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Hospital, Taiyuan, China, 3Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China,
4Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China, 5Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
Objective: To develop and validate a multiparametric MRI-based radiomics

model for prediction of microsatellite instability (MSI) status in patients with

endometrial cancer (EC).

Methods: A total of 225 patients from Center I including 158 in the training

cohort and 67 in the internal testing cohort, and 132 patients from Center II

were included as an external validation cohort. All the patients were

pathologically confirmed EC who underwent pelvic MRI before treatment.

The MSI status was confirmed by immunohistochemistry (IHC) staining. A

total of 4245 features were extracted from T2-weighted imaging (T2WI),

contrast enhanced T1-weighted imaging (CE-T1WI) and apparent diffusion

coefficient (ADC) maps for each patient. Four feature selection steps were

used, and then five machine learning models, including Logistic Regression

(LR), k-Nearest Neighbors (KNN), Naive Bayes (NB), Support Vector Machine

(SVM), and Random Forest (RF), were built for MSI status prediction in the

training cohort. Receiver operating characteristics (ROC) curve and decision

curve analysis (DCA) were used to evaluate the performance of

these models.

Results: The SVM model showed the best performance with an AUC of 0.905

(95%CI, 0.848-0.961) in the training cohort, and was subsequently validated in

the internal testing cohort and external validation cohort, with the

corresponding AUCs of 0.875 (95%CI, 0.762-0.988) and 0.862 (95%CI,

0.781-0.942), respectively. The DCA curve demonstrated favorable

clinical utility.
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Conclusion: We developed and validated a multiparametric MRI-based

radiomics model with gratifying performance in predicting MSI status, and

could potentially be used to facilitate the decision-making on clinical

treatment options in patients with EC.
KEYWORDS

microsatellite instability, magnetic resonance imaging, radiomics, endometrial
neoplasms, adjuvant therapy (post-operative)
Introduction

Endometrial cancer (EC) is the sixth most common cancer in

women worldwide, with approximately 417000 new cases in 2020, and

the incidence is steadily increasing every year (1, 2). Microsatellite

instability (MSI), a kind of deficient DNA mismatch repair (dMMR)

system gene germline mutation, accounts for 20-30% in EC (3, 4).

More than 90% of EC patients with dMMR have endometrioid

adenocarcinoma (5). MSI status has been given increasing

importance due to its value in terms of prognosis and treatment

strategies for EC patients (4, 6). It has been reported that EC patients

with high MSI (MSI-H) may be potential beneficiaries of

immunotherapy response (7). Moreover, women with Lynch

syndrome (LS) possess inherited pathogenic variants of MMR genes

(6), and have a 40-60% risk of progressing to EC (8, 9). Therefore, MSI

testing was recommended by the 2020 ESGO/ESTRO/ESP guidelines

for all EC patients, which integrated MMR status for risk stratification

of EC patients to assess prognosis and determine adjuvant therapy (10).

Currently, MSI status is identified by immunohistochemistry

(IHC) for MMR protein expression or polymerase chain reaction

(PCR) methods on biopsy or surgical tissue. However, both of these

tissue sample-based methods are invasive and may not be sufficient

to reflect the tumor heterogeneity. Furthermore, the PCR method is

more costly and complicated due to the special equipment and

reagents. Thus, exploring a non-invasive, cost-effective, and

repeatable method to preoperatively predict MSI status will be

helpful in clinical decision-making.

Pelvic magnetic resonance imaging (MRI) is recognized as a

valuable imaging modality for the preoperative staging of EC in

clinical practice (11). However, it is challenging to detect MSI status

based on the subjective evaluation of MRI. Several studies have

attempted to identify MSI status using functional imaging such as
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intravoxel incoherent motion (IVIM) and amide proton transfer

(APT)-weighted imaging (12, 13). However, these functional imaging

sequences have limited use in clinical settings due to their long

scanning times and technical differences. Radiomics, an emerging

tool for transforming digital medical images into mineable qualitative

information, aims to reveal tumor heterogeneity and underlying

pathophysiological information (14). Radiomics features extracted

from MRI have been shown to predict risk stratification, prognosis,

and treatment response in patients with EC (15–17). Several studies

developed radiomics models to predict MSI status in patients with EC

and achieved moderate performance (18, 19). However, these studies

had a small sample size and lacked external validation.

Therefore, we attempted to develop and validate a non-invasive

biomarker-based radiomics models from MRI of two centers to

preoperatively evaluate the MSI status in patients with EC.

