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Background: Radiomics, an emerging field, presents a promising avenue for the

accurate prediction of biomarkers in different solid cancers. Lung cancer remains

a significant global health challenge, contributing substantially to cancer-related

mortality. Accurate assessment of Ki-67, a marker reflecting cellular proliferation,

is crucial for evaluating tumor aggressiveness and treatment responsiveness,

particularly in non-small cell lung cancer (NSCLC).

Methods: A systematic review and meta-analysis conducted following the

preferred reporting items for systematic review and meta-analysis of diagnostic

test accuracy studies (PRISMA-DTA) guidelines. Two authors independently

conducted a literature search until September 23, 2023, in PubMed, Embase,

andWeb of Science. The focuswas on identifying radiomics studies that predict Ki-

67 expression in lung cancer. We evaluated quality using both Quality Assessment

of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score

(RQS) tools. For statistical analysis in the meta-analysis, we used STATA 14.2 to

assess sensitivity, specificity, heterogeneity, and diagnostic values.

Results: Ten retrospective studies were pooled in the meta-analysis. The

findings demonstrated that the use of computed tomography (CT) scan-based

radiomics for predicting Ki-67 expression in lung cancer exhibited encouraging

diagnostic performance. Pooled sensitivity, specificity, and area under the curve

(AUC) in training cohorts were 0.78, 0.81, and 0.85, respectively. In validation

cohorts, these values were 0.78, 0.70, and 0.81. Quality assessment using

QUADAS-2 and RQS indicated generally acceptable study quality.

Heterogeneity in training cohorts, attributed to factors like contrast-enhanced

CT scans and specific Ki-67 thresholds, was observed. Notably, publication bias

was detected in the training cohort, indicating that positive results are more likely

to be published than non-significant or negative results. Thus, journals are

encouraged to publish negative results as well.

Conclusion: In summary, CT-based radiomics exhibit promise in predicting Ki-

67 expression in lung cancer. While the results suggest potential clinical utility,
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additional research efforts should concentrate on enhancing diagnostic

accuracy. This could pave the way for the integration of radiomics

methods as a less invasive alternative to current procedures like biopsy and

surgery in the assessment of Ki-67 expression.
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1 Introduction

Lung cancer is a major global health challenge, leading in

cancer-related deaths and posing a significant threat to public

health. Despite notable progress in diagnosis and therapy, it

remains a persistent global health burden (1, 2). Non-small cell

lung cancer (NSCLC) takes precedence, constituting 85% of total

cases and involving adenocarcinoma and squamous cell carcinoma

(3–5). Disturbingly, more than two-thirds of NSCLC instances

receive a diagnosis at an advanced stage (6, 7). Therefore, early

diagnosis of this cancer is very crucial for its management.

Ki-67, a marker reflecting cellular proliferation, provides crucial

information about the tumor’s aggressiveness and its potential

responsiveness to treatment (8). Its prediction is crucial in lung

cancer due to its role as a proliferation marker. Its significance lies in

assessing tumor cell proliferation, aiding prognostic evaluations and

treatment decisions in NSCLC (9). Ki-67 has emerged as a prognostic

marker associated with overall survival (OS) and disease-free survival

(DFS) in NSCLC. Higher Ki-67 expression indicates poorer

outcomes, suggesting its potential to predict disease aggressiveness

and guide personalized treatment approaches (10, 11).

In the realm of lung cancer, the significance of imaging has been

revitalized, particularly in the context of baseline staging and

response assessment. The emergence of cutting-edge technologies

like artificial intelligence (AI) has further elevated the role of

imaging, transforming it into a potent biomarker for noninvasive

tumor characterization (12, 13). This resurgence underscores the

potential of advanced imaging methods, which are empowered by

computational advancements, to provide comprehensive insights

into Ki-67 levels. Such noninvasive approaches promise to enhance

our understanding of tumor characteristics, obviating the necessity

for invasive procedures and opening new avenues for precise

diagnostic and prognostic assessments (14).

