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Enhancing preoperative
diagnosis of microvascular
invasion in hepatocellular
carcinoma: domain-adaptation
fusion of multi-phase CT images
Zhaole Yu1†, Yu Liu2†, Xisheng Dai1*, Enming Cui3*,
Jin Cui3 and Changyi Ma3

1School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi, China,
2Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology,
Guilin, Guangxi, China, 3Department of Radiology, Jiangmen Central Hospital, Jiangmen,
Guangdong, China
Objectives: In patients with hepatocellular carcinoma (HCC), accurately

predicting the preoperative microvascular invasion (MVI) status is crucial for

improving survival rates. This study proposes a multi-modal domain-adaptive

fusion model based on deep learning methods to predict the preoperative MVI

status in HCC.

Materials and methods: From January 2008 to May 2022, we collected 163

cases of HCC from our institution and 42 cases from another medical facility,

with each case including Computed Tomography (CT) images from the pre-

contrast phase (PCP), arterial phase (AP), and portal venous phase (PVP). We

divided our institution’s dataset (n=163) into training (n=119) and test sets (n=44)

in an approximate 7:3 ratio. Additionally, we included cases from another

institution (n=42) as an external validation set (test1 set). We constructed three

single-modality models, a simple concatenated multi-modal model, two current

state-of-the-art image fusion model and a multi-modal domain-adaptive fusion

model (M-DAFM) based on deep learning methods. We evaluated and analyzed

the performance of these constructed models in predicting preoperative MVI

using the area under the receiver operating characteristic curve (AUC), decision

curve analysis (DCA), and net reclassification improvement (NRI) methods.

Results: In comparison with all models, M-DAFM achieved the highest AUC

values across the three datasets (0.8013 for the training set, 0.7839 for the test

set, and 0.7454 for the test1 set). Notably, in the test set, M-DAFM’s Decision

Curve Analysis (DCA) curves consistently demonstrated favorable or optimal net

benefits within the 0-0.65 threshold probability range. Additionally, the Net

Reclassification Improvement (NRI) values between M-DAFM and the three

single-modal models, as well as the simple concatenation model, were all

greater than 0 (all p < 0.05). Similarly, the NRI values between M-DAFM and

the two current state-of-the-art image fusion models were also greater than 0.

These findings collectively indicate that M-DAFM effectively integrates valuable

information from multi-phase CT images, thereby enhancing the model’s

preoperative predictive performance for MVI.
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Conclusion: The M-DAFM proposed in this study presents an innovative

approach to improve the preoperative predictive performance of MVI.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, multi-modal, domain adaptation,
feature fusion
1 Introduction

Microvascular invasion (MVI) is one of the significant factors

contributing to postoperative recurrence of hepatocellular

carcinoma (HCC) (1–4), exerting a pronounced impact on

disease recurrence and shortened survival in HCC patients (5–7).

When MVI is positive in cases of HCC, the short-term recurrence

rate of small liver cancers (8) (liver cell tumors <2cm) is higher, and

patients with liver cell tumors ≥2cm exhibit lower long-term

survival rates (9). Therefore, MVI is commonly regarded as a

marker to assess the malignancy degree of HCC (10). However,

in clinical practice, the presence of MVI can only be confirmed

through histopathological examination of resected tumor tissue

postoperatively (11, 12). Accurately predicting the preoperative

MVI status in a noninvasive manner remains a challenge.

Prior research has demonstrated the feasibility of preoperative

MVI prediction in HCC using Computed Tomography (CT)

images (13), and many studies have extracted radiological features

from CT images to construct radiological models for predicting the

preoperative MVI status (2, 14, 15). Since the extraction of

radiological features relies on the subjective expertise of

radiologists, less experienced radiologists may overlook valuable

features (16). Additionally, radiological features are often

considered low to mid-level features, which may not fully capture

the heterogeneity of HCC (17).

Deep learning based on Convolutional Neural Networks (CNN)

has the capacity to automatically extract high-level features relevant

to the target problem in CT images, surpassing explicitly designed

low and mid-level features (18–21). Research has indicated that

deep learning methods exhibit excellent performance in

differentiating liver lesions and classifying fibrosis, offering

diagnostic accuracy comparable to pathological gold standards

(22, 23). In previous studies, deep learning methods have been

applied to predict the preoperative status of MVI. For example, Liu

et al. (24) used AP-phase CT images to construct a deep learning

model and combined it with clinical factors for preoperative MVI

prediction. Jiang et al. (25), on the other hand, built deep models

using arterial phase (AP), portal venous phase (PVP), and delayed

phase (DP) CT images separately and concatenated the deep

features from these three phases to predict the preoperative MVI

status. While these studies have achieved certain effectiveness in

preoperative MVI prediction, they also exhibit certain limitations.