Materials and methods

Patients

This retrospective study was approved by the institutional

review boards of the two participating centers, and the written

informed consent was waived. A total of 225 patients with EC who

underwent pelvic MRI between January 2017 and December 2021 at

Center I (median age, 54.0 years) and 132 patients between January

2017 and December 2020 at Center II (median age, 54.0 years) were

recruited (Figure 1). The recruitment criteria are provided in

Appendix E1. Patients from Center I were randomly divided into

two cohorts at a ratio of 7:3, with 158 cases in the training cohort

and 67 cases in the internal testing cohort, and the patients from

Center II served as the external validation cohort. Data regarding

demographics and clinicopathological variables, including age,

menopausal status, hypertension, diabetes, body mass index

(BMI), the International Federation of Gynecology and Obstetrics

(FIGO) stage, tumor grade, and depth of muscular invasion (MI),

were collected from the medical records.

MSI status identification

IHC for MMR proteins, including mutL homologue 1 (MLH1),

mutS homologue 2 (MSH2), mutS homologue 6 (MSH6), and
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postmeiotic segregation increased 2 (PMS2), was performed to

observe their expression in the nucleus. MLH1, PMS2, MSH2 and

MSH6 were localized in the nucleus, and the presence of brownish-

yellow granules in the nucleus of tumor cells was positive, and

normal tissue staining was used as an internal control. In the

nucleus of the tumor cells, all four MMR proteins show IHC

staining is defined as the microsatellite stability (MSS)/low MSI

(MSI-L), otherwise if one or more proteins are lost, the tumor is

considered MSI-H (3).
MRI acquisition

Preoperative pelvic MRI images for all patients at both

institutions were acquired by 3.0T scanners. The MRI protocols
Frontiers in Oncology 03
included axial fat-suppressed spin-echo T2-weighted imaging

(T2WI), echo planar diffusion-weighted imaging (DWI; with b

value of 0, 800 s/mm2), and axial contrast enhanced T1-weighted

imaging (CE-T1WI). Apparent diffusion coefficient (ADC) maps

were generated automatically by DWI images using both b values.

The imaging acquis i t ion parameters are provided in

Appendix E2.
Tumor segmentation and radiomics
features extraction

MRI images, including axial T2WI fat-suppressed, CE-T1WI,

and DWI were reevaluated by a radiologist with 10 years of pelvic

MRI interpretation experience (Figure 2). Regions of interests
FIGURE 2

Typical multiparametric MR images of two EC patients with MSI-H (A–C) and MSI-L/MSS (D–F). From left to right: axial T2WI, CE-T1WI, and DWI MR
images and the corresponding region of interest (ROI).
FIGURE 1

Flowchart of patients’ recruitment in Two Centers. EC, endometrial cancer; MSI-H, high microsatellite instability; MSI-L, low microsatellite instability;
MSS, microsatellite stability.
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(ROIs) of tumors were outlined manually layer-by-layer utilizing

the ITK-SNAP software (version 3.8.0, http://www.itksnap.org),

and volume of interests (VOI) were generated. The VOI outlined

on the DWI automatically corresponds to the ADC map.

Afterwards, 50 cases were randomly selected and outlined again

by a physician with 15 years of experience in pelvic MRI

interpretation, who was also blinded to the pathological data. The

z-score method was used to normalize the grayscale of images,

which was limited to m ± 3s (m, mean value of gray levels; s, gray
level standard deviation).

Thereafter, the radiomics features were automatically extracted

using PyRadiomics (version 3.0.1, http://PyRadiomics.readthedocs.io/

en/latest/) (20). Finally, 1415 features were extracted from each

sequence, including four types: (1) 14 shape features; (2) 18 first-

order features; (3) 75 texture features such as GLCM, GLRLM,

GLSZM, GLDM and NGTDM; (4) 1308 high-order features

including 279, 744, 93, and 192 features derived from Laplacian of

Gaussian (LoG), wavelet, gradient, and LocalBinaryPattern3D

(LBP3D), respectively.
Feature selection and modeling

We applied four steps to select radiomics features that were

most related to MSI status. Firstly, to ensure the reproducibility of

radiomics features, we calculated the intraclass correlation

coefficient (ICC) to preserve features with good stability, and the

ICC greater than 0.8 indicated good consistency. Secondly, based on

univariate analysis, features with p<0.01 were preserved. Thirdly,

the Pearson’s correlation analysis was performed to remove features

with correlation coefficients greater than 0.9. Lastly, the Boruta

algorithm (21) was used to retain the final residual features.

