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Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety

of biological processes and gene regulatory networks. The deregulation of

lncRNAs has been extensively implicated in diverse human diseases, especially

in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to

the pathophysiological processes of ovarian cancer (OC), acting as regulators

involved in metastasis, cell death, chemoresistance, and tumor immunity. In this

review, we illustrate the expanded functions of lncRNAs in the initiation and

progression of OC and elaborate on the signaling pathways in which they pitch.

Additionally, the potential clinical applications of lncRNAs as biomarkers in the

diagnosis and treatment of OC were emphasized, cementing the bridge of

communication between clinical practice and basic research.
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1 Introduction

Ovarian cancer (OC), a silent killer, has become the second most prevalent gynecologic

malignancy with the highest mortality rate worldwide (1). About 13,900 people in the U.S.

reportedly died from this tumor in 2010, and fewer than 40 percent of female patients are

cured (2). Due to its asymptomatic character, approximately 70% of patients are diagnosed

at an advanced stage accompanied by tumor metastasis to the peritoneum (3, 4).

Lumpectomy followed by platinum/paclitaxel-based pharmacotherapy is considered to

be the standard treatment for OC (5). However, chemotherapeutic resistance is highly

prevalent, ultimately leading to tumor recurrence and adverse prognosis. Despite an initial

response to chemotherapeutic agents, the five-year survival rate of OC patients remains low

due to chemoresistance (6). A significant barrier in the clinical management of OC has been

reported to be the lack of ideal drug resistance-related biomarkers to delineate risk and
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determine prognosis (7). Moreover, effective screening program to

detect OC at a curable early stage has faced great difficulties within

recent years (4). With a survival rate of approximately 29%, these

patients diagnosed at FIGO (Federation of International of

Gynecologists and Obstetricians) stage III-IV are in dire need of a

more effective treatment option (8). Confronted with these

challenges, it’s crucial and critical to identify effective biomarkers

for early diagnosis and therapy to improve survival in this

aggressive disease.

Long non-coding RNAs (lncRNAs), which are over 200

nucleotides in length, have emerged as a dominant group of non-

coding RNA molecules involved in diverse biological processes (9).

Catalyzed by RNA sequencing, epigenomic and predictive

technologies, a plethora of lncRNAs have been identified (10).

Numerous researches have validated that abnormal expressions

of lncRNAs are associated with a number of important

pathophysiological processes in various diseases, including

tumorigenesis (11–13). In particular, cumulative evidences have

identified that aberrant expression of lncRNAs can serve as notable

regulators in the initiation and development of OC, involving

diverse molecular mechanisms. For instance, lncRNA-H19

interacts with miR-29b-3p and inhibits its downstream target

gene STAT3, leading to carboplatin resistance in OC (14). In

addition, lncRNA FLVCR1-AS1 regulates the miR-513/YAP1 axis

and contributes to cell migration, invasion and epithelial

mesenchymal transition (EMT) processes in OC (15). These

studies imply that lncRNAs have great potential as therapeutic

targets for OC patients.

We retrieved 1150 articles from 2000 to 2024 from the

“GeenMedical” website under the keywords “lncRNA” and

“ovarian cancer”, and a total of 131 preclinical and biological

research, 41 review articles and 5 epidemiological studies were

rigorously chosen in this review. This article describes the

recognized functions and molecular mechanisms of lncRNAs and

highlights their prospect as potential diagnostic, prognostic and

therapeutic targets in OC.
2 Overview of LncRNA

2.1 Characteristics of LncRNA

LncRNAs are historically transcribed by RNA polymerase II from

the genome and have lower expression levels than mRNA (16, 17).
Abbreviations: LncRNAs, Long non-coding RNAs; OC, ovarian cancer; EMT,

epithelial mesenchymal transition; FIGO, Federation of International of

Gynecologists and Obstetricians; miRNAs, microRNAs; OS, overall survival;

TME, tumor microenvironment; CSCs, cancer stem cells; MMP2, matrix

metalloprotease 2; CAFs, cancer-associated fibroblasts; HUVECs, human

umbilical vein endothelial cells; RCD, regulated cell death; DDP, cisplatin;

PTX, pacl i taxel ; PD-L1, death l igand 1; TIME, tumor immune

microenvironment; EOC, epithelial ovarian cancer; HGSOC, high-grade serous

ovarian carcinoma; AUC, area under the ROC curve; ASOs, antisense

oligonucleotides; siRNA, small interfering RNA.
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Additionally, lncRNAs are modified with capping and

polyadenylation which makes majority of them stable, maintaining

their presence in the cellular environment and facilitating the

regulation of various cellular functions (18–20). With respect to

genes coding proteins, lncRNAs can exist in intergenic, intronic or

antisense regions (21). Although, initially, the synthesis of some

lncRNAs was dismissed as merely transcriptional “noise” due to

their commonly low levels of sequence conservation and expression

(22). While, studies have shown that lncRNAs have dynamic

expression patterns. For example, during development, lncRNAs

gradually transition from widely expressed and conserved lncRNAs

to cell lineage- and organ-specific lncRNAs (23). In addition, a recent

study has shown that low abundance levels of lncRNAs are essential

for their functional roles (24).

Intriguingly, cytoplasmic lncRNAs are less abundant and

more stable relative to the nucleus (25). Importantly, nuclear

lncRNAs regulate gene transcription by interacting with

chromatin, whereas cytoplasmic lncRNAs induce biological

signaling and post-transcriptional regulations (26). Moreover, it

has been proved that lncRNA localization is associated with diverse

pathophysiological statuses, including diseases such as various

cancers (27). One study demonstrated that lncRNA TPT1‐AS1

was overexpressed in metastatic OC tissues and localized in the

nucleus (28). Additionally, cell-specific and tissue-specific

expression patterns are distinctive features of lncRNAs (29),

facilitating the identification of lesions in specific tissues and the

classification of different cell types (30, 31). Surprisingly, there was

an unexpected specificity between dysregulated lncRNAs and

histological isoforms of OC (32). Therefore, the exploration of the

tissue specificity of lncRNAs will help to discover new markers

associated with cancer types and apply them to the early detection

of tumors or anti-cancer therapy.
2.2 Mechanisms of LncRNA functions

Mounting independent studies have shown that the distinctive

feature of lncRNAs is their extensive incorporation of numerous

molecules including DNAs, proteins, and RNAs, which are

accessible to drive various important tumor phenotypes and

influence OC progression (33). Currently, based on the functional

mechanisms classification, lncRNAs can be commonly categorized

into 4 types: signal, decoy, guide and scaffold. From the

evolutionary perspective, this implies an incremental modification

process between the prototypes and changes the lncRNA function

step by step (16).

Decades of extensive research have elucidated the central role of

lncRNAs in gene expression, laying the foundation for lncRNAs

research more broadly. LncRNAs orchestrate gene expressions and

exert a series of biological functions in disease through different

mechanisms, which will be expounded in subsequent aspects

(Figure 1). (I) On the epigenetic level, lncRNAs can recruit several

epigenetic modifiers or related enzymes to affect gene expression (34,

35). (II) As transcriptional regulators, lncRNAs can bind to

downstream gene promoters (36), transcription factors (37, 38), or

recruit complexes to regulate gene expression patterns (39). (III) At
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the post-transcriptional level, lncRNAs interact with splicing factors

to splice precursor mRNAs (40), combine with RNA-binding protein

and affect mRNA stability (41, 42), and bind to proteins or mRNAs

and impact their biological functions (43, 44). (IV) LncRNA acting as

microRNAs (miRNAs) sponges to regulate the expression of their

targets (45, 46). (V) Interestingly, a few lncRNAs bind to ribosomes

and translate peptide products (47).