For instance, Liu et al. used only a single-phase CT image, limiting
02
their ability to comprehensively evaluate tumor characteristics.

Jiang et al., although combining information from different

phases of CT images, did not address the issue of feature

distribution differences during the fusion process.

To address these issues, our study proposes a multimodal

domain-adaptive fusion model based on deep learning. This

model employs deep learning methods to extract information

from CT images acquired at different phases, enabling a more

comprehensive evaluation of HCC characteristics. Furthermore, it

employs domain adaptation to align the feature distributions of

various CT images, thereby enhancing the quality of the fused

features. To the best of our knowledge, there is limited research

considering the differences in data distribution between different

modalities when utilizing multimodal image information. Our

study aims to investigate the effectiveness of the domain-adaptive

fusion method for preoperative MVI prediction in HCC, in

comparison to s ingle-modal and mult imodal s imple

concatenation methods. Our research provides a novel approach

to effectively integrate multimodal image information for predicting

the preoperative MVI status.
2 Materials and methods

The ethics committee of our hospital has granted approval for

this retrospective study. Since the data is sourced from an existing

institution and imposes no additional burden on the patients, the

requirement for informed consent has been waived. Figure 1

provides a schematic representation of the study’s design.
2.1 Patients

We conducted a retrospective study by querying our medical

institution’s pathology database from January 2008 to May 2022 to

identify patients who underwent hepatic resection surgery for HCC.

The patient data collected by our institution predominantly

employs major resection as the types of resection. The inclusion

criteria for our study were as follows: (a) patients who did not

receive any other anti-tumor treatments before surgery (including

liver resection, liver transplantation, chemotherapy, radiation

therapy, radiofrequency ablation, immunosuppressive therapy);

(b) liver nodules with comprehensive histopathological
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descriptions in the pathology reports; (c) a time interval of no more

than 4 weeks between preoperative CT examination [including pre-

contrast phase (PCP), arterial phase (AP), portal venous phase

(PVP)] and surgery. We excluded HCC patients with pathological

results obtained through puncture and patients with artifacts in

imaging and incomplete clinical information. A total of 163 patients

with CT images from our institution met the inclusion and

exclusion criteria. Subsequently, we randomly divided this dataset

into a training set (n=119) and a test set (n=44) in an approximate

ratio of 7:3. Statistical analysis revealed that in the training set, the

rate of MVI was found to be 32.8% (39/119). Furthermore, we

gathered 42 cases from external medical institutions to constitute an

external validation set (test1 set). These cases adhere to the

inclusion and exclusion criteria of our institution, and undergo

the same preprocessing procedures as our institution’s pathology.

This was done to further assess the predictive performance of the

model on previously unseen data. The inclusion and exclusion
Frontiers in Oncology 03
criteria of our medical institution are presented in Electronic

Supplementary Material S1.
2.2 Medical history and
laboratory parameters

Age, gender, hepatocirrhosis status, and the presence of hepatitis B

surface antigen (HBsAg) were documented for every patient. A range

of serum biochemical parameters related to liver function were assessed

for each patient within two weeks before or after the CT examination.

These parameters encompassed a-fetoprotein (AFP), Carbohydrate

antigen 199 (CA199), total bilirubin (TBIL), direct bilirubin (DBIL),

indirect bilirubin (IBIL), alanine aminotransferase (ALT), aspartate

aminotransaminase (AST), albumin, total protein, alkaline

phosphatase (ALP), and platelet count (PLT). The baseline

characteristics of the included cohorts are summarized in the Table 1.
TABLE 1 Baseline characteristics of the CT training set and test set.

