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Chronicmyeloid leukemia (CML) is amyeloproliferative disorder characterized by

leukocytosis and left shift. The primary molecular alteration is the BCR::ABL1,

chimeric oncoprotein with tyrosine kinase activity, responsible for the initial

oncogenesis of the disease. Therapy of CML was revolutionized with the advent

of tyrosine kinase inhibitors, but it is still not considered curative and may present

resistance and serious adverse effects. Discoveries in CML inaugurated a new era

in cancer treatment and despite all the advances, a new biomarker is needed to

detect resistance and adverse effects. Circular RNAs (circRNAs) are a special type

of non-coding RNA formed through a process called backsplicing. The majority

of circRNAs are derived from protein-coding genes. CircHIPK3 is formed from

the second exon of the HIPK3 gene and has been found in various pathologies,

including different types of cancer. New approaches have demonstrated the

potential of circular RNAs in cancer research, and circHIPK3 has shown

promising results. It is often associated with cellular regulatory pathways,

suggesting an important role in the molecular dynamics of tumors. The

identification of biomarkers is an important tool for therapeutic improvement;

thus we review the role of circHIPK3 and its potential as a biomarker in CML.
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1 Introduction

Considered a model disease for the study of the pathophysiology of cancer due to the

progress achieved from the understanding of the molecular mechanisms involved in the

initial oncogenesis, Chronic Myeloid Leukemia (CML) was a pioneer in the development of

“targeted” therapy and inaugurated a new era in oncological treatment (1). The

oncoprotein selective inhibitor has substantially changed the CML outcome, however,
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some cases develop resistance (2). On the other hand, adverse side

effects and toxicities can impact on patient’s quality of life. Despite

all the achievements, it is still necessary to improve the care for

patients with CML (3). The identification of new biomarkers is a

recognized strategy for early detection of diseases, resource

optimization, and therapeutic enhancement, capable of predicting

severe adverse effects and treatment resistance (4). New approaches

in the study of non-coding RNAs (ncRNAs) have shown promising

results in various pathologies, especially in cancer (5).

Circular RNAs (circRNAs), are a special type of ncRNAs that

are currently receiving special attention and due to their physical

characteristic of a covalently closed structure, have a prolonged

half-life, and are associated with a variety of mechanisms of action

(6). Several studies have investigated the functions of different

circRNAs in tumors and circHIPK3 showed consistent results as

a biological marker (7). Therefore, our aim in this work is to review

the role of circHIPK3 and its potential as a biomarker in CML.
2 Chronic myeloid leukemia

Chronic Myeloid Leukemia (CML) is one of the most frequent

hematological malignancies, accounting for approximately 15% of

leukemia cases (8). It is characterized by a clonal myeloproliferative

disorder with leukocytosis, left shift, and splenomegaly due to

mutations that alter the hematopoietic stem cell (9). The main

molecular alteration in the leukemic stem cell is the presence of the

Philadelphia chromosome (Ph), formed through a reciprocal and

balanced translocation between the long arms of chromosomes 9

and 22, t(9;22) (q34;q11), which plays a central role in the

pathogenesis of CML (8). From this fusion, an oncoprotein with

increased tyrosine kinase activity, called BCR::ABL1, is expressed.

The increase of activity in this tyrosine kinase triggers the release of

cell proliferation effectors and apoptosis inhibitors, through a

complex cell signaling network, and its action is considered

responsible for the initial oncogenesis of CML (1, 10, 11).

Usually, the disease is discovered during the chronic phase, when

clinical signs such as fatigue, weight loss, and fever. A leukocyte count

reveals a significant alteration, often with a tenfold increase in relation

to normal values. This Leukocytosis is characterized by a massive and

escalated presence of the myeloid lineage, but with a discrete presence

of blast cells in the peripheral blood (12). The progression of CML is

observed through an increase in blast cells in the peripheral blood,

suggesting an increase in proliferative activity and a decrease in the

ability of cell differentiation. After the chronic phase, there is the

accelerated phase, which is characterized by the presence of 10% to

19% blast cells in the peripheral blood. Subsequently, the blast phase

occurs, in which the presence of blast cells in the peripheral blood is

equal to or greater than 20%. In this phase, disease control is

hampered by the accumulation of mutations that often promote

resistance to chemotherapy (13).