In summary, lncRNAs coordinate expressions of genes at the

epigenetic, transcriptional, and post-transcriptional levels by

interacting with a range of molecules, highlighting the fact that a

comprehensive dissection of lncRNA-molecule interactions is key

to understanding their functions. More detailed and comprehensive

multi-species studies will help to discover more novel functions

of lncRNAs.
2.3 Novel players in tumorgenesis

The widespread use of genetic databases and development of

sequencing techniques have made it possible to functionally

identify and characterize plenty of lncRNAs, triggering increased

research in multiple diseases. Nowadays, lncRNAs have become a

hotspot in the field of tumor research and are considered to play an

essential role in the procession of OC. To date, whole transcriptome

approaches such as expression microarrays and RNA sequencing

have demonstrated that a number of lncRNAs are highly correlated

with clinical outcomes in patients with OC. For instance, lncRNA

HOTAIR was significantly upregulated in OC tissues and indicated

poor clinical stage and prognosis in patients (48). Another well-

described study demonstrated that lncRNA CCAT1 was related
Frontiers in Oncology 03
with tumor node metastases, histological grade, and FIGO stage of

patients. In addition, high levels of CCAT1 were found to be an

independent risk indicator for poor overall survival (OS) in patients

(49). In contrast, some lncRNAs have been identified as critical

suppressors of tumor progression in OC. For instance, lncRNA

SLC25A21-AS1, LIMT and GAS5 inhibit tumor growth in OC

through diverse mechanisms and signaling pathways (50–52).

These findings reveal an important regulatory relationship

between lncRNA and OC, although the in-depth pathogenesis of

OC still remains to be explored. Therefore, analyzing the

differential expression of lncRNAs in OC, combined with clinical

information of patients and differences between cohorts, is

beneficial to facilitate the discovery of new markers and the

development of precision medicine. Going forward, they may

have clinical applications in the appropriate management of

OC patients.
3 Emerging roles of lncRNA in ovarian
cancer biology

With the advancement of science and technology, evidence for

the association of dysregulated lncRNAs with OC is rapidly

increasing. Through interaction with numerous molecules,

including DNAs, proteins, and RNAs (53), lncRNAs are involved

in the regulation of EMT, migration, tumor microenvironment

(TME), angiogenesis, cancer stem cells (CSCs), apoptosis,

autophagy, ferroptosis, chemoresistance, and tumor immunity,

becoming important participants in the initiation and progression

of OC. In the subsequent chapters, we will comprehensively sort out
FIGURE 1

The functional mechanisms of long non-coding RNAs. Long non-coding RNAs orchestrate gene expressions through through multiple mechanisms,
including epigenetic regulation (A), regulating transcription (B), and post-transcriptional regulations involving RNA modification (C), splicing mRNA
(D), stabilizing RNA (E), binding protein (F), sponging miRNA (G), and coding peptide (H).
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the functions and mechanisms that lncRNAs continue to be

unearthed in OC genesis and development (Table 1 and Figure 2).
3.1 LncRNAs modulate tumor metastasis by
regulating EMT, migration, TME,
angiogenesis, and CSC

Tumor metastasis is a major cause of treatment failure and

death in patients (90, 91). It is a complex process characterized by

the spread of cancer cells from the primary tumor to distant organs

by acquiring certain molecular and phenotypic changes (92). In

recent years, mounting studies have shown that lncRNAs play a key

role in EMT, migration, TME, angiogenesis, and CSC, thus

influencing the metastatic cascade of OC. Therefore, exploring the

mechanisms and signaling pathways involved in metastasis of OC

will provide a basis for the development of anti-tumor drugs to

improve the prognosis of female patients.

EMT refers to the endowment of epithelial cells with

mesenchymal feature, allowing tumor cells to leave primary site

of the tumor, then invading the paracancerous tissue and migrating

to distant organs (93). Thereby, cancerous mesenchymal cells

acquire enhanced motility and ability to invade the surrounding

tissues (94, 95). Another core character of EMT is that cancer cells

are capable of stem cell-like characteristics, allowing tumor cells

relentlessly differentiate into numerous tumor cells (96). Therefore,

activation of EMT under pathological condition will benefit for

fostering tumor progression. Increasing independent researches

have indicated that lncRNAs can induce EMT program (45) to

affect biological behavior of tumor cells and correlate with cancer

aggressiveness (33). Below are some examples of lncRNAs acting as

regulators involved in tumor EMT activation and migration,

thereby triggering OC metastasis through multiple pathways.

LncRNAs can affect EMT by interacting with epigenetic

regulation-related factors to modulate gene expression, thereby

inducing the initiation and progression of OC. For instance, one

study identified that lncRNA RUNX1-IT1 was upregulated in

metastatic OC samples and promoted the EMT and metastasis of

cell lines. Mechanistically, RUNX1-IT1 serves as a molecular scaffold

coupling the transcription factor STAT1 to the NuRD complex,

colocalizes with the GPX1 promoter and promotes its deacetylation,

epigenetically inhibits GPX1 transcription, thereby activating the NF-

kB pathway and driving ovarian malignancy (54). Furthermore, DNA

methylation has been shown to be a hallmark of human cancers and is

essential for gene expression (97, 98). A recent research revealed that

the expression level of lncRNA KCNQ1OT1 was elevated in OC

tissues and it’s knockdown inhibited EMT and metastasis of tumor

cells. Mechanistically, KCNQ1OT1 recruits DNA methyltransferases

to the EIF2B5 promoter, resulting in decreased EIF2B5 expression,

which contributes to the development of OC (55). In addition, another

research demonstrated that the expression of lncRNA LINC01215 was

significantly upregulated in OC tissues compared to the normal

tissues. Further functional experiment uncovered that silencing

LINC01215 inhibited EMT, thus impairing tumor growth and

metastasis. Mechanistically, nuclear LINC01215 recruited

methylation-related proteins (DNMT1, DNMT3A, and DNMT3B)
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to prompt methylation of the RUNX3 promoter, thereby reducing

RUNX3 expression. In addition, overexpression of LINC01215

resulted in significant acceleration of tumor growth, enlarged tumor

volume, and increased metastasis observed in tumor xenograft models

(Figure 2A) (35).

The miRNA molecule is a single-stranded RNA that modulates

gene expression by leading to degradation, denaturation, or

translational inhibition of targeted mRNA (99). An increasing

number of studies indicate that the interaction between lncRNA

and miRNA plays a crucial role in the progression and metastasis of

OC. For instance, lncRNA PTAR promoted EMT and metastasis of

OC cells by competitively interacting with miR-101 to elevate the

expression of ZEB1. Furthermore, knockdown of PTAR attenuated

tumor growth and metastasis in vivo (56). A recent study showed

that lncARSR was highly expressed in OC tissues and was linked to

lymph node metastasis. Mechanistically, lncARSR interacted with

miR-200 family to increase the expression of ZEB1 and ZEB2,

resulting in an upregulation of N-cadherin and a downregulation of

E-cadherin and thus promoting EMT progression. Moreover,

lncARSR could increase b-catenin expression via interacting with

HuR, triggering Wnt/b-catenin pathway to promote cell

proliferation (Figure 2A) (57). Another study indicated that

upregulation of lncRNA HOXD-AS1 in OC tissues was associated

with high tumor grade, advanced stage and lymph node metastasis

in patients. Thus, it could be the independent risk predictor for OC

patients. Further analysis uncovered that knockdown of HOXD-

AS1 significantly reduced the ability of migration, invasion and

EMT. Mechanistically, HOXD-AS1 sponges miR-186-5p to

increase the expression of PIK3R3, thus facilitating tumor

development (Figure 2B) (45). In addition, Wu et al. showed that

lncRNA SNHG1 was overexpressed in OC and could facilitate cell

migration, EMT, and invasion of tumor cells in vitro, as well as

enhance metastasis in vivo. Mechanistically, SNHG drives tumor

progression by interacting with miR‐454 to increase ZEB1

expression, activating the Akt signaling pathway (100). Similarly,

high expression of lncRNA HCG18 was detected in OC tissues and

it drove EMT, proliferation and migration of cell lines by

modulating the miR-29a/b/TRAF4/TRAF5 axis (58). Interestingly,

a recent study showed that OC-specific lncRNA HOST2 could

sponge let-7b to promote the endogenous expressions of oncogenes,

facilitating tumor cell migration, invasion, and proliferation

(Figure 2B) (46). Lin et al. reported that lncRNA CASC15 is an

oncogene of OC that promotes tumor metastasis through a TGF-b-
induced EMT program (59). Additionally, high expression of

lncRNA UCA1 in OC cells and tissues was significantly linked to

lymphatic metastasis of the tumor. Further analysis revealed that

UCA1 knockdown significantly inhibited the invasive and

migratory abilities of tumor cell lines. Mechanistically, UCA1

could increase the expression of MMP14 through sponging miR-

485-5p, thereby promoting tumor metastasis. Therefore, the UCA1/

miR-485-5p/MMP14 axis may provide a potential strategy for

targeting tumor metastasis-related therapies (60).