CT Dataset

Characteristics

Training (n=119) Test (n=44)

MVI negative
(n=80)

MVI positive
(n=39)

p Value
MVI negative

(n=29)
MVI positive

(n=15)
p Value

Age (years) 56.26 ± 10.86 55.90 ± 12.08 0.869 58.00 ± 8.30 52.60 ± 9.21 0.055

Gender (n) 0.364 0.319

Male 62 (77.5%) 33 (84.6%) 27 (93.1%) 12 (80%)

Female 18 (22.5%) 6 (15.4%) 2 (6.9%) 3 (20%)

HBsAg status 0.605 0.171

(Continued)
fro
FIGURE 1

The overall design flowchart. (A) ROI extraction process; (B) DL feature extraction process; (C) M-DAFM building process; (D) Model evaluation.
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2.3 Imaging scans

The CT scanning devices used in this study were the 16-detector

CT (SOMATOM Sensation 16, Siemens Healthineers), the 64-

detector CT (Aquilion 64, Canon Medical Systems), and the dual-

source CT (SOMATOM Force, Siemens Healthineers). Patients

maintained a supine position and held their breath during the

procedure. The scanning sequences consisted of the pre-contrast

phase (PCP), the arterial phase (AP, 30 seconds after contrast

injection), and the portal venous phase (PVP, 60-70 seconds after

contrast injection). The CT parameters included: tube voltage set at

120 kV, effective tube current-exposure time product ranging from

200 to 350 mAs, matrix size of 512×512, and a slice thickness of

either 1.0 or 3.0 mm.
2.4 Radiologist assessment

The study utilized three different-phase CT images: PCP, AP,

and PVP. Two radiologists, each possessing more than 5 and 11

years of expertise in abdominal imaging, independently conducted

image assessments. These assessments were carried out in isolation

from each other, with no knowledge of their respective ratings and

no access to pathological findings. The degree of their confidence in

detecting MVI was documented using a 5-point scale: 5, indicating a
Frontiers in Oncology 04
definite positive diagnosis; 4, signifying a probable positive finding;

3, expressing uncertainty; 2, suggesting a potential negative result;

and 1, denoting a definite negative assessment (12). In cases of

discordance, these two radiologists held discussions to reach a

consensus score.

The summary of radiological features encompassed the

following criteria: (1) tumor diameter (<5cm = 0; ≥5cm = 1); (2)

the number of tumors (<2 = 0; ≥2 = 1); (3) the presence of a

pseudocapsule (absent = 0; present = 1); (4) intratumoral necrosis

(absent = 0; present = 1); (5) intratumoral hemorrhage (absent = 0;

present = 1); (6) peritumoral enhancement during the arterial phase

(AP) (absent = 0; present = 1); (7) AP hyperenhancement (absent =

0; present = 1); (8) wash-in and wash-out patterns (absent = 0;

present = 1). Scores equal to or greater than 4 signified a heightened

likelihood of MVI presence. Each image was individually examined

and rated. In cases of multiple lesions, the option of surgical

resection was considered.
2.5 Pathological diagnosis

The reference criteria for identifying MVI relied on the

pathological examination of surgical specimens. MVI was

specifically characterized as the presence of a tumor within a

vascular space lined with endothelial cells, as visualized under
TABLE 1 Continued

CT Dataset

Characteristics

Training (n=119) Test (n=44)

MVI negative
(n=80)

MVI positive
(n=39)

p Value
MVI negative

(n=29)
MVI positive

(n=15)
p Value

Negative 21 (26.2%) 12 (30.8%) 10 (34.4%) 2 (13.3%)

Positive 59 (73.8%) 27 (69.2%) 19 (65.6%) 13 (86.7%)

Hepatocirrhosis status 0.647 1.000

Absent 28 (35%) 12 (30.7%) 7 (24.1%) 4 (26.6%)

Present 52 (65%) 27 (69.3%) 22 (75.8%) 11 (73.4%)