Radiomics is an emerging field withinmedical imaging that aims to

extract extensive quantitative data from routine medical images, such

as those obtained from CT, MRI, and positron emission tomography

(PET) (15, 16). The process typically involves identifying and

segmenting a region of interest (ROI), which can be done manually

or using automated algorithms (17). From these segmented regions,

high-dimensional features are extracted, falling into two main

categories: semantic features, which describe morphological aspects
02
of lesions, and agnostic features, which are mathematical (18, 19).

Functioning in diverse capacities such as tumor classification, survival

prediction, and therapy response assessment, radiomic signatures are

pivotal in crafting imaging biomarkers for personalized therapy (12,

20). The interdisciplinary realm of radiogenomics seamlessly

intertwines imaging with genomics and molecular data. Despite

grappling with methodological challenges, radiomics persistently

holds promise, offering nuanced insights beyond the confines of

traditional cancer evaluation methods (21).

A meta-analysis on predicting EGFR mutation in NSCLC

revealed that AI-based algorithms, utilizing radiomics features,

serve as valuable and noninvasive tools for predicting EGFR

mutation status, with excellent diagnostic accuracy (22). Recently,

many meta-analyses on radiomics-based methods have been

published to investigate the overall diagnostic performance of the

available studies in the field. This will help in obtaining a standpoint

regarding the current radiomics methods for predicting biomarkers

in cancers (23–25). Thus, this study aims to provide a meta-analysis

of the radiomics studies for predicting Ki-67 expression in lung

cancer for the first time and evaluate their quality as well.
2 Materials and methods

This systematic review and meta-analysis was conducted

according to the preferred reporting items for systematic review

and meta-analysis of diagnostic test accuracy studies guidelines

(PRISMA-DTA) (26). No review protocol was registered.
2.1 Literature search

Two authors independently conducted a thorough literature

search of the PubMed, Embase, and Web of Science databases to

find papers that used radiomics for Ki-67 prediction in lung cancer

and that were published up until September 23, 2023. Following

terms were used in search: (Ki-67) AND (Lung Cancer) AND

(Radiomics). The retrieved references were exported to the

Mendeley Reference Manager. The detailed search method is

shown in Supplementary Table S1.
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2.2 Eligibility criteria

The inclusion criteria were as follows based on the PICO

questions (population, intervention, comparison, and outcomes):

(P) patients with lung cancer, (I) radiomics methods were applied to

identify Ki-67 expression in lung cancer, (C) diagnosis was made by

histopathological examination (preferably via surgery), and (O)

providing sufficient data for constructing 2×2 table including true

positive (TP), false positive (FP), false negative (FN), and true

negative (TN) values for evaluating sensitivity and specificity. The

exclusion criteria were as follows: (a) article published not in the

English language, (b) case reports, reviews, letters, meetings,

abstracts, comments, and guidelines, (c) articles with insufficient

data for constructing 2×2 tables (d) articles without radiomic

analysis, (e) cohort overlaps, and (f) studies that expression of Ki-

67 was not predicted. The primary outcome was the prediction of

Ki-67 using radiomics by providing sensitivity and specificity.

Secondary outcome measures included area under the curve

(AUC), diagnostic odds ratio (DOR), and positive and negative

likelihood ratios (PLR, NLR). After the titles and abstracts were

examined by two different reviewers, the entire texts were evaluated

to see if they qualified for inclusion. If there were disagreements

amongst the reviewers, they were resolved by discussion or, if

required, consultation with a third reviewer.
2.3 Data extraction

The basic data of the included studies were extracted using a

data extraction table. The data that was extracted included: first

author name, publication year, study design (retrospective vs.