In addition, lncRNAs can promote metastasis or maintain tumor

biological functions by regulating the expression of oncogenes or

EMT-related genes (101, 102). For instance, one study found that high

expression of lncRNA ABHD11-AS1 in OC tissues could promote
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TABLE 1 Functions of Long non-coding RNAs involved in ovarian cancer.

LncRNAs Interactions Expression
Molecular
Mechanisms

Functions Ref.

LncRNAs and tumor metastasis

RUNX1-IT1 RNA-protein Up
RUNX1-IT1/HDAC1 &
STAT1/GPX1/NF-kB

Facilitates EMT and metastasis (54)

KCNQ1OT1 RNA-protein Up KCNQ1OT1/EIF2B5 Drives tumor growth and metastasis (55)

LINC01215 RNA-protein Up LINC01215/RUNX3 Promotes epithelial mesenchymal transition (EMT) and migration (35)

PTAR RNA-RNA Up PTAR/miR-101/ZEB1 Facilitates EMT, migration and metastasis (56)

lncARSR RNA-RNA Up
lncARSR/miR-200family/
ZEB1/ZEB2

Promotes EMT process, proliferation and invasion (57)

HOXD-AS1 RNA-RNA Up
HOXD-AS1/miR-186-
5p/PIK3R3

Enhances EMT, migration and invasion (45)

SNHG1 RNA-RNA Up SNHG/miR‐454/ZEB1 Facilitate cell migration, EMT, and invasion (38)

HCG18 RNA-RNA Up
HCG18/miR-29a/b/TRAF4
& TRAF5

Induces EMT and invasion (58)

HOST2 RNA-RNA Up HOST2 /let-7b Prompts proliferation, migration and EMT (46)

CASC15 RNA-RNA Up
CASC15/miR-23b-3p & miR-
24-3p/SMAD3

Promotes tumor metastasis (59)

UCA1 RNA-RNA Up UCA1/miR-485-5p/MMP14 Enhances metastasis, prognostic biomarker (60)

ABHD11-
AS1

RNA-protein Up
ABHD11-AS1/RhoC/P70s6k &
MMP2 & BCL-xl

Promotes proliferation, invasion, and metastasis, inhibits apoptosis (61)

TC0101441 RNA-protein Up TC0101441/KiSS1 Promotes EMT and metastasis (62)

LINC00092 RNA-protein Up LINC00092/PFKFB2 Drives glycolysis to induce metastasis (63)

MALAT1 – Up – Facilitates chemoresistance and invasiveness in TME (64)

lncOVM RNA-protein Up lncOVM/PPIP5K2/C5 Prompts tumorigenesis and metastasis (65)

TMPO-AS1 RNA-protein Up TMPO-AS1/E2F6/LCN2 Facilitates aggressiveness and angiogenesis (66)

DANCR RNA-RNA Up DANCR/miR‐145/VEGF Drives tumor angiogenesis and growth (67)

MALAT1 RNA-RNA Up
MALAT1/angiogenesis-
related mRNAs

Promotes angiogenesis and metastasis (68)

ATB RNA-RNA Up ATB/miR-204-3p/TGFbR2 Prompts angiogenesis and remodels TME (69)

HOTAIR RNA-RNA Up HOTAIR/miR-206/TBX3 Maintains tumor stemness (70)

LncRNAs and cell death

HULC RNA-protein Up HULC/ATG7 Promotes tumor growth, inhibit autophagy, diagnostic marker (71)

Meg3 RNA-protein Down Meg3/ATG3 Inhibits autophagy and tumorigenesis (72)

RNF157-
AS1

RNA-protein Up
RNF157-AS1/HMGA1 &
EZH2/ULK1 & DIRAS3

Represses autophagy to enhance viability in good environment,
while inhibits tumor growth in harsh environment

(36)

RP11-
552M11.4

RNA-DNA Up RP11-552M11.4/BRCA2 Promotes proliferation, migration, and invasion (73)

ANRIL RNA-protein Up ANRIL/P15INK4B & Bcl-2 Promotes proliferation and cell cycle progression , inhibits apoptosis (74)

PCGEM1 RNA-protein Up PCGEM1/RhoA Facilitates proliferation, migration, invasion, suppresses apoptosis (75)

DLEU1 RNA-RNA Up
DLEU1/miR‐490‐3p/CDK1&
CCND1 & SMARCD1

Prompts tumor pathogenesis and development (76)

CACNA1G-
AS1

RNA-protein Up
CACNA1G-AS1/
IGF2BP1/FTH1

Inhibits ferroptosis, promotes proliferation and migration (77)

(Continued)
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tumor metastasis in vitro and enhance intraperitoneal metastasis of

tumors in vivo, and was positively correlated with tumor stage, while

was inversely proportional to the degree of tumor differentiation.

Further trial verified that ABHD11-AS1 could interact with RhoC and

target its downstream molecules including matrix metalloprotease 2

(MMP2), promoting tumor growth (61). As known to us, RhoC is

involved in regulating cell adhesion and migration ability. MMP2, as

an oncogenic genes, plays an important role in the invasion and

metastasis of cancer cells (103). Another study observed that the

expression of lncRNA TC0101441 was highly elevated in OC tissues

compared with noncancerous tissues and was significantly associated

with advanced FIGO stage and poor prognosis. Functional assays

showed that TC0101441 knockdown resulted in elevated E-cadherin

levels and downregulation of N-cadherin in mouse tumor tissues

compared to controls. Mechanistically, TC0101441 downregulated its

downstream gene KiSS1, which enhanced EMT-induced invasion

(62). While, another independent study showed that lncRNA

AOC4P exerts anti-metastatic effects in OC and was negatively

correlated with advanced tumor stage and lymphatic metastasis. In

vitro experiments confirmed that expression of AOC4P reduced the

metastatic ability of highly metastatic tumor cells, which was also

demonstrated in an intraperitoneal metastatic model. Mechanistically,

AOC4P inhibited the expression of EMT-related genes MMP9 and

COL1A2, thereby attenuating invasive metastasis of OC (104).

Similarly, high expression of lncRNA HOTAIR was observed in OC
Frontiers in Oncology 06
tissues and metastatic cells than in parental cells. Further experiments

suggested that HOTAIR regulated matrix metalloproteinases and

EMT-related genes, facilitating migration and invasion of cell lines

and promoting intraperitoneal tumor growth and metastasis in nude

mice. Notably, HOTAIR could be independently linked to disease-free

survival and OS in patients (48).

Taken together, the above researches have identified the

extensive and key roles of lncRNAs in OC metastasis through

initiating EMT and migration. Therefore, targeting these lncRNAs

could be a potential strategy for the treatment of this neoplasms.