In the past, the treatment for CML consisted of arsenic

derivatives, busulfan, and hydroxyurea. Afterward, it progressed to

the use of interferon-alpha and bone marrow transplantation (9, 12,

14, 15). However, with the development of targeted therapy, the

treatment for CML was revolutionized with the advent of the first
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tyrosine kinase inhibitor (TKI), imatinib mesylate, formerly known as

STI571. The average 5-year survival rate after diagnosis increased

from 22% to 70%, and many patients undergoing TKI treatment,

now, have a relatively normal life expectancy. At the same time, new

generations of TKIs have been developed with the aim of limiting

adverse effects and tumor resistance. Despite significant

advancements, TKI therapy is still not considered curative, and in

some cases, severe adverse effects make treatment impractical.

Naturally resistant tumor cells or those that acquire resistance over

time are also observed (16–18). Therefore, it is recommended to

regularly monitor BCR-ABL1 transcript levels in patients treated with

TKIs to evaluate the molecular response to treatment (18). Currently,

there is no biomarker capable of early detection of resistance and

adverse effects (19).
3 Circular RNAs

Circular RNAs are a special type of non-coding RNA formed by a

covalently closed ring structure. Their circular conformation was first

described over 40 years ago in different viruses and later found in

eukaryotes, however, their biological functions remained unknown for

a long period of time (20). Most CircRNAs are expressed from known

protein-coding genes, formed through a non-canonical splicing event

called backsplicing. CircRNAs result from the fusion of splice sites,

creating abundant, conserved, and stable covalently closed circles. Due

to their conformation, they have a long half-life (~20 hours) and are

degraded by endonucleases, especially RNase L (7, 21).

According to the sequence from which they are derived - exon,

intron, or both - circRNAs can be divided into ecircRNAs,

EIciRNAs, and CiRNAs (2). EcircRNAs can be derived from a

single exon or from the fusion of different exons, sometimes

containing exons that are not present in linear transcripts and

normally are in the cytoplasm of the cell (7). The EIciRNAs are

formed by the fusion of exons and introns, resulting from intron

retention, and the ciRNAs are formed from introns, due to a failure

in the debranching of intronic loops during canonical splicing (22).

They possess unique characteristics, such as high stability and tissue

specificity, and are abundant in eukaryotic cells, being able to play a

regulatory role in transcriptional and post-transcriptional levels (2).

The mechanisms of action of circRNAs include interacting with

microRNAs (miRNAs) through binding and inhibition of their

activities, transcriptional regulation, interactions with proteins, and

their own translation (2, 23). The inhibition of miRNAs, also known

as the sponge mechanism, occurs with the retention of miRNAs in

the complementary binding sites of circRNAs, preventing their

action on the target messenger RNA (mRNA) (24). Transcriptional

regulation occurs through the interaction of circRNAs with

promoter regions by binding to U1 snRNP (small nuclear

ribonucleoprotein U1) and Pol II (RNA polymerase II), which are

important factors involved in mRNA processing (25). CirRNAs can

also interfere with the interaction between different proteins by

bringing their interaction sites closer or further apart, act in protein

recruitment, and even have their own sequence translated (7).

The various forms of interaction with the important signaling

pathways have evidenced the potential of circRNAs as a biomarker
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in different types of tumors for early diagnosis, detection of

metastases, prognosis, and resistance to treatment. This is

considered very promising, and recently several studies have

shown important results (2, 23).
4 Circular RNA HIPK3

CircHIPK3 is a EcircRNA derived from the gene encoding

homeodomain-interacting protein kinase 3 (HIPK3) that is located

on chromosome 11p3 in humans. It consists of 7,551 pairs of bases

and belongs to a family of protein kinases composed of four serine-

threonine nuclear kinases: HIPK1, HIPK2, HIPK3, and HIPK4 (26).

These kinases are evolutionarily conserved and share a similar basic

structure. HIPKs participate in cellular regulatory mechanisms by

phosphorylating various transcriptional regulators. Among them,

they play important roles in processes related to carcinogenesis such

as chromatin modifiers, proliferation, apoptosis, DNA damage

response, oxidative stress, and cellular development (27, 28).
4.1 Generation of circHIPK3

The sequencing of the HIPK3 gene has shown that its second

exon, coupled with long flanking introns containing Alu repeats, is

complementary at both ends and promotes cyclic characteristics,

giving rise to a circRNA, also known as circHIPK3 (29). Figure 1

provides a schematic representation of circHIPK3 production.