Log10AFP 3.21 ± 3.85 3.80 ± 4.25 0.044* 2.78 ± 3.43 3.55 ± 3.97 0.117

CA199 36.58 ± 62.24 80.60 ± 94.72 0.003* 22.52 ± 18.95 25.45 ± 22.26 0.650

TBIL 20.05 ± 12.57 14.28 ± 12.66 0.021* 19.94 ± 10.71 17.96 ± 8.10 0.534

DBIL 8.95 ± 8.32 6.67 ± 9.29 0.178 9.00 ± 4.78 8.20 ± 4.86 0.605

IBIL 11.10 ± 5.58 7.72 ± 4.58 0.001* 10.95 ± 6.60 9.76 ± 3.85 0.525

ALT 182.10 ± 367.57 101.70 ± 87.90 0.181 213.65 ± 248.3 328.54 ± 384.18 0.236

AST 134.23 ± 161.64 106.26 ± 85.78 0.314 171.33 ± 172.80 33.97 ± 373.67 0.046

Albumin 35.72 ± 5.73 33.22 ± 5.49 0.026* 33.63 ± 4.76 32.53 ± 3.77 0.439

Total protein 62.19 ± 8.68 59.02 ± 8.64 0.063 59.55 ± 8.07 55.12 ± 7.01 0.079

ALP 100.21 ± 42.96 119.01 ± 59.68 0.052 101.10 ± 69.79 197.20 ± 422.91 0.235

PLT 169.19 ± 56.65 178.05 ± 72.87 0.468 155.23 ± 91.47 199.40 ± 87.27 0.131
fro
AFP, a-fetoprotein; CA199, Carbohydrate antigen 199; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransaminase;
ALP, alkaline phosphatase; PLT, platelet count. * P < 0.05 indicates statistical significance; The numbers following ± represent the standard deviation.
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microscopy (26). Moreover, to ensure precision, all our pathological

findings underwent thorough review by a pathologist with twelve

years of experience.
2.6 Tumor segmentation

After extracting patient images from our institutional picture

archiving and communication system (PACS), we perform image de-

identification and store them in the NIfTI format. Subsequently, these

images are imported into 3D-Slicer (version 5.0.2). Next, we proceed

with delineating the region of interest (ROI) on the CT images for

each phase separately. The entire tumor is outlined at three distinct

layers: the initial layer, the section with the maximum cross-sectional

area, and the final layer. To ensure comprehensive coverage of the

tumor, an additional 1-centimeter extension is applied at the margins.

This delineation process is semi-automated to save the effort of

radiologists and reduce the interference of subjective factors. The

flowchart for image segmentation and preprocessing is presented in

Electronic Supplementary Material S2.
2.7 Building the multi-modal domain
adaptive fusion model

Multi-modal domain adaptive fusion model (M-DAFM)

utilizesa convolutional neural network to extract feature

information from the target task. It can predict the occurrence of

MVI in HCC within a given ROI without the need for precise lesion

segmentation. The training process of M-DAFM in this study

consists of three stages: first, deep learning models are employed

to extract features from single-phase CT images; then, domain

adaptation techniques (27) are applied to align the distributions of

features among the single-phase CT images and fuse these features;

finally, an ensemble sparse Bayesian extreme learning machine

(ESBELM) is used for preoperative prediction of MVI status in

HCC. Detailed parameters for training the deep learning model can

be found in Electronic Supplementary Material S3.

In the feature extraction stage, we employ a pre-trained

ResNet18 model on ImageNet to extract features from multiple

single-phase CT images, including PCP, AP, and PVP. Each single-

phase image yields 3904 features. For a comprehensive

understanding of the deep feature extraction process, please refer

to Electronic Supplementary Material S4.

In the domain adaptation feature fusion stage, we perform

feature selection using Mann-Whitney U test (28) and Maximum

Relevance Minimum Redundancy (MRMR) algorithm (29) on the

features extracted from individual single-phase images, selecting the

top 200 features most relevant to the target task. Domain adaptation

is a learning paradigm within transfer learning that primarily

addresses distributional differences between the target domain

and the source domain, enabling the adaptation of the source

domain distribution to the target domain. In clinical practice, CT

images from the PCP, AP, and PVP phases typically reflect relevant

information about tumors from different perspectives.

Consequently, there are often distributional differences among
Frontiers in Oncology 05
them. To alleviate these differences, we employ domain

adaptation methods, treating the AP phase features as the target

domain and the PCP and PVP phase features as the source domain,

the MaximumMean Discrepancy (MMD) (30) is utilized as the loss

function to quantify the distributional differences between the

source and target domains. This alignment aims to ensure that

PCP, AP and PVP features exhibit similar distributions. The

domain adaptation fusion algorithm proposed in this article can

be divided into three steps: 1) We select the AP phase CT image

features as the target domain and the PCP and PVP phase CT image

features as two source domains. The purpose is to use the target

domain as a standard to make the data distribution of the source

domains closer to the target domain. 2) We use maximum mean

discrepancy (MMD) as the model’s loss function to measure the

distribution difference between the source domain (PCP and PVP

features) and the target domain (AP features). By training the

model to reduce these distribution differences, we make the

distribution of the source domain tend to be consistent with

the target domain. 3) We use a feature concatenation strategy to

fuse the distribution-consistent PCP, AP, and PVP features, aiming

to improve the model’s performance on unknown datasets. For a

detailed description of the feature fusion process, please refer to

Electronic Supplementary Material S5.

