between imaging

markers and microscopic tumor markers and complement subjective
TABLE 3 Correlation (r)a at endpoint in the orthotopic model, between
vMRI, tumor cell density (cells/mm2), Ki67 (%-pos cells), the radiomic
signature (RS_O) and the six features included in the RS_O signature
(f1-f6).

vMRI
(r)

Cell density (r) Ki67
(r)

Cell density (cells/mm2) 0.35 - -

Ki-67 (%-pos cells) 0.51* 0.32 -

RS_O 0.90** 0.44* 0.55*

f1 (TotalEnergy) 0.89** 0.43* 0.52*

f2 (GLCM_IDMN) 0.72** 0.43* 0.50*

f3 (GLCM_MCC) 0.53* 0.19 0.35

f4 (GLRLM_RunEntropy) 0.85** 0.42* 0.64*

f5
(Shape_LeastAxisLength)

0.85** 0.34 0.48*

f6 (Shape_VoxelVolume) 0.95** 0.35 0.49*
fro
aSpearman’s rank correlation, 0.05≤p≤0.0001* and p<0.0001** marked by italic.
f, radiomic feature; GLCM, grey level co-occurrence matrix; GLRLM, grey level run length
matrix; LASSO, least absolute shrinkage and selection operator; IDMN, inverse difference
moment normalized; MCC, Matthew’s correlation coefficient.
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conventional diagnostic reading (e.g. reporting of tumor size) in the

assessment of treatment response and tailoring of therapy.

In recent years, several studies have linked tumor radiomics from

primary tumor depicted by preoperative MRI and computed tomography

to clinical phenotype and patient outcome in endometrial cancer (17, 30,

31). Radiomics and radiogenomics applications may thus support

personalized treatment in the management of endometrial cancer (32,

33). However, less is known about radiomics as a potential tool for

predicting treatment response in endometrial cancer patients receiving

non-surgical treatment. In the present study we have utilized a clinically

relevant O-PDX mouse model, undergoing weekly MRI scanning during

treatment (chemotherapy vs. control), and derived a radiomic tumor

signature that predicts treatment response with high accuracy already at

one week after start of treatment (AUC=0.80, week 1, Figure 3B). The

radiomic signature also predicts response in an independent validation

cohort (subcutaneousmodel) (AUC=0.85, day 10, Figure 5F). Importantly,

several of the radiomic features incorporated in the signature are either

derivatives of tumor shape/volume (f5-f6; r(vMRI)≥0.85 for both) or

strongly positively correlated to tumor volume (f1, f4; r≥0.85 for both).

Nevertheless, the remaining two features GLCM_IDMN (f2) and

GLCM_MCC (f3), were only weakly -to- moderately correlated to

tumor volume (f2: r=0.72; f3: r=0.53) Interestingly, GLCM_IDMN was
Frontiers in Oncology 09
significantly higher in the controls compared to the chemotherapy group

already one week after treatment start, and GLCM_IDMN and tumor

volume were not significantly correlated at baseline. At endpoint,

GLCM_IDMN also showed a moderate positive correlation both to cell

density (r=0.43) and to cell proliferation/Ki-67 (r=0.50). Overall, this
supports that GLCM_IDMN is a relatively volume-independent radiomic

marker, reflecting mesoscale tumor features that are closely linked to

established microscopic features, and that that GLCM_IDMN can capture

early chemotherapeutic response.
4.1 Limitations

Although radiomics has shown promising results in numerous

scientific studies for a large variety of purposes, radiomic feature

values are prone to variabilities due to, amongst others, differences

in scanner models, image processing and image analyses (34). Also,

there is an overall lack of validation of promising radiomic features

in separate and independent study cohorts. In preclinical studies, it

is considered good ethical practice to restrict the number of animals

used (35). With a limited number of animals (typically no more

than 10) and a large number of radiomic features (hundreds to
A B

D E F

C

FIGURE 5

Validation dataset. The radiomic signature (RS) for predicting treatment response (chemotherapy vs. control) developed at endpoint in the orthotopic
model was validated in a separate imaging dataset (RS_S) utilizing the same patient-derived organoid model grown subcutaneously. The mice in this
independent study underwent an identical treatment regime as the mice with orthotopically implanted tumors. T2w-MRI was performed at baseline
(day 0), at an early timepoint (day 3) and at endpoint (day 10) (A, C). T2w-MRI depicting a representative tumor (arrows; b, bladder) at day 3 (C). At
endpoint, MRI-assessed median tumor volume (vMRI) was significantly lower in the chemotherapy group than in the control group (p=0.01) (B), and
vMRI yielded an area under the receiver operating characteristic curve (AUC) of 0.78 for predicting treatment groups whereas RS_S yielded an AUC
of 0.85 (F). At the earlier timepoints, neither vMRI nor RS_S was able to predict treatment groups in the subcutaneous model (D, E). p>0.05 for all,
DeLongs’ test of equality.
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thousands), it is challenging to develop prediction models without

any overfitting bias. In the present study we have applied state-of-

the-art LASSO statistics, for radiomic feature reduction and

prediction modelling. The radiomic signature yielded excellent

performance for prediction of treatment response in the

orthotopic model at endpoint (AUC=1.00), although with an

inherent risk of model overfitting. However, when applied in an

independent subcutaneous model cohort, scanned on a separate

MRI system, the high prediction performance of the radiomic

signature was reproduced (AUC=0.85), making it unlikely that

overfitting has substantially biased the results. The radiomic

signature was developed, tested and validated in animals treated

with chemotherapy. The performance of the signature for

predicting response to other types of therapies including

immunotherapy and targeted therapies remains unanswered.
5 Conclusions

This study demonstrates the potential of MRI radiomics to

predict early treatment response in a clinically relevant O-PDX

endometrial cancer mouse model The same radiomic signature

predicted treatment response in a subcutaneous PDX endometrial

cancer mouse model, supporting its transferability across tumor

sites. Further validation in independent preclinical studies and

subsequent testing of radiomic profiling in the clinic are needed,

to define its potential value for early prediction of therapeutic

response and tailoring of endometrial cancer treatment.
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