Consequently, based on these anticipations, further and systematic

research on lncRNAs is extremely necessary which will help us

grasp the detailed mechanisms of their actions in more in vivo

models, providing us with guidance for future practice.

Mounting studies have unraveled that TME is a complex

ecosystem with diverse tumor cells, stroma cells, exosomes and

other components, which is crucial for facilitating tumor metastasis

and invasion through the signaling in the communication circuits

established by these ingredients (105). Cancer-associated fibroblasts

(CAFs) have been shown to participate in the stromal-dependent

alterations that contribute to the initiation and progression of

malignant neoplasms (106). One study showed that the metastatic

factor CXCL14, secreted by CAFs, induced high expression of

lncRNA LINC00092, which contributed to invasion and

migration of OC cells. Further analysis demonstrated that silence
TABLE 1 Continued

LncRNAs Interactions Expression
Molecular
Mechanisms

Functions Ref.

LncRNAs and cell death

ADAMTS9-
AS1

RNA-RNA Up
ADAMTS9-AS1/miR-
587/ SLC7A11

Inhibits ferroptosis, promotes proliferation and migration (78)

LncRNAs and drug resistance

GAS5 RNA-protein Down GAS5/E2F4/PARP1/MAPK Inhibits cisplatin resistance (37)

ZFAS1 RNA-RNA Up ZFAS1/miR-150-5p/Sp1 Strengthens cisplatin and paclitaxel resistance (79)

SNHG22 RNA-RNA Up SNHG22/miR-2467/Gal-1 Promotes cisplatin and paclitaxel resistance (80)

CCAT1 RNA-RNA Up CCAT1/miR-454/survivin Enhances cisplatin resistant (81)

RFPL1S-202 RNA-protein Down
RFPL1S-202/DDX3X/IFN-
b-STAT1

Suppresses chemoresistance (43)

MIR17HG RNA-protein Down KHDRBS3/MIR17HG/CLDN6 Promotes paclitaxel resistance and induces glycolysis (82)

PVT1 RNA-protein Up PVT1/JAK2/STAT3/PD-L1 Prompts cisplatin resistance (83)

LncRNAs and tumor immunity

HOTTIP RNA-protein Up HOTTIP/c-jun/IL-6/PD-L1 Immune escape, suppresses activities of T cells (84)

Xist RNA-RNA Up Xist/miR-101/KLF6/C/EBPa Attenuates M1 to M2 macrophages (85)

SNHG12 RNA-protein Up SNHG12/NF-kB1/IL-6R Suppresses T cell proliferation (86)

CTD-
2288O8.1

RNA-protein Up CTD-2288O8.1/EGFR/AKT Promotes M2 macrophage polarization (87)

ZFHX4-AS1 – Up – Prompts proliferation, invasion and migration (88)

PAXIP1-AS1 – Down – lymphatic invasion (89)
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of LINC00092 significantly reduced ascites and metastatic nodules

in in vivo models compared with the controls. Mechanistically,

LINC00092 can interact with PFKFB2 to promote metastasis by

promoting glycolysis, which is essential for the malignant

characterization of TME and the maintenance of functions of

CAFs. Moreover, high levels of LINC00092 suggested poor OS,

advanced stage, higher differentiation degree and more resistant

disease in patients (63). This hints an inseparable connection

between TME and tumor metastasis. Similarly, another research

indicated that lncRNAMALAT1 could also promote metastasis and

invasiveness of OC through affecting TME. Further investigation

found that overexpression of MALAT1 resulted in increased

vimentin and cytokine interleukin-1b, indicating stimulation of

an inflammatory response in TME, thereby triggering OC

progression. In addition, simultaneous overexpression of

MALAT1 in OC cells and cancer-associated fibroblasts greatly

enhanced the invasion of OC cells (64). Interestingly, lncRNAs

can modulate immune cell infiltration into the tumor

microenvironment and enhance metastasis of OC. For instance,

lncOVM can interact with protein PPIP5K2 and protect it from

degradation, leading to an increase in complement C5 secretion by

tumor cells, which in turn recruits myeloid-derived suppressor cells

to infiltrate the TME and promote OCmetastasis. Furthermore, this
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the early diagnosis of OC (Figure 2C) (65).

Growing evidence has shown that angiogenesis is a prerequisite

for metastasis and can help malignant cells leave the site of origin

(107, 108). Numerous studies have shown that lncRNAs play an

important role in tumor angiogenesis and influence tumor

progression (109, 110). In addition, breakthroughs in the

regulation of angiogenesis by lncRNAs have been made in studies

of ovarian cancer. For instance, lncRNA TMPO-AS1 was

upregulated in ovarian cancer samples and cell lines and was

significantly associated with tumor angiogenesis and metastasis.

Further experiments showed that both the aggressiveness of tumor

cells and their pro-angiogenic capability were reduced by silencing

it. Mechanistically, lncRNA TMPO-AS1 interacts with the

transcription factor E2F6 to promote the transcription of

lipocalin-2, thereby facilitating the progression of ovarian cancer

(66). Likely, Lin et al. revealed that lncRNA DANCR drives tumor

angiogenesis and growth through directly binding to miR‐145,

thereby prompting VEGF expression in OC (67). Additionally,

exosomes can mediate crosstalk between different cells during

cancer progression by transporting their cargos, including

lncRNA (30). Recent studies have identified a link between

dysregulated expression of exosome-derived lncRNAs and tumor
FIGURE 2

The emerging roles of lncRNAsin the tumorigenesis and progression of ovarian cancer. Molecular crosstalk pathways involving lncRNAs participated
in ovarian cancer development, including EMT (A), migration (B), tumor microenvironment (C), angiogenesis (D), tumor stemness (E), cell death
(F), chemoresistance (G), and immune escape (H).
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angiogenesis. For instance, the expression level of lncRNA

MALAT1 was increased both in metastatic OC cell lines and in

the exosomes they secreted. Functional experiments demonstrated

that knockdown of MALAT1 can inhibit angiogenesis ability of

human umbilical vein endothelial cells (HUVECs) induced by

exosomes. In summary, MALAT1 was delivered to HUVECs by

exosomes, triggering expressions of angiogenesis related genes.

Importantly, elevated serum MALAT1 levels in patients are

strongly correlated with advanced OC and metastasis in clinical

settings (Figure 2D) (68). Likely, another study showed that

exosomal lncRNA ATB secreted by OC cells could be transferred

to HUVECs and promote their angiogenesis, which in turn

promotes tumorigenesis by remodeling the TME via modulation

of the miR-204-3p/TGFbR2 signaling pathway (69). Thus,

attenuation of specific lncRNAs in tumor cell-derived exosomes

will be instrumental in inhibiting tumor growth and metastasis.

However, further preclinical studies are needed to validate the

feasibility of this theoretical scenario.

CSCs exhibit high proliferative and invasive activities and are

resistant to a wide range of chemotherapeutic drugs, which are

important causes of tumor metastasis (111). Targeting CSCs may

lead to the discovery of efficacious approaches to eradicate the

malignant tumor (112). Emerging evidence supports that lncRNAs

play a vital role in regulating CSCs, therefore affecting the

progression of OC (113). A recent study demonstrated that

the expression of lncRNA HOTAIR was significantly increased in

the OC patient’s tumor tissues and OC stem cells compared with

controls. Further investigation showed that down-regulated

HOTAIR in stem cells suppressed the tumor growth and lung

metastasis in the nude mouse model (Figure 2E) (114).

Interestingly, another independent study showed that HOTAIR

upregulated TBX3 expression by binding to miR-206, thereby

maintaining the stemness of OC stem cells (Figure 2E) (70). This

research reveals that targeting lncRNA HOTAIR in stem cells could

be a promising therapeutic strategy for therapy of OC patients.