In the classification stage, we construct an ESBELM classifier.

This classifier incorporates Bayesian linear regression algorithms

into the framework of extreme learning machines (31) to reduce

feature dimensions and mitigate model overfitting. Additionally,

the classifier enhances model classification performance through

the ensemble of multiple base classifiers. Detailed information

about classifier construction can be found in Electronic

Supplementary Material S6.
2.8 Statistical analysis

In this study, model performance was evaluated using metrics

including accuracy, sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and area under the receiver

operating characteristic curve (AUC). Comparing these metrics aids

in assessing the model’s classification capability, accuracy, and

reliability. The formulas for calculating classification performance

metrics are provided in Electronic Supplementary Material S7.

Net reclassification improvement (NRI) is a metric used to

evaluate the improvement of a predictive model, particularly for

comparing the performance differences between two models in a

classification task. The formula for calculating the metrics is

provided in Electronic Supplementary Material S8.

Decision curve analysis (DCA) is a method for evaluating the

performance of medical diagnostic or predictive models. The

primary objective of DCA is to assess the impact of model

classification results at different thresholds, assisting medical

decision-makers in making more informed choices in various

scenarios, thus enhancing overall patient benefit.

All statistical analyses were performed using Python 3.7

(https://www.python.org/) , MATLAB R2020b (https://

www.mathworks.com/products/matlab.html), and R 4.3.0 (http://
frontiersin.org
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www.rproject.org). The deep learning model was constructed using

Python. Mann-Whitney U test and Maximum MRMR algorithm

were computed and analyzed using Python. The ESBELM classifier

was built using MATLAB for classification. The “pROC” package in

RStudio was utilized to plot ROC curves, the NRI value was

calculated used the “glm” package in RStudio.
3 Results

3.1 Performance analysis of
different classifiers

In this experiment, we conducted a comparative analysis among

ESBELM, Ensemble Random Forest (ERF), and Extreme Learning

Machine (ELM) to validate the superiority of ESBELM. The

experimental results can be found in Tables 2, 3. On the test set,

ESBELM achieved AUC values of 0.7011, 0.7011, and 0.6805 when

using single-phase features PCP, AP, and PVP as inputs, respectively.

Additionally, M-DAFM achieved an AUC value of 0.7839, all of

which outperformed the predictive performance of ERF and ELM.
3.2 Analyzing the predictive performance
of different models

We will compare the proposed M-DAFM model with the

following models: (1) Single-modal model: Construct a deep

learning model using only one phase of CT images (PCP, AP, or

PVP) from patients for preoperative prediction of MVI; (2) Simple

concatenation model (SC): Employ deep learning methods to extract

deep features from PCP, AP, and PVP phase CT images of patients

separately, followed by straightforward concatenation for

preoperative prediction of MVI.; (3) State-of-the-Art models, where

we selected two state-of-the-art image fusion models: TMC (Trusted

Multi-View Classification model) (32), which dynamically acquires

the credibility of different modalities and integrates information from

each modality based on its credibility, thereby effectively improving

the predictive performance of the model; CPM (Cross Partial Multi-

View Networks) (33), which integrates information from different

modalities by constructing a non-parametric classification loss
Frontiers in Oncology 06
function, allowing the model to learn the consistency and

complementary information of different modalities for the target

task, thereby enhancing model performance.

Table 4 presents the diagnostic performance of each model for

preoperative prediction of MVI; Figure 2 shows the ROC (receiver

operating characteristic) curves of each model on the training set,

test set, and test1 set; Table 5 demonstrates the improvement

performance of M-DAFM compared to other models; Figure 3

displays the DCA curves of each model on the test set.

As evident from Table 4 and Figure 2, M-DAFM achieved AUC

values in the test set close to those in the training set (<5%). This

indicates that M-DAFM successfully learned relevant and effective

information highly correlated with the target task in the training set.

Moreover, M-DAFM exhibited good predictive performance on the

test1 set with an AUC of 0.7454, indicating strong generalization

capabilities. In other words, the model performed well on datasets

with substantial differences from the training set. In comparison,

the AUC values of single-modal models (PCP, AP, PVP) and the SC

were consistently lower than M-DAFM across all three datasets.