Five radiomics models based on different machine learning

algorithms, including Logistic Regression (LR), k-Nearest

Neighbors (KNN), Naive Bayes (NB), Support Vector Machine

(SVM), and Random Forest (RF), were constructed using the

selected key features. The predictive performance of the above

models was evaluated based on the receiver operating

characteristic (ROC) curve and area under the curve (AUC). The

corresponding accuracy, sensitivity, specificity, negative prediction

value and positive prediction value of the models were also

obtained. The predictive performance of the five radiomics

models was verified in the internal testing and external validation

cohorts. Decision curve analysis (DCA) was employed to determine

the clinical usefulness of the model by calculating the net benefit of

the five different models at diverse threshold probabilities.
Statistical analysis

All statistical analysis was conducted with the SPSS 25.0 software

(IBM Corp) and R 4.1.0 software (http://www.Rproject.org,
Frontiers in Oncology 04
Appendix E3). The Chi-square test or Fisher’s exact test was used

for categorical variables. Continuous data were selected from

independent samples t-test or Mann-Whitney U-test depending on

whether they conformed to normal distribution. The optimal cut-off

value in the ROC was obtained according to the Youden’s index, and

the differences in AUCs between the five models was compared using

the Delong test. All statistical tests were two-sided, and P<0.05 was

considered as statistically significant.
Results

Patient characteristics

The incidence of MSI-H was 26.0%, 25.4%, and 31.8% in the

training cohort, the internal testing and external validation cohorts,

respectively, with no statistical difference between the three cohorts

(P=0.469). The patients from Center I had a slightly higher BMI and

tumor grade than those from Center II , while other

clinicopathological variables including age, menopausal status,

hypertension, diabetes, the FIGO stage, and MI were not

statistically significant (Table 1). There was no statistical

difference between the MSI-H and MSI-L/MSS groups in terms of

the above clinicopathological variables (Supplementary Table S1).
Feature selection and prediction
model construction

Of all the extracted features, 1464 features with high

reproducibility (ICC>0.8) were selected. Moreover, 252 features

were retained after univariate analysis, and 66 related features were

selected by Pearson’s correlation analysis. Six key features, found to

be most relevant to MSI status, were screened using the Boruta

algorithm, which was then used for the construction of the

radiomics model. The selected six features, including first order

feature, GLCM, GLRLM, and NGTDM, were statistically different

between the MSI-H andMSI-L/MSS groups (all P < 0.05) (Figure 3).
Performance and validation of
prediction models

Based on five different classifiers such as LR, KNN, NB, SVM,

and RF, the radiomics models were constructed in the training

cohort using the above six key features for prediction of MSI status.

The ROC curves depicting the predictive performance of these

different models are shown in Figure 4; Table 2. The SVM model

showed the best performance for prediction of MSI status in the

training cohort, internal testing cohort and external validation

cohort with AUCs of 0.905 (95% confidence interval [CI], 0.848-

0.961), 0.875 (95%CI, 0.762-0.988), and 0.862 (95%CI, 0.781-0.942),
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respectively. The Rad-scores derived from the SVM model of the

MSI-H group were significantly higher than those of the MSI-L/

MSS group in the training cohort (Figure 5A, D), and confirmed in

both validation cohorts (Figure 5B, C, E, F). Table 2 shows the

performance differences between the SVM model and others.
Clinical application

The DCA of different models is presented in Figure 6, which

indicated that the SVM model had a higher net benefit compared

to the other models, both in the training cohort and the two

validation cohorts. Moreover, the net benefit of all models was
Frontiers in Oncology 05
better than that of diagnosing all patients as “MSI-H” or “MSI-L/

MSS”. These results showed that the radiomics model had good

clinical application value for preoperative evaluation of

MSI status.
Discussion

In this study, we developed radiomics models based on

multiparametric MR images (T2WI, CE-T1WI, and ADC) to

identify the MSI status of EC, which were validated in patients

from two institutions. Among the models constructed based on five
TABLE 1 Clinicopathological variables in patients with endometrial cancer between the training cohort and the internal and external
validation cohorts.

Training cohort (n=158) Internal Testing cohort (n=67)
External Validation cohort

(n=132)
p value

Age (y), median (IQR) 54.5 (50.0;59.0) 54.0 (50.0;59.0) 54.0 (50.0;59.3) 0.962

Label: 0.469

MSI-L/MSS 117 (74.1%) 50 (74.6%) 90 (68.2%)

MSI-H 41 (25.9%) 17 (25.4%) 42 (31.8%)

Menopause: 0.266

No 59 (37.3%) 20 (29.9%) 55 (41.7%)

Yes 99 (62.7%) 47 (70.1%) 77 (58.3%)

Hypertension: 0.941

Negative 94 (59.5%) 41 (61.2%) 81 (61.4%)