Indeed, certain inhibitors may target CSCs by modulating lncRNAs

to exert anti-tumor effects. A recent study showed that the

expression of lncRNA-Meg3 was significantly decreased in

anisomycin-treated serous ovarian CSCs. Further experiment

demonstrated that anisomycin was effective in inhibiting the

angiogenic capacity of ovarian CSCs in vitro and in vivo.

Mechanistically, anisomycin targets the lncRNA-Meg3/miR-421/

PDGFRA axis, thereby inhibiting the malignant behavior and

angiogenic capacity of CSCs (115). In addition, isomycin was

shown to inhibit the proliferation, invasion and tumorigenesis of

ovarian CSCs by increasing the expression of lncRNA BACE1-AS

(116). This represents a theoretical basis for the development of new

drugs to OC.

Here, we retrospect how lncRNAs promote tumor metastasis by

influencing the TME, angiogenesis, CSCs through different

mechanisms, and by certain genes in the pro-metastatic step.

Therefore, lncRNAs may be potential targets for the treatment of

OC metastasis, and it is warranted to further study lncRNAs to

deepen our understanding of their mechanisms of actions in various

in vivo models, advancing their potential clinical applications.
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3.2 LncRNAs regulate cell death

Cell homeostasis plays an important role in maintaining a

healthy cellular environment and it’s imbalance may lead to the

occurrence of cancer (71). Studies have shown that regulated cell

death (RCD) is involved in sustaining cell homeostasis and the

dysregulation of pathways can lead to the developments of cancer

(117). In recent years, the induction of RCD in tumor cells has been

a therapeutic strategy, including programs related to autophagy,

apoptosis, and ferroptosis (118). Therefore, it is crucial to

understand the underlying molecular mechanisms of RCD in OC.

Here, we outline the regulatory relationships between lncRNAs and

RCDs (autophagy, apoptosis, and ferroptosis) in OC, which is

expected to provide new ideas for the diagnosis and treatment of

this disease.

Autophagy, an intracellular lysosomal degradation pathway,

functions to degrade and recycle excess or damaged cells (119). It

has been proved to play pivotal roles in promoting death and

apoptosis of tumor cells and responsible for tumor growth (89,

120). One study reported that the expression level of lncRNA

HULC were significantly elevated in OC tissues, and it could

interact with the autophagic protein ATG7 and reduce its

expression, promoting tumor growth through. Further assay

revealed that silence of HULC could boost apoptosis and inhibit

cell proliferation, which could be reversed by autophagy inhibitors.

Furthermore, HULC could facilitate OC progression through

regulating ITGB1 (71). While, another research showed that

lncRNA Meg3 was lowly expressed in OC tissue and was negatively

correlated with FIGO stages. Further studies demonstrated that Meg3

interacted with ATG3 protein and increased its expression, which

significantly increased apoptosis in cell lines and mediated their arrest

in G2 phase, as well as attenuated tumorigenesis in vivo (72).

However, autophagy is a double-edged sword based on its impacts

on cell survival under different circumstances. One research indicated

that overexpression of lncRNA RNF157-AS1 in a favorable

environment could promote the resistance of OC cells to cisplatin

(DDP) by mediating autophagy. While, under the DDP treatment,

overexpression of RNF157-AS1 could decrease autophagy, promote

apoptosis and sensitivity of cell lines to chemotherapy, and reduce

tumor size and weight in mice. On balance, RNF157-AS1 recruits

EZH2 and HMGA1 to bind the DIRAS3 and ULK1 promoters,

respectively, thereby inhibiting transcriptions of these two

autophagy-related genes. Moreover, patients with high expression

of RNF157-AS1 had better prognosis than those with low

expressions, so it could be used as a prognostic indicator for OC

patients (Figure 2F) (36).

It’s of no doubt that apoptosis is a regulated cell death

mechanism that is important in majority of physiological

processes, such as the development process and tumorigenesis

(121, 122). Studies have demonstrated that apoptosis inhibitors

play an oncogenic role in a variety of tumors (123, 124). Therefore,

understanding the involvement of lncRNAs in the regulation of

apoptosis in OC will be beneficial for exploring new relevant

therapeutic approaches based on the promotion of apoptosis in

tumor cells. Caspases have been shown to play a central regulatory
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role in apoptosis, once activated, lead to the cleavage of proteins in

the cell, triggering apoptosis (125). Moreover, apoptosis is

extensively regulated by the Bcl-2 protein and its family (126).

For instance, the expression level of lncRNA RP11‐552M11.4 was

elevated in OC tissue compared to paired non-tumor samples, and

was correlated with pathological grade, huge tumor size(≥10 cm)

and advanced FIGO stages (III‐IV). Furthermore, upregulation of

RP11-552M11.4 enhanced the proliferation, migration, and

invasion of cell lines, implying that it potentially turned normal

ovarian epithelial cells into cancer-like cells. Further experiment

indicated that exogenous overexpression of RP11‐552M11.4

suppressed cell apoptosis through targeting BRCA2 and

attenuating its transcription, promoting tumor growth (73). In

addition, one study showed that lncRNA ANRIL was highly

expressed in OC samples and its overexpression could increase

the expression of Bcl-2 protein, thus promoting cell proliferation

and decreasing the number of apoptotic cells (74). Similarly,

lncRNA PCGEM1 inhibited the apoptosis of OC cell by targeting

RhoA and increasing its downstream BCL-xL protein expressions,

promoting OC progression (75). Additionally, lncRNA DLEU1

could inhibit apoptosis and boost the development of OC by

interacting with miR-490-3p to increase the expressions of Bcl‐xL

proteins (76).

Some lncRNAs may modulate the other types of RCD in OC,

including ferroptosis. Recently, a study confirmed that lncRNA

CACNA1G-AS1 was obviously upregulated in OC samples. Further

analysis uncovered that CACNA1G-AS1 could inhibit ferroptosis

through increasing the expression of FTH1 via IGF2BP1 axis, thus

promoting proliferation and migration in OC cells. In addition, in

vivo studies revealed that knockdown of CACNA1G-AS1 could

increase the sensitivities of OC cells to ferroptosis (77). Likely,

another study demonstrated that lncRNA ADAMTS9-AS1

expression was elevated in OC cells. Further experiment showed

that lncRNA ADAMTS9-AS1 inhibited ferroptosis by targeting

miR-587 to promote the expression of SLC7A11, thereby

facilitating the proliferation and migration of tumor (78).

In conclusion, above studies have shown that dysregulated

lncRNAs trigger autophagy, apoptosis, and ferroptosis, thereby

affecting the progression of OC, which suggests a new

perspectives in the field of OC treatment. Therefore, conducting

more researches on lncRNA in autophagy and apoptosis will help to

better understand the important cellular processes involved and

develop better therapeutic regimens to counteract the defects in

autophagy and apoptosis associated with human tumors.
3.3 LncRNAs induce drug resistance

Resistance to chemotherapeutic drugs is considered to be the

main cause of tumor treatment failures and disease recurrences

(127). Moreover, the emergence of drug resistance seriously

hampers the clinical application of chemotherapy and ultimately

culminates in patient death (128). In recent years, the pivotal

regulatory roles of lncRNAs in cancer drug resistance has

received widespread attention. Several studies have demonstrated
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that lncRNAs critically contribute to the development of drug

resistance in OC by modulating different signaling pathways or

regulating the expressions of targeted genes involved in various

cellular processes (79–81, 128). All these results have informed

future chemosensitivity studies and provided new insights into the

development of lncRNA-targeted drugs for clinical applications.

The following section describes the current status of knowledge on

the research into lncRNAs as regulators and predictors of OC

resistance and emphasizes their underlying mechanisms of actions.