The AUC values of TMC and CPM in the test set are significantly

lower than those in the training set, indicating a certain degree of

overfitting. This implies that both TMC and CPM models have

overly adapted to the noise or specific characteristics of the training

set during the training process, leading to suboptimal performance

on unseen data. Therefore M-DAFM exhibits superior predictive

and generalization performance compared to other models, while

TMC and CPM require further optimization to enhance their

generalization performance on unknown data.

According to Table 5, the NRI values of M-DAFM compared to

the single-modal models (PCP, AP, PVP) and the SC are 0.4805 (p <

0.05), 0.3471 (p < 0.05), 0.5379 (p < 0.05), and 0.3816 (p < 0.05),

respectively. This indicates that M-DAFM exhibits a significantly

improved predictive performance compared to these models.

Furthermore, the NRI values of M-DAFM compared to the

current state-of-the-art models, TMC and CPM, are 0.1556 (p =

0.39) and 0.4092 (p < 0.05), respectively, suggesting that M-DAFM

still demonstrates some improvement in predictive performance

compared to the current state-of-the-art models.

According to Figure 3, we visually represented the DCA curves for

all models in the test set. It can be observed that, within the 0-0.65

threshold range, M-DAFM consistently achieves better or the best net

benefit compared to other models.
TABLE 3 AUC values of different classifiers on the test set.

Classifier
Input
feature

ERF ELM SBELM

PCP 0.6000 0.6621 0,7011

AP 0.5333 0.6920 0.7011

PVP 0.5828 0.6575 0.6805

DAFF 0.6460 0.7011 0.7839
fron
PCP, AP and PVP correspond to the features extracted from these three models, and DAFF
represents domain-adapted fused features.
The bold values are highlighted to emphasize the superiority of the classifier used in this study
compared to other classifiers. The bolding of DAFF is intended to highlight the fused features
obtained by the algorithm proposed in this paper.
TABLE 2 AUC values of different classifiers on the training set.

Classifier
Input
features

ERF ELM ESBELM

PCP 0.6476 0.6865 0.7167

AP 0.5641 0.7170 0.7420

PVP 0.6229 0.6788 0.7045

DAFF 0.6877 0.7423 0.8013
PCP, AP and PVP correspond to the features extracted from these three models, and DAFF
represents domain-adaptive fused features.
The bold values are highlighted to emphasize the superiority of the classifier used in this study
compared to other classifiers. The bolding of DAFF is intended to highlight the fused features
obtained by the algorithm proposed in this paper.
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In summary, through quantitative visual comparisons and

analyses from various perspectives, including AUC, NRI, and

DCA, we found that M-DAFM demonstrates excellent

performance in preoperative prediction of MVI. Based on these

analytical results, it can be concluded that M-DAFM not only excels

in predictive performance but also holds significant potential for

clinical applications.
4 Discussion

The diagnosis of MVI can only be confirmed through

postoperative pathological examination, while the preoperative

diagnosis of MVI relies on liver biopsy (34). However, due to

factors such as tumor heterogeneity and challenges in sample

acquisition, preoperative liver biopsy faces several limitations

(35). If it were possible to predict the status of MVI

preoperatively, doctors could tailor personalized treatment plans

for patients at an earlier stage, thereby improving patient

survival rates.

With the application of deep learning in the medical field, there

have been studies that use deep learning methods to construct deep
Frontiers in Oncology 07
models for the preoperative prediction of MVI (22–24). In clinical

practice, CT images at different phases can reveal the tumor’s

vascular characteristics and its surrounding relationships at

different time points. PCP images primarily display the basic

anatomical features of the liver; AP images significantly enhance

the detection of hepatic arterial blood flow, and PVP images can

detect the blood flow and vascular distribution in the portal vein of

the liver. Therefore, finding an objective and efficient way to

integrate multi-phase image information, complementing the

characteristics of each phase, may prove effective for diagnosis.

This study innovatively predicts MVI by constructing the M-

DAFM, which combines effective information from PCP, AP, and

PVP modalities. Experimental validation demonstrates the

superiority of multi-modal image fusion.

Comparative experiments with different classifiers reveal, as

shown in Tables 2, 3, that ESBELM performs the best in classifying

MVI. This is possibly because CT image data often contain complex

features and non-linear relationships, such as tumor morphology,

texture, and vascular distribution. In contrast, ERF is insensitive to

complex non-linear relationships, ELM is prone to overfitting when

dealing with complex data, while ESBELM, by introducing

ensemble strategies and Bayesian optimization algorithms,
TABLE 4 Comparison of classification performance between M-DAFM and PCP, AP, PVP, TMC, CPM and SC models.