The circHIPK3 derived from exon 2 is the most abundant form,

but a study by Qiupeng Zheng et al. has shown that there are

different isoforms of this circRNA and variations in its

concentration across different tissues (30). Mainly located in the

cytoplasm, circHIPK3 is abundantly expressed in various tissues

such as cardiac, pulmonary, and intestinal tissues, and has been
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consistently associated with neurological disorders, cancer,

cardiovascular, and inflammatory diseases (20, 27, 31, 32).
4.2 Mechanism of action of circHIPK3

The mechanism of action of circHIPK3 in various physiological

and pathological processes described so far is based on its ability to

intervene in gene regulation through the sponge activity exerted on

multiple miRNAs, resulting in their inactivation. It has been

experimentally demonstrated by Zeng et al. that circHIPK3 is able

to capture 9 miRNAs through 18 potential places of connection. By

utilizing bioinformatics tools, such as CircInteractome, it is

predicted that circHIPK3 can potentially inactivate 42 miRNAs

through its sponge action (27, 33–35). M. Bai et al. demonstrated

that the binding capacity of circHIPK3 and consequent inactivation

of the target miRNAs is not restricted to the complete

complementarity of nucleotide sequences, a partial binding can

also result in miRNA retention and blockage of its effects, justifying

the experimental confirmation of some target miRNAs not

computationally predicted (31). Target miRNAs of circHIPK3 are

listed in Table 1, both those predicted by bioinformatics tools and

those confirmed experimentally (27). Not all confirmed miRNAs

were predicted. The miRNAs that were both predicted and

confirmed are highlighted.

This mechanism of action that involves the inactivation or

degradation of miRNAs is important in the course of various

pathologies. In myocardial ischemia, Bai et al. demonstrated that

circHIPK3 inhibits proliferative capacity and induces heart cells to

apoptosis by binding with miR-124-3p (31). Chaofang Lian et al.

demonstrated that circHIPK3, by binding with miR-561 and miR-

192, activates NLRP3 macrophage inflammation and TLR4

pathway in gouty arthritis (32). Regarding the oncogenic process,

several studies have shown that the regulation exerted by circHIPK3

by binding with multiple miRNAs plays an important role in

different types of cancer, such as breast (36), pancreas (37), lung

(38), gut (39), liver (40), brain (41), esophagus (33), renal (42) and

blood (43). Some of these studies investigated the cellular signaling

pathways involved in circHIPK3 action and, predominantly,

increased levels of circHIPK3 combined with miRNA binding

result in tumor progression (27). Qi et al. described the role of

circHIPK3 in breast cancer, concluding that its interaction with

miR-326 promotes tumor proliferation, migration, and invasion

(36). In pancreatic cancer, Liu et al. correlated tumor resistance to

chemotherapy by linking circHIPK3 with miR-330-5p (37).

In experiments with lung cancer cells, Chen et al. attributed the

influence of circHIPK3 to the miR-124-3p-STAT3-PRKAA/

AMPKa axis as an autophagy regulator, an important cellular

mechanism for the removal of abnormal and undesirable proteins

(44). Hongqian Yin and Xia Cui demonstrated that the silencing of

circHIPK3 in glioma cells can promote sensitivity to treatment with

Temozolomide, modulating proliferation, metastasis, and apoptosis

through interaction with miR-524-5p/KIF2A, mediated via PIK3/

AKT (45). Feng Gu et al. identified that the silencing of circHIPK3

inhibits the progression of lung cancer by the sponge mechanism

that, by binding with miR-381-3p, inactivates the AKT/mTOR (46)
FIGURE 1

Scheme of circHIPK3 production.
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signaling pathway. Da Yao et al. demonstrated that circHIPK3

absorbs miR-124 and promotes AKT3 expression in squamous cells

of esophageal carcinoma (33). Enrico Gaffo et al. investigated the

differential expression of circular RNAs in pediatric acute

lymphoblastic leukemia (ALL) and found an increased, marked,

and generalized expression of circHIPK3 in pediatric B-precursor

acute lymphoblastic leukemia (43).
4.3 The dualistic role of circHIPK3
in cancer

Results relating increased circHIPK3 values to tumor

progression and resistance to treatment were found in several

studies (39, 41, 44–46). On the other hand, Yawei Li et al.