LncRNAs can interact with epigenetic regulators and affect gene

transcription, thereby inducing chemoresistance and promoting

tumor progression. For example, a study found that the

dramatically down-regulated lncRNA GAS5 in OC tissues was

associated with poor outcomes. Further analyses indicated that

GAS5 overexpression enhanced the sensitivity of OC cells to

DDP, and absence of GAS5 was more pronounced in drug-

resistant cells compared to sensitive cells. Mechanistically, GAS5

recruits the transcription factor E2F4 to the PARP1 promoter and

attenuates its transcription, thereby inhibiting the MAPK pathway

and tumor progression. This study confirms that GAS5 regulates

the E2F4/PARP1/MAPK axis and restrains OC progression. In

addition, rapamycin could increase the expression of GAS5 in

cytoplasm, providing a theoretical basis for the development of

combination therapies for OC (Figure 2G) (37).

LncRNAs can also modulate cell biological behavior by acting as

competing endogenous RNA for miRNAs, thereby affecting

chemotherapy tolerance in OC. A recent study research

demonstrated that the expression of lncRNA ZFAS1 was

significantly elevated in OC tissues, especially in metastatic

specimens. Functional experiments showed that ZFAS1

knockdown facilitated the sensitivity of cell lines to DDP and

paclitaxel (PTX). Further analysis indicated that ZFAS1 promotes

the expressions of the transcriptional factor Sp1 through sponging

miR-150-5p, leading to chemoresistance and OC malignancy (79).

Moreover, Zhang et al. revealed that lncRNA SNHG22 may be a

potential prognostic biomarker and novel therapeutic target for OC.

This is based on the fact that the expression level of SNHG22 is

significantly upregulated in OC tissues and induces the miR-2467/

Gal-1 axis, which promotes chemotherapy resistance (Figure 2G)

(80). Another study elucidated that the expression of lncRNA

CCAT1 was upregulated in DDP-resistant OC cell lines and

knockdown of it restored cell sensitivity to DDP. Mechanistically,

CCAT1 promotes chemoresistance through inhibiting cell

apoptosis via the miR-454/surviving axis (81).

Moreover, lncRNA can affect chemoresistance through

combining with proteins, thus influencing tumor progression. Liu

et al. revealed that lncRNA RFPL1S-202 acted as a tumor suppressor

during OC progression and overexpression of RFPL1S-202 enhanced

the chemosensitivity of tumor cells to DDP or PTX, and impeded

liver metastasis of tumor in vivomodel. Mechanistically, RFPL1S-202

combines with DEAD-Box Helicase 3 X-linked protein and inhibits

the IFN-b-STAT1 pathway, thereby suppressing chemoresistance

(43). Recently, studies have suggested that enhanced aerobic

glycolysis in the tumor environment may affect tumor tolerance to

chemotherapeutic agents (129). Similarly, a study of OC resistance to
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chemotherapeutic agents showed that lncRNA MIR17HG was

downregulated in cell lines and tissues based on the inhibitory

effect of the RNA-binding protein named KHDRBS3. Further

experiments showed that overexpression of KHDRBS3 promotes

resistance to PTX in OC cells by enhancing glycolysis, which could

be rescued by overexpression of MIR17HG (82). Therefore, the novel

lncRNA-based combined glycolysis inhibitor against drug resistance

of OC warrants further investigations. In addition, another study

showed that overexpression of lncRNA PVT1 increased the invasive

and proliferative capacity of DDP-resistant cells, suggesting more

deteriorated clinical behaviors and poorer prognosis in OC patients.

Further experiments showed that PVT1 prompts programmed cell

death 1 ligand (PD-L1) expression by regulating the JAK2/STAT3

axis, thereby promoting tumor progression (83).

The aformentioned research studies indicate that lncRNAs can

induce resistance to anticancer drugs in OC cells by interacting with

DNA, miRNAs and proteins and modulating different pathways.

Therefore, targeting drug resistance-associated lncRNAs may be a

promising novel therapeutic approach to improve the prognosis of

OC patients.
3.4 LncRNAs mediate tumor immunity

Tumor immune microenvironment (TIME) consists of a variety

of immune cells and stromal components, creating a complex

landscape that is important in tumor progression (130). The

immune system plays an important role in regulating tumor cell

death, harnessing these immune cells to battle the tumor cells could

serve as potential targets for cancer therapy (131, 132). In terms of

biological functions, lncRNAs are closely linked to tumor

development as well as the establishment of a hostile TIME (8).

Hence, identifying this key regulators in tumor immunity may

provide potential candidates for therapeutic interventions. Recently,

the multiple functions of lncRNAs in the regulation of immune

cells, including neutrophils, T cells, and macrophages, have been

emphasized in OC, providing evidence for their important role in

tumor immunoregulation.

Neutrophils are the first line of host defense against infections

and studies have shown that they respond to contact with cancer

cells and have the potential to promote tumor progression (133).

Besides, a previous study revealed that neutrophils could negatively

regulate the adaptive immunity through PD-L1emerging as central

players in tumor immune evasion (134, 135). Interestingly, multiple

observations have exerted that lncRNAs could serve as crucial

regulators of immune escape. A recent study showed that lncRNA

HOTTIP was overexpressed in OC tissues. HOTTIP was noted to

prompt the transcription of IL-6 by modulating c-jun, a

transcription factor, consequently increased the expressions of

PD-L1 in neutrophils, thereby suppressing activities of T cells and

consequently potentiating the immune escape of OC cells, which

uncovers a promising immunotherapeutic strategy by targeting

HOTTIP in OC (Figure 2H) (84). Moreover, it was discovered

that macrophages activated by cytokines have the ability to kill

tumor cells (136). While, the skewing of macrophages towards the
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in the OC, which exerts a tumor-promoting effect (137). For

instance, one study indicated that lncRNA Xist inhibited

migration and proliferation of OC cell lines by altering the

polarization of macrophages. Further experiment showed that

Xist was upregulated in M1 macrophages and it’s knockdown

induced M1 to M2 macrophages. Mechanistically, Xist inhibits

the progression of OC by interacting with miR-101 to promote

the expressions of Kruppel-like factor 6 and CCAAT/enhancer-

binding protein (85). Recently, one study indicated that lncRNA

SNHG12 was involved in immune escape by modulating the

crosstalk between OC cells and M2 macrophages. Further studies

showed that SNHG12 suppressed T cell proliferation by promoting

the expressions of PD-L1 in both SKOV3 cells and M2

macrophages (Figure 2H) (86). Another study showed that

lncRNA CTD-2288O8.1 was proved to accelerate the polarization

of M2 macrophages, therefore facilitating immunosuppression of

OC. Moreover, CTD-2288O8.1 was significantly related to the

expression of PD-L1 and PD-L2, suggesting that it could predict

the response to immunotherapy in OC patients (30). Another study

showed that increased lncRNA ZFHX4-AS1 expressions were

associated with poor OS in OC and further experiments

confirmed that the surface marker CD206 of M2 macrophages

was enriched in the high expression group (8). This result suggests

that ZFHX4-AS1 is related with tumor-infiltrating immune cells

and it can be served as a potential therapeutic target for OC in

the future.

Nevertheless, other breakthroughs have been made in lncRNA-

mediated immune infiltration in OC. For instance, lncRNA

PAXIP1-AS1 was significantly downregulated in OC cell lines and

its low expression level was significantly associated with poor

survival and immune infiltration in OC. Moreover, gene set

enrichment analysis demonstrated that neutrophil degranulation

was differentially enriched in high expression phenotype of

PAXIP1-AS1, which could be a promising response to

immunotherapy for OC (138). Similarly, the expression of

lncRNA LEMD1-AS1 was decreased in OC tissues compared to

normal specimens, suggesting that patients has a shorter OS than

those with high LEMD1-AS1 expression. Further analysis revealed

that LEMD1-AS1 expressions were negatively correlated with the

expressions of neutrophil cells. Overall, this finding hints that

LEMD1-AS1 may have potential to be therapeutic target in

epithelial ovarian cancer (EOC) (139). Interestingly, Huang et al.

reported that lncRNA ZFHX4-AS1 was highly expressed in OC

tissues and was negatively related with expression levels of T cell

CD8+, neutrophil, and macrophage, suggesting that it may play a

vital role in the immune microenvironment of OC (140).