Positive 64 (40.5%) 26 (38.8%) 51 (38.6%)

Diabetes: 0.456

Negative 141 (89.2%) 63 (94.0%) 117 (88.6%)

Positive 17 (10.8%) 4 (6.0%) 15 (11.4%)

BMI, median (IQR) 26.7 (24.1;29.0) 26.0 (24.5;28.5) 24.4 (22.6;27.3) <0.001*

FIGO: 0.404

Ia 92 (58.2%) 38 (56.7%) 80 (60.6%)

Ib 45 (28.5%) 19 (28.4%) 25 (18.9%)

II 14 (8.9%) 8 (11.9%) 20 (15.2%)

III 7 (4.4%) 2 (3.0%) 7 (5.3%)

Grade: <0.001*

1 17 (11.2%) 6 (9. 7%) 63 (47.7%)

2 116 (76.3%) 46 (74.2%) 54 (40.9%)

3 19 (12.5%) 10 (16.1%) 15 (11.4%)

MI: 0.477

<1/2 108 (68.4%) 45 (67.2%) 97 (74.0%)

≥1/2 50 (31.6%) 22 (32.8%) 34 (26.0%)
fro
BMI, body mass index; FIGO, the International Federation of Gynecology and Obstetrics; MI, muscular invasion.
*p <0.05, suggest a significant difference between the three cohorts.
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different machine learning algorithms, the SVM model showed the

best prediction performance with an AUC of 0.905 and was

subsequently verified in both the internal testing and external

validation cohorts. The clinicopathological variables were not

found to be related to MSI status. These results indicated that

radiomics methods could be a non-invasive tool for prediction of

MSI status preoperatively.

Our machine learning classifiers were built on six radiomic

features, four of which were LBP transformed. LBP provided a

binary label for each pixel value in the image based on a specific

threshold calculated from the value of neighboring pixels around the

center pixel, which can highlight the local texture features of the

image (22, 23). Furthermore, higher-order features account for the
Frontiers in Oncology 06
largest proportion (5/6), which provide complex texture information

to quantify tumor heterogeneity by emphasizing the relationships

between multiple voxels (24). Notably, GLCM features accounted for

half of the features, suggesting that GLCM may be more closely

related to theMMR genes, which was consistent with the findings of a

previous study (25), which found that GLCM entropy was different in

patients with and without Lynch syndrome, which may be related to

mutations in the MMR genes. GLCM features can obtain more

information than histogram of an image, and represent the

heterogeneity differences in the image in two dimensions.

The good predictive performance of the model is closely related

to the choice of classifier. In this study, five different classifiers were

used to detect the MSI status of EC. The results showed that the
B CA

FIGURE 4

Receiver operating characteristic (ROC) curves of the radiomics models derived from five classifiers in the training (A), internal test (B), and external
validation (C) cohorts, respectively.
B C

D E F

A

FIGURE 3

Plots (A–F) present the boxplots of the six radiomics features with a significant difference between the MSI-H and MSI-L/MSS groups in the training
cohort. * = p < 0.5; ** = p < 0.01; *** = p < 0.001.
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TABLE 2 Performance of the radiomics models.

Method LR KNN NB RF SVM

Training cohort

AUC (95%CI) 0.650
(0.552-0.748)

0.683
(0.594-0.772)

0.764
(0.682-0.846)

0.821
(0.751-0.892)

0.905
(0.848-0.961)

Accuracy (95%CI) 0.595
(0.514-0.672)

0.500
(0.420-0.580)

0.620
(0.540-0.696)

0.772
(0.699-0.835)

0.823
(0.754-0.879)

Sensitivity (95%CI) 0.780
(0.487-0.927)

0.951
(0.820-1.000)

0.902
(0.659-0.976)

0.659(0.484-0.805) 0.902
(0.731-0.976)

specificity (95%CI) 0.530
(0.213-0.624)

0.342
(0.141-0.462)

0.521
(0.248-0.624)

0.812
(0.587-0.920)

0.795
(0.667-0.881)

Internal Testing cohort

AUC (95%CI) 0.672
(0.507-0.836)

0.672
(0.527-0.816)

0.712
(0.568-0.856)

0.812
(0.710-0.915)

0.875
(0.762-0.988)

Accuracy (95%CI) 0.582
(0.455-0.702)

0.478
(0.354-0.603)

0.537
(0.411-0.660)

0.701
(0.577-0.807)

0.896
(0.797-0.957)

Sensitivity (95%CI) 0.765
(0.588-0.941)

0.941
(0.647-1.000)

0.824
(0.646-1.000)

0.765
(0.529-1.000)

0.882
(0.412-1.000)