Sets Model AUC Sensitivity Specificity Accuracy PPV NPV

Training Set

PCP 0.7106 0.4359 (17/39) 0.9375 (75/80) 0.7731 (92/119) 0.7727 (17/22) 0.7732 (75/97)

AP 0.7478 0.5641 (22/39) 0.8750 (70/80) 0.7731 (92/119) 0.6875 (22/32) 0.8046 (70/87)

PVP 0.7045 0.7949 (31/39) 0.5625 (45/80) 0.6387 (76/119) 0.4697 (31/66) 0.8491 (45/53)

SC 0.7410 0.7179 (28/39) 0.7375 (59/80) 0.7311 (87/119) 0.5714 (28/49) 0.8429 (59/70)

TMC 0.7984 0.7576 (25/33) 0.7361 (53/72) 0.7429 (78/105) 0.5682 (25/44) 0.8689 (53/61)

CPM 0.8663 0.8205 (32/39) 0.8375 (67/80) 0.8319 (99/119) 0.7111 (32/45) 0.9054 (67/74)

M-DAFM 0.8013 0.6923 (27/39) 0.8000 (64/80) 0.7647 (91/119) 0.6279 (27/43) 0.8421 (64/76)

Test set

PCP 0.6874 0.6667 (10/15) 0.7931 (23/29) 0.7500 (33/44) 0.6250 (10/16) 0.8214 (23/28)

AP 0.7356 0.6667 (10/15) 0.7931 (23/29) 0.7500 (33/44) 0.6250 (10/16) 0.8214 (23/28)

PVP 0.6805 0.6667 (10/15) 0.7586 (22/29) 0.7273 (32/44) 0.5882 (10/17) 0.8148 (22/27)

SC 0.7218 0.7333 (11/15) 0.6552 (19/29) 0.6818 (30/44) 0.5238 (11/21) 0.8261 (19/23)

TMC 0.6224 0.6429 (9/14) 0.7143 (20/28) 0.6905 (29/42) 0.5294 (9/17) 0.8000 (20/25)

CPM 0.6828 0.8667 (13/15) 0.6207 (18/29) 0.7045 (31/44) 0.5417 (13/24) 0.9000 (18/20)

M-DAFM 0.7839 0.8000 (12/15) 0.6552 (19/29) 0.7045 (31/44) 0.5455 (12/22) 0.8636 (19/22)

Test1 set

PCP 0.7338 0.8333 (20/24) 0.6111 (11/18) 0.7381 (31/42) 0.7407 (20/27) 0.7333 (11/15)

AP 0.6505 0.5833 (14/24) 0.7778 (14/18) 0.6667 (28/42) 0.7778 (14/18) 0.5833 (14/24)

PVP 0.5764 0.7083 (17/24) 0.5000 (9/18) 0.6190 (26/42) 0.6538 (17/26) 0.5625 (9/16)

SC 0.5463 0.9583 (23/24) 0.2222 (4/18) 0.6429 (27/42) 0.6216 (23/37) 0.8000 (4/5)

TMC 0.7269 0.9583 (23/24) 0.4444 (8/18) 0.7381 (31/42) 0.6970 (23/33) 0.8889 (8/9)

CPM 0.6528 0.8333 (20/24) 0.5556 (10/18) 0.7143 (30/42) 0.7143 (20/28) 0.7143 (10/14)

M-DAFM 0.7454 0.6667 (16/24) 0.7778 (14/18) 0.7143 (30/42) 0.8000 (16/20) 0.6364 (14/22)
SC, simple concatenation; TMC, trusted multi-view classification model; CPM, cross partial multi-view model; M-DAFM, multi-modal domain adaptive fusion model.
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enhances its ability to handle high-dimensional and non-linear

relationships while mitigating model overfitting.

Comparative experiments between single-modal models and

multi-modal fusion models: As shown in Figure 2 and Table 4, M-

DAFM demonstrates superior performance in preoperative MVI

prediction (The AUC values for the training set, test set, and Test1
Frontiers in Oncology 08
set are 0.8013, 0.7839, and 0.7454, respectively). This could be

attributed to the successful reduction of inter-modal differences by

M-DAFM, allowing the model to better leverage complementary

information from each modality for preoperative MVI prediction.