Tumor resistance to immunotherapy has become a key factor

affecting the efficacy of tumor therapy, which largely stems from the

immunosuppressive properties of the tumor microenvironment

(141). These studies provide a direction for understanding the

role of lncRNAs in immunotherapy for OC. In the future, these

studies on the role of lncRNAs in the TIME may help to provide

more personalized immunotherapeutic interventions for

OC patients.
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4 Clinical relevance of lncRNAs in OC

Emerging studies have shown that the specific expression

patterns of lncRNAs make them ideal candidates for valuable

biomarkers to improve diagnostic efficiency. In addition, exosomal

lncRNA secreted by cancer cells be effectively detected in several body

fluids of human, including plasma, serum and saliva (142–144),

hinting it may act as potential marker for diagnostic tests without

invasive operations. More importantly, their functional potential has

been validated in in vivo and in vitro experiments. Moreover, clinical

trials are underway to validate candidate lncRNAs as biomarkers for

the detection and prognosis of high-grade serous ovarian carcinoma

(HGSOC) (NCT03738319). In the following sections, we will discuss

lncRNAs as potential biomarkers for diagnosis, prognosis, and

therapeutic monitoring of OC (Figure 3).
4.1 Diagnostic and prognostic potential of
lncRNAs in OC

The systematic integration of associations between lncRNA and

tumor is important for further understanding the underlying

molecular mechanisms and exploring lncRNA-based biomarkers

and therapies. Accumulating evidence indicates that multiple

lncRNAs are dysregulated in OC and are strongly correlated with

the degree of tumor differentiation, clinical stage and lymphatic

metastasis of patients. Therefore, these lncRNAs may be valuable

biomarkers for the diagnosis and prognosis of this neoplasm.

It has been proposed that lncRNA can be utilized as a potential

epigenetic-based biomarker for OC. For instance, a recent study

reported that methylated lncRNA ARMCX1, ICAM4, LOC134466,

PEG3, PYCARD and SGNE1 contributed to diagnosis of serous OC,

a panel of the above identified genes possessed an area under the

curve (AUC) of 0.98. Moreover, methylation of lncRNA LOC134466
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(also known as ZFN300P1), can effectively discriminate cancer

samples from normal controls with AUC of 0.72, suggesting it as

an independent biomarker of OC (145). Interestingly, metastasis-

associated lncRNAs have also been widely mentioned as promising

markers of OC prognosis. Another study showed that epigenetic

repression of lncRNA ZNF300P1 in OC enhanced the ability of

tumor cells to adhere to the peritoneal surface and contributed to the

metastatic spread of cancer (146). In addition, another study showed

that lncRNA expression varies in OC cells with different metastatic

potential. In particular, both lncRNA H19 and MALAT1 were

downregulated in highly metastatic OC cells. These lncRNAs may

serve as novel diagnostic and therapeutic biomarkers (147).

Evidence for lncRNA as a promising marker for clinical diagnosis

and prediction of OC has surfaced. lncRNA Meg3, was under-

expressed in OC and was negatively correlated with FIGO stages.

More importantly, Meg3 was able to identify benign tumors fromOC

(AUC, 0.727; 95% CI, 0.600-0.853) and differentiate normal samples

from OC tissues (AUC, 0.763; 95% CI, 0.586-0.940) (Figure 3A) (72).

Additionally, in another independent study, the expression of

lncRNA FEZF1-AS1 was significantly increased in both OC

specimens and patient serum. Further analysis showed that high

level of FEZF1-AS1 was strongly correlated with TNM stage,

lymphatic metastasis and OS of patients. In addition, serum levels

of FEZF1‐AS1 could distinguish EOC patients from normal controls

(AUC, 0.9483, 95% CI, 0.915-0.998). Significantly, based on its high

sensitivity and specificity, serum lncRNA FEZF1-AS1 levels were

apparently lower in postoperative patients compared with

preoperative patients (148). However, studies have also shown that

aberrantly expressed lncRNAs can predict tumor resistance to

chemotherapy. For example, one study showed that a panel of

lncRNAs were aberrantly expressed in PTX-resistant OC tissues

and cell lines and correlated with progression-free survival of

patients. In addition, combination of all these lncRNA features was

more effective in predicting the accuracy of resistance to
FIGURE 3

Potential clinical applications of long non-coding RNAs (lncRNAs) in ovarian cancer. These lncRNAs can be detected from different samples and are
novel diagnostic and prognostic biomarkers (A). Potential anti-tumour metastatic therapeutic strategy for targeting lncRNAs in in vivo models
(B). RNA-based strategies can effectively target lncRNAs in the cytoplasm and nucleus (C). Modified exosomes loaded with cisplatin target ovarian
cancer in vivo (D).
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chemotherapy with a high AUC of 0.93 (95% CI, 0.86-1.00)

compared to each individual. More importantly, this group of

lncRNAs was characterized as an independent predictor of

sensitivity to platinum-based PTX-containing therapy in OC

patients. Interestingly, enrichment analysis by a network database

showed that insulin secretion-related pathways were involved in the

predictive function of these lncRNAs, providing favorable evidence

for exploring the mechanism of PTX resistance in OC patients (149).

Moreover, lncRNA LINC00152 was elevated in OC and predicted

poor clinical outcomes in patients, including advanced FIGO stage,

larger tumor sizes, increased vascular invasion and lymph node

metastasis. Furthermore, a combined analysis of the two

independent predictors, expression levels of LINC00152 and FIGO

stages, could serve as a more sensitive and specific biomarker for OC

compared to each individual (150). Additionally, the specific

expression of lncRNA HOST2 was dramatically upregulated in OC

patients compared to the benign disease controls, contributing to

tumor progression (46). While, lncRNA MAGI2-AS3 could exhibit

tumor-suppressing effect in HGSOC though interacting with miR-

15-5p, miR-374a-5p, and miR-374b-5p. Further studies may focus on

uncoveringMAGI2-AS3 signatures that could serve as diagnostic and

prognostic tools for HGSOC (151). Similarly, lncRNA HOXA11-AS

was aberrantly decreased in OC, and one of the exon variants in

HOXA11-AS was associated with a reduced risk of serous OC (OR,

0.88; 95% CI, 0.78-1.01) (152). In addition to this, diverse exosomal

lncRNAs are correlated with clinicopathologic features of cancer and

may act as novel biomarkers (153, 154). Currently, a study

demonstrated that exosome lncRNA MALAT1 secreted by tumor

cells was upregulated in the serum of patients with OC and that high

serum exosome MALAT1 levels were associated with poor outcome

in clinical patients. In addition, a prognostic model was constructed

using important factors such as serum exosomal MALAT1 levels,

FIGO stage, and lymph node metastasis, which exerted a good

prediction of 3-year OS in patients with OC (Figure 3A) (68).

Similarly, serum exosomal lncRNA aHIF was significantly elevated

in OC patients compared to healthy controls. Moreover, upregulated

exosomal aHIF in serum was positively linked to higher histological

grade and FIGO stage, and predicted shorter OS in patients (155).

These studies suggest that lncRNAs have potential value in the

diagnosis, prognosis, and treatment of OC.

In addition, tumor metabolism and inflammation are

distinctive features of cancer and are directly related to the

prognosis and severity of the disease (156). Thus, analysis of

combined metabolites, inflammatory markers, and lncRNA will

facilitate the identification of additional useful serum markers and

enable stratified management of OC patients in the future.