Specificity (95%CI)
0.520
(0.080-0.861)

0.320(0.080-0.621) 0.440
(0.200-0.740)

0.680
(0.530-0.880)

0.900
(0.160-0.961)

External Validation cohort

AUC (95%CI) 0.603
(0.503-0.703)

0.624
(0.526-0.723)

0.770
(0.687-0.853)

0.808
(0.734-0.883)

0.862
(0.781-0.942)

Accuracy (95%CI) 0.439
(0.353-0.528)

0.432
(0.346-0.521)

0.530
(0.442-0.618)

0.720
(0.635-0.794)

0.795
(0.717-0.861)

Sensitivity (95%CI) 0.857
(0.714-0.976)

0.952
(0.881-1.000)

0.976
(0.929-1.000)

0.833
(0.571-0.929)

0.810
(0.667-0.952)

Specificity (95%CI) 0.244
(0.178-0.567)

0.189
(0.044-0.456)

0.322
(0.111-0.533)

0.667
(0.500-0.756)

0.789
(0.289-0.945)
F
rontiers in Oncology
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AUC, area under ROC curve; CI, confidence interval; LR, Logistic Regression; KNN, k-Nearest Neighbors; NB, Naive Bayes; RF, Random Forest; SVM, Support Vector Machine.
B C

D E F

A

FIGURE 5

Plots (A–C) show the Rad-score for each patient, and boxplots (D–F) show the Rad-score in the training, internal test and external validation
cohorts, respectively.
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SVMmodel had the highest predictive performance. SVM is known

for its ability to be robust to noise and to handle high-dimensional

datasets in genetics, transcriptomics and proteomics. SVM has

shown good performance in predicting lymph node metastasis of

breast cancer and gene status in patients with rectal cancer (26, 27).

A recent study also found that SVM was the best model to predict

EC MSI (28). Therefore, it is not surprising that our study found

that SVM is the best predictor of MSI status in EC patients.

Few studies have explored whether radiomics features derived

from MRI are correlated with the MSI status of EC. A previous

study analyzed 12 patients with stage I EC on reduced field of view

DWI, and found that MSS tumors had a significantly higher ADC

value than the MSI tumors, indicating that MRI may contain

information related to MSI (12). However, whether the ADC

value can be used to predict MSI status remains controversial.

Minamiguchi et al. (29) and Wang et al. (30) found no difference in

ADC values between the MSI and MSS groups. In our study, the

majority (5/6) of the key radiomics features were derived from ADC

maps, indicating that the information related to tumor

heterogeneity embedded within ADC images cannot be reflected

by simple ADC values alone. Recently, Veeraraghavan et al.

demonstrated that a classifier based on CE-CT peritumoral-rim

radiomics is the most relevant to distinguish dMMR of EC, with an

AUC of 0.78 (18). However, CT has great challenges in delineating

the tumor margins, whereas MRI may accurately depict tumor

boundaries because of its better soft-tissue resolution. Lin et al.

constructed a model based on T2WI and CE-T1WI of 296 patients

to predict MSI of EC, with AUCs of 0.752 and 0.723 in the training
Frontiers in Oncology 08
cohort and validation cohorts (19). In our study, radiomics features

were extracted from multiple sequences of MRI (T2WI, CE-T1WI,

and ADC) and showed good performance, similar to a recent study

by Song et al. (28).

Among the clinicopathological variables mentioned in the

present study, no significant difference was found between the

MSI-H and MSI-L/MSS groups, similar to the findings of a recent

study (30). A large-scale study including 1024 patients with

endometrioid EC found that age, BMI, and grade were associated

with dMMR (31), which were not found in our study, possibly due

to insufficient sample size.

There are several limitations to this study. Firstly, manual

segmentation of ROI was not only labor-intensive but also tended

to be subjective. Hence, if semi-automatic or automatic

delineation can be used in the future, it will be more

convenient in clinical practice. Secondly, this study was limited

to primary tumors. Since the FDA approved pembrolizumab is

more effective in patients with recurrent and metastatic disease, it

will be necessary to validate our models in patients with advanced

disease. Finally, this study did not consider the peritumoral

region. Veeraraghavan et al. (18) suggested that the MMR

status might be related to peritumoral region, which needs to

be explored in the future.

In summary, we presented a non-invasive radiomics approach

utilizing multiparametric MRI to identify MSI status in patients

with EC prior to treatment. Our results suggested that radiomics

approaches can potentially aid decision-making and maximize

benefit for EC patients.
FIGURE 6

Decision curve analysis (DCA) of the radiomics models derived from the five different classifiers in the whole cohorts.
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