prospective), country, imaging modality (e.g., CT or PET),

population (case and controls), age of patients, cut-off for Ki-67

in immunohistochemistry (IHC) staining, number of extracted

features, ROI structure (3D vs. 2D), number of features (selected/

extracted), name of the software for feature extraction, type of

radiomics features, feature reduction algorithm, and algorithm for

model construction. For meta-analysis, these data were extracted as

well: TP, FN, TN, and FP. Upon evaluating the diagnostic efficacy of

multiple algorithms on an identical sample, the algorithm yielding

the most favorable categorization outcomes was selected.
2.4 Quality assessment

Two tools, including QUADAS-2 and the RQS scoring system,

were used for quality assessment. QUADAS-2 is a tool used for

assessing the quality of diagnostic accuracy studies in systematic

reviews. QUADAS-2 provides a structured framework for

evaluating the risk of bias and concerns regarding the

applicability of diagnostic accuracy studies. It focuses on four key

domains: patient selection, index test, reference standard, and flow

and timing. The tool is widely used in evidence-based medicine to

ensure rigorous evaluation of the quality of diagnostic studies

included in systematic reviews (27). The RQS is another system
Frontiers in Oncology 03
for measuring the quality of radiomics studies with sixteen

components with a maximum point of 36 points (28). Two

independent reviewers conducted the quality assessment, and any

disagreements were resolved by discussion.
2.5 Statistical analysis

The meta-analysis was carried out in STATA 14.2 using

“midas” module. A coupled forest plot was generated to depict

the pooled sensitivity and specificity of the radiomics studies.

Cochran’s Q and Higgins’ I2 were computed to assess the

heterogeneity among the studies included in this meta-analysis. I2

values ranging from 0 to 25%, 25 to 50%, 50 to 75%, and > 75%

indicate very low, low, medium, and high heterogeneity,

respectively. Pooling studies and effect size were evaluated using a

random-effects model, emphasizing the consideration of

heterogeneity when estimating the distribution of true effects

across studies. The hierarchical summary receiver operating

characteristic (HSROC) model was used to produce the summary

receiver operating characteristic (SROC) curve and estimate the

pooled AUC. Other diagnostic values, including DOR, PLR, and

NLR were pooled. Spearman’s rank correlation test was used to

investigate the threshold effect. Meta-regression was used to

investigate the possible source of heterogeneity based on different

subgrouping. When publication bias was present, following

excluding each study one by one, sensitivity analysis was

conducted to evaluate the stability of the pooled values. Leave-

one-out analysis was performed using OpenMeta[Analyst]

software. A Deek’s funnel plot was generated to show publication

bias. All p-values lesser than 0.05 were considered significant.
3 Results

3.1 Literature search

As per the search methodology outlined in the methods section,

a total of 1,532 were identified from different databases. Following

the removal of 105 duplicate records, 1,427 titles were subjected to

evaluation. During the title and abstract assessment, 1,380 citations

were excluded due to not meeting inclusion criteria (e.g., lack of

relevance based on title/abstract, inclusion of meeting reports,

reviews, case reports, and not being in the English language).

After careful revision, an additional 37 articles were excluded: 21

studies were found to not involve radiomics, 11 did not predict Ki-

67 expression, and 5 did not provide sufficient data for constructing

a 2×2 table. This resulted in the final inclusion of 10 articles for the

meta-analysis (29–38). The study flow chart has been depicted

in Figure 1.
3.2 Characteristics of the included studies

All of the included studies were designed retrospectively,

conducted in China, and used CT scans as the only imaging
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modality. Seven studies were conducted at single-center institutions

(29, 30, 33–36, 38), while three studies adopted a multicenter

approach (31, 32, 37). Three studies used contrast-enhanced CT

scans for their images (30, 33, 35). Different threshold values were

utilized to designate Ki-67 expression as positive, from 5% to 50%,

with 40% emerging as the most frequently applied threshold (30, 31,

33, 35) compared to others. In nine studies, segmentation involved

the use of 3D ROI, while one study did not specify the segmentation

structure (36). Manual ROI segmentation was employed in eight

studies (29, 31–34, 36–38), whereas in two studies, the segmentation

process was semiautomatic (30, 35). Extracted features ranged from

105 to 3362. The extracted features exhibited a wide range,

spanning from 105 (30, 33) to 3362 (35). Shape-based features

were the most commonly extracted features in nine studies (29–37).