However, there are some limitations to the utility of lncRNAs as

biomarkers due to the fact that multiple studies use paired samples

for experiments or benign tumor tissues or normal ovarian tissues

as controls to obtain differences in lncRNA expression levels. This

does not truly reflect the differences in lncRNA expression between

cancer cells and normal cells. Given that different subtypes of OC

have intrinsic differences in genetic risk factors, response to

chemotherapy and different clinical outcomes (157), studies of

lncRNA in multiple histological subtypes should be conducted to

lay the foundation for obtaining more specific biomarkers.
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4.2 Therapeutic potential of lncRNAs in OC

Considering that the dysregulation of lncRNAs is associated

with a variety of cellular processes in OC, lncRNAs may be

prospective targets for OC therapy. Hence, many ongoing studies

are aimed at modulating the production or inhibition of lncRNAs.

A growing amount of studies have emphasized that lncRNAs may

act as oncogenic drivers or tumor-suppressive roles in OC (43, 49).

Currently, studies have focused on the clinical utility of lncRNAs as

therapeutic targets of OC (158). Moreover, a comprehensive

understanding of the mechanisms of gene knockdown or

overexpression may provide new insights into the therapeutic

targeting of lncRNAs.

It is well known that RNA interference and antisense

oligonucleotides (ASOs) are important components of RNA-

based therapeutic strategies (159), which can be fully or

incompletely complementary to a large number of heterogeneous

transcripts (160–162). Currently, in the study of lncRNAs, RNA

interference has been successfully applied in several preclinical

models to explore the therapeutic implications for various

diseases (163). For instance, lncRNA FEZF1‐AS1 and RHPN1-

AS1 are novel oncogenic lncRNAs in OC that can be targeted with

small interfering RNA (siRNA) and short hairpin RNA,

respectively, to inhibit tumor metastasis and progression (148,

164). Although siRNA and ASOs are often directed against

similar targets (165), studies have shown that they differ in

achieving gene silencing effects (166). Currently, a study suggests

that ASOs may be a potential therapeutic strategy compared to

siRNA in inhibiting the malignant progression of OC (Figure 3C)

(28). Conversely, in the case of lncRNAs with tumor suppressor

effects, their functions can be enhanced by overexpression (167).

Actionable ways of determining molecular alterations and

selecting targeted treatments are constantly being revolutionized.

A recent study found that lncRNA SPOCD1-AS in extracellular

vesicles secreted by OC can be delivered to mesothelial cells and

interact with G3BP1 protein to trigger the MMT process, thereby

promoting peritumoral colonization of tumors. More importantly,

G3BP1-interfering peptide was able to block the lncRNA SPOCD1-

AS/G3BP1 interaction, thereby reducing peritoneal metastasis in

vivo. This research provides a latent therapeutic approach for

metastatic OC (Figure 3B) (168). Furthermore, another study

showed that lncRNA PLADE, an exosome-derived lncRNA from

HGSOC ascites, exhibited low expressions in tumor tissues and had

the potential to synergize with cisplatin to inhibit chemoresistance

(169). Similarly, a preclinical study highlighted that rapamycin

induces sensitization of OC cells to DDP by increasing lncRNA

GAS5 expression, which lays a favorable theoretical foundation for

the development of new combination therapies based on

chemoresistance (37). Indeed, optimized combinations of RNA-

based therapies and drugs have emerged for the treatment of OC

resistance. Recently, a study showed that the AURKA/DDX5/

TMEM147-AS1/let-7 feedback loop activates lipophagy, thereby

maintaining DDP resistance in OC. Importantly, the combination

of lncRNA TMEM147-AS1 siRNA and VX-680 effectively

enhanced sensitivity of OC to DDP treatment compared to using

them separately (158). Similarly, studies have shown that
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atezolizumab and lncRNA PVT1 inhibitors synergistically

suppressed cisplatin resistance in OC cells (83). To date, the

nanoparticle-mediated siRNA therapy strategy has made

significant breakthroughs in the field of tumor treatment (170).

Interestingly, one study demonstrated that a novel nanoparticle

delivery platform was able to bring siTWIST into target cells and

reverse DDP chemoresistance in an OC model (171). More

importantly, a cutting-edge study demonstrated that nanoparticle-

mediated siRNA was able to target the lncRNA DANCR and exhibit

tumor growth inhibition in a xenograft model of OC (172). This

result paves the way for the development of RNA-based delivery

systems to target oncogenic lncRNAs for OC therapy. However,

translating these technologies into the clinic is challenging because

delivery systems need to have good specificity, stability, and low

immunogenicity (173, 174). As natural nano-vesicles, exosomes are

good carriers for delivering protein and nucleic acid drugs (175). A

recent study based on umbilical cord blood-derived M1

macrophage exosomes demonstrated their ability to inhibit

platinum resistance in OC by loading DDP. In addition, this

exosome carries lncRNA H19, which is involved in the reversal of

DDP chemoresistance (Figure 3D) (176). This innovative approach

could hold promise for the treatment of OC. As academia and

industry continue to advance the field of nanoresearch, we expect

more lncRNA-targeted drugs to enter the clinic, providing new

options for precision medicine for OC patients.
5 Conclusions and future directions

The occurrence of OC is a complex process involving multiple

genes and multiple steps, and the key molecular events that initiate this

complex condition remain to be fully identified. In the above article, we

emphasized the role of lncRNAs in the process of OC cell biology,

including metastasis, autophagy, apoptosis, ferroptosis, drug resistance,

and tumor immunity. In addition, we focus on the multiple molecular

mechanisms involved in the regulation of OC tumorigenesis and

progression by lncRNAs, such as acting as miRNA sponges, binding

to proteins or DNA, etc. Potential clinical applications of lncRNAs in

the diagnosis and prognosis of OC are also being explored in search of

strategies that can be used as novel therapies for tumors.

Recently, advances in the function and mechanism of lncRNAs

paint a daunting picture for therapeutic interventions of OC.

However, a number of key questions remain to be elucidated: (i)

Does the combination of multiple lncRNA signatures have the

potential to serve as a more efficient prognostic marker for OC?

Given that the field of lncRNAs in OC is still at an exploratory stage,

it is too early to say for sure. Biomarkers are defined as alterations in

the composition of fluids or tissues that reflect disease status and

progression (177). Apparently, studies have confirmed that a variety

of lncRNAs are abnormally expressed in OC and are associated with

the malignant biological behavior of tumors and poor prognosis of

patients. In addition, the combination of a panel of lncRNA

characteristics is more effective in predicting the accuracy of

chemotherapy resistance than a single individual (149). (ii) Could

lncRNAs in body fluids be candidate biomarkers for OC diagnosis?

Liquid biopsies can be used to track disease progression and
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to patients (178). However, there is a relative lack of studies

incorporating dysregulated lncRNA in body fluids of OC patients

for detection. Therefore, more studies should combine the detection

of tumor tissue and body fluid samples, which will help to advance

the role of liquid biopsy technology in the diagnosis of OC. (iii)

Whether targeting lncRNAs could be served as prospective

therapeutic strategy for OC? Currently, lncRNAs play a key role

in the diagnosis and prediction of OC, and in vitro models have

confirmed the carcinostatic effects by targeting them in

chemotherapy and targeted therapy. However, the feasibility and

safety of delivery systems based on silencing oncogenic lncRNAs in

in vivo models needs to be further investigated.

Currently, the lack of highly specific and sensitive detection

systems and effective therapeutic regimens remains a great

challenge for the clinical management of OC. As participants in the

important biological processes of OC, novel functions of lncRNAs

continue to be investigated. Future studies should focus on

elucidating the exact functional mechanisms of lncRNAs, including

their involvement in signaling pathways that regulate important OC

phenotypes, in order to bridge the gap between basic research and

clinical applications, make them new potential targets for cancer

therapy, and facilitate early diagnosis as effective biomarkers.
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