In contrast, the performance of single-modal models (PCP, AP,

PVP) in this aspect is significantly lower than that of M-DAFM,

possibly due to the limited effective information provided by a

single CT modality image, restricting the performance of single-

modal models in preoperative MVI prediction tasks.On the other

hand, the performance of SC in preoperative MVI prediction is

relatively average, and even its predictive performance in the test set

and Test1 set is inferior to some single-modal models. This may be

because each modality typically predicts MVI from different

perspectives, and SC does not consider the correlation between

modalities, leading to negative interactions between modalities and

affecting the predictive performance of SC.Regarding TMC and

CPM, although they also integrate information from multiple

modalities, the strategies adopted by these models may struggle to

effectively distinguish between valuable information and noise

within CT images, which often contain rich and complex

microscopic information, encompassing multi-level structures of
A B

C

FIGURE 2

ROC curves of PCP, AP, PVP, SC, TMC, CPM models, and M-DAFM on the training (A), test (B) and test1 (C) sets. SC, simple concatenation; TMC,
trusted multi-view classification model; CPM, cross partial multi-view model. M-DAFM, multi-modal domain adaptive fusion model.
TABLE 5 NRI comparison of M-DAFM with AP, PCP, PVP, TMC, CPM and
SC models in the test set.

Model 1
Model 2

All-phase

M-DAFM

PCP NRI [95% CI]: 0.4805 [0.1393 - 0.8216] –P<0.05

AP NRI [95% CI]: 0.3471 [0.006 - 0.6882] – P<0.05

PVP NRI [95% CI]: 0.5379 [0.1416 - 0.9342] –P<0.05

SC NRI [95% CI]: 0.3816 [0.0396 - 0.7237] –P<0.05

TMC NRI [95% CI]: 0.1556 [-0.2049 - 0.516] –P=0.39

CPM NRI [95% CI]: 0.4092 [0.0798 - 0.7386] –P<0.05
SC, simple concatenation; TMC, trusted multi-view classification model; CPM, cross partial
multi-view model; M-DAFM, multi-modal domain adaptive fusion model.
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tumor lesions. This difficulty in effective discrimination may result

in suboptimal predictive performance for these models.

The method proposed in this paper for preoperative

prediction of MVI has three advantages in clinical practice:1)

In terms of tumor segmentation, we employ a semi-automatic

segmentation algorithm that only requires radiologists to

perform rough segmentation of the tumor area. This

significantly reduces the workload for radiologists in tumor

segmentation, while reducing subjective interventions during

the segmentation process. Consequently, it enhances the

consistency and repeatability of the final results.2) Regarding

feature extraction, we utilize a convolutional neural network for

automatic, accurate, and objective extraction of specific features

from the tumor region.3) In clinical practice, doctors often

employ various methods for disease diagnosis. Inspired by this,

our study considers the PCP, AP, and PVP of CT images as three

distinct modalities. Using a domain adaptation approach, we

design a multimodal fusion network to build a more robust

and accurate preoperative prediction model, which holds

practical significance.

This retrospective study has certain limitations. Firstly, the

extensive time span of data collection may introduce variations in

data quality. However, our experimental results demonstrate the

effectiveness of the proposed method, highlighting the robustness of

M-DAFM. Further improvements in data quality may enhance the

model’s performance. Secondly, this study lacks multi-center CT

image data for further validation of the model’s universality. Lastly,

this study only explores the diagnostic performance of deep

learning models, which enhances practical portability but may

compromise accuracy. As for analyzing clinical models as a single

modality within the multi-modal fusion model, we will continue to

investigate in our future research.
Frontiers in Oncology 09
5 Conclusions

This study introduces a novel approach for preoperative MVI

prediction by effectively integrating information from multi-phase

CT images through mitigating the distribution differences between

different modalities.
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Glossary

CT Computed tomography

PCP Pre-contrast phase

AP Arterial phase

PVP Portal venous phase

CNN Convolutional neural networks

ROI Region of interest

MVI Microvascular invasion

HCC Hepatocellular carcinoma

M-DAFM Multi-modal domain adaptive fusion model

SC Simple connection

TMC Trusted multi-view classification model

CPM Cross partial multi-view model

MRMR Maximum relevance minimum redundancy

MMD Maximum mean discrepancy

NRI Net reclassification improvement

PPV Positive predictive value

NPV Negative predictive value

ELM Extreme learning machine

ERF Ensemble random forest

ESBELM Ensemble sparse Bayesian extreme learning machine

AUC Area under the receiver operating characteristic curve

ROC Receiver operating characteristic

DCA Decision curve analysis
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