concluded that overexpression of circHIPK3 inactivates miR-558

by the sponge mechanism, inhibiting migration, invasion, and

angiogenesis of bladder cancer cells (47) and Mao Xiao-Long

et al. indicated that high levels of circHIPK3 significantly

suppress the proliferation, migration, and invasion of

osteosarcoma cells (48). Zeyu Wei et al. reviewed the role of

circHIPK3 in various cancer types and its overexpression was

associated with development, progression, metastasis, and

multidrug resistance. In addition, as already mentioned, tumor

suppression effects were observed in certain tumors such as the

bladder. At the same time, in kidney cancer, osteosarcoma, and

ovarian cancer expression patterns and functions of circHIPK3

were contradictory. This behavior suggests, disregarding the

experimental limitations of each study, that circHIPK3 may

present differentiated levels and effects in different cell lines in the

same tumor type (49). This duality, added to the variety of

mechanisms of action of circHIPK3, demonstrates the complexity

of their interactions in tumor cells and indicates the need for further
Frontiers in Oncology 04
studies to discover the meaning of these variations, diagnosis, and

treatment of the various types of tumors. So, the different levels of

expression found in various types of cancer may be related to the

type of cancer and level of tumor progression (46–49). Figure 2

shows the dualistic mechanisms of circHIPK3 action in cancer.
5 The role of circHIPK3 in CML

As in several types of cancer, in CML the pathways of cellular

regulation are altered, favoring mechanisms of proliferation and

apoptotic resistance (49). Thus, the molecular interactions of

oncoproteins are in constant research for the development of new

therapeutic targets, diagnostic markers, prognoses, and

chemotherapy resistance (50). With the advances provided by

revolutionary discoveries in CML, such as the Philadelphia

chromosome and the first cancer-specific target therapy, the

disease is considered a model for understanding the mechanisms

involved in cancer pathogenesis (51).

Therefore, many studies have advanced in understanding this

disease and demonstrated that the molecular signaling of the

oncoprotein BCR::ABL is quite complex (52), and its precursors,

the genes Abl 1 and BCR, are formed by 11 and 23 exons and can

merge in several ways, causing multidomain chimeric oncoproteins

with differentiated molecular weights and associated with different

leukemic tumors. In CML, the main oncoprotein, in approximately

98% of cases, is the major BCR (M-BCR) also called BCR::ABL1

P210 (52). Its role is not yet fully understood, however, in this

fusion oncoprotein, there is a potent intensification of tyrosine

kinase activity observed in the normal gene Abl1. It promotes

dimerization or tetramerization, resulting in autophosphorylation

of other Abl1 sites that lead to more binding sites for the

homologous Src 2 (SH2) anchoring domain in several proteins,
TABLE 1 Predicted and confirmed circHIPK3 target miRNAs (highlighted).

Prediction miRNAs Confirmed miRNAs

miR-149 miR-513a-3p miR-668 miR-7 miR-326 miR-561

miR-192 miR-515-5p miR-766 miR-29a miR-330-5p miR-582-3p

miR-215 miR-558 miR-1178 miR-29b miR-338-3p miR-584

miR-326 miR-561 miR-1179 miR-107 miR-379 miR-599

miR-330-5p miR-579 miR-1231 miR-124 miR-381-3p miR-637

miR-338-3p miR-580 miR-1243 miR-124-3p miR-421 miR-653-5p

miR-346 miR-584 miR-1250 miR-149 miR-448 miR-654

miR-375 miR-599 miR-1278 miR-152 miR-485-3p miR-876-5p

miR-377 miR-606 miR-1283 miR-192 miR-506 miR-1207-5p

miR-382 miR-607 miR-1286 miR-193a miR-508-3p miR-1286

miR-485-3p miR-619 miR-1290 miR-212 miR-524-5p miR-4288

miR-490-5p miR-637 miR-1294 miR-215-3p mir-558 miR-4524-5p

miR-495 miR-640 miR-1305

miR-508-3p miR-653 miR-1825
f
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activating a multitude of signaling pathways. Thus, BCR::ABL1

oncoprotein can recruit and activate several signal transducers

downstream through SH2 in these proteins. Similarly, an

inhibitory change in the negative regulatory domain SH3 is

described through the first sequences of exon BCR (53). Together,

the regulatory change in SH2 and SH3 promotes inhibition of

apoptosis, cell transformation, and self-renewal capacity (54).

Parallel to the complex molecular interaction triggered by the

presence of the oncoprotein BCR::ABL1, it is described, in several

pathologies, the action of circHIPK3 predominantly through the

inactivation of miRNAs by the sponge mechanism (27) and in

pathways common to several types of cancer, including the CLM.

These findings and the growing discovery of interactions of

circHIPK3 with different pathways through the circHIPK3/

miRNA/mRNA pathway indicate a possible role of circHIPK3 in

pathways of cell regulation compromised with CML pathogenesis.

Several target miRNAs of circHIPK3 have been shown to interfere

with the gene expression of a variety of proteins involved in various

signaling pathways. Sometimes, the same signaling route is deregulated

in different ways, such as PI3K/AKT, which is augmented by the

interaction circHIPK3/miR-637/NUPR1, HIPK3/miR-7/IGF1R,

circHIPK3/miR-124/AKT3 and circHK3/miR-193a/HMGB1 (33, 35,

55, 56). Liu and collaborators described the influence of circHIPK3 on

the Wnt/ß-catenin pathway by unknown mechanisms and Zeng et al.

attributed it to the circHIPK3/miR-7/YY1 interaction down-stream

deregulation of the same pathway (35, 57). The Hippo/YAP pathway

was also deregulated from the circHIPK3/miR-381-3p/YAP1

interaction (58). Chen et al. described the deregulation of the

PRKAA/AMPKa pathway from the circHIPK3/miR-124-3p/STAT3

interaction (44). Deregulation of the AKT/mTOR pathway was

attributed to the interaction circHIPK3/miR-381-3p with an

unknown target gene (46). Zeng described the influence of

circHIPK3/miR-7/EGFR on the deregulation of the MEK/ERK
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pathway (35) and the circHIPK3/miR-637/STAT3 mechanism

deregulated the Bcl2/Beclin1 pathway (59).

Researching in patients with CML, Feng et al. found an

increased expression of circHIPK3 in mononuclear cells and

serum of CML patients compared to healthy donors. The

correlation between the highest levels of circHIPK3 and the worst

prognosis was also observed. The experiments indicated that the

mechanism of sponge action of circHIPK3 on miR-124, already

observed in other studies, influenced the targets of miR-124

B4GALT1, and nuclear factor-kB (NFkB) p65, but not in

IGF2BP3 (34). Hong Che and colleagues investigated to

understand one of the main problems related to CML, the

resistance to treatment with imatinib. Their findings revealed that

the miR-326/PPFIA1 axis plays a significant role in contributing to

this resistance through circ_0080145 modulation (60). This

discovery underscores the potential of circHIPK3 as a marker for

identifying chemotherapy resistance in CML since circHIPK3/miR-

326 binding was evidenced by Qi et al. in breast cancer and linked to

cell proliferation, migration, and invasion (36).
6 Conclusion

Determination of the properties and functions of circRNAs and

their importance in the pathophysiology of cancer is a recent topic

that has been driven by new sequencing technologies combined

with an increasing interest in the study of pathways circRNAs/

miRNAs/mRNAS/proteins. Evidence regarding the association

between circHIPK3 levels and various pathologies, particularly

different types of tumors, suggests that these molecules play an

important role in the molecular dynamics of tumors. The

expression levels of circHIPK3 in different types of cancer are

predominantly found to be overexpressed while suppressing
FIGURE 2

Dualistic mechanisms of circHIPK3 action in cancer.
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certain microRNAs, and its pro-oncogenic consequences

suggest that imbalances in its activity can be detrimental to

cellular homeostasis.

The role of circHIPK3 in leukemia, particularly in CML, which

is considered a model disease for cancer studies, needs further

exploration. It is essential to clarify all the effects and interactions

of circHIPK3 in molecular signaling pathways, especially those

related to proteins with tyrosine kinase activity, to determine its

importance as a biomarker. Advances in studies, fundamentally in

the dynamics of the tumor microenvironment, which is considered

a key element for the extinction of leukemic stem cells, may

determine the relevance of circHIPK3 in CML.
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