Feature extraction software were different, including 3D slicer (n=3)

(30, 33, 34), AK software (n=3) (29, 31, 37), PyRadiomics (n=2) (32,

35), Feature Explorer (n=1) (36), and MaZda (n=1) (38). The least

absolute shrinkage and selection operator (LASSO) was the most

frequently used feature reduction algorithm (n=6) (29, 31, 34–37).
Frontiers in Oncology 04
Logistic regression (LR) was the most frequently used algorithm for

building radiomics signature (n=8) (29–33, 35–37). The

characteristics of the included studies are shown in Table 1.
3.3 Quality assessment

3.3.1 QUADAS-2
The result of the quality assessment based on the QUADAS-2

tool showed that in the patient selection domain, there were unclear

risks of bias and unclear applicability concerns for three studies due

to not specifying inclusion/exclusion criteria (31, 32, 34). For the

index test, there was an unclear risk of bias for three studies due to not

using cross-validation methods for modeling (29, 33, 36). However,

as they matched research questions, no applicability concern was

detected. In reference standard domain, three studies were detected as

having a high risk of bias due to using biopsy for obtaining specimens

(31, 35, 38). Finally, there was an unclear risk of bias for five studies

due to not mentioning the interval between imaging acquisition and
FIGURE 1

PRISMA flowchart of the study.
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TABLE 1 Characteristics of the included studies.
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Zhou
et al. (30),
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(36–
77)
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and GLSZM

12/10

Gu
et al. (38),

One Rertro 245 59
(31–
85)
years

50% CT 3D Manual Greyscale histogram
features, absolute gradients,
and co-occurrence matrix

20/24

Huang
et al. (29),
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(22-
82)
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et al. (32),
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80)

14% CT 3D Manual Shape-based features, first-
order features, texture
features, and
transform features

38/1,2

Liu
et al. (31),

Five Rertro 211/211 – 40% CT 3D Manual first-order statistical
features, shape features,
texture features, and
higher-order features.

5/131

Sun
et al. (35),

One Rertro 137/137 64.01
±
10.55;
(17–
85)

40% CT 3D Semiautomatic Shape, texture, first order,
and wavelet features

14/33

https://doi.org/10.3389/fonc.2024.1329801
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1329801
histopathological examination (29, 30, 32–34). Therefore, the quality

of the included studies was almost acceptable (Figure 2).
3.3.2 RQS
The ten studies obtained an average RQS score of 10.7, with

individual scores ranging from 1 to 16 out of 36 points. The average

score was 29%, and the study with the highest rating achieved 44%.

Nearly half of the studies fell within the score range of 10 to 16.

Only two studies employed imaging at multiple points (33, 35).

None of the studies used phantom study prospective design, cost-

effectiveness analysis, comparison to the gold standard, and open

science items from the RQS checklist. Two studies received -5

points in validation items due to not using validation cohorts (30,

38). Image protocol quality, multiple segmentation, feature
Frontiers in Oncology 06
reduction, and biological correlation analysis were complete in all

studies. Table 2 represents the RQS scores for each study and item.
3.4 Meta-analysis

3.4.1 Diagnostic performance in training cohorts
Ten training cohorts consisting of 660 lesions with high and

1016 lesions with low Ki-67 were included for meta-analysis. The

pooled sensitivity, specificity, DOR, PLR, NLR, and AUC with 95%

confidence interval (CI) were 0.78 (0.72-0.83), 0.81 (0.72-0.88), 15

(7-41), 4.1 (2.6-6.6), 0.27 (0.19-0.37), and 0.85 (0.82-0.88),

respectively. The coupled forest plot showing sensitivity,

specificity, and heterogeneity indicators (I2 and Cochran’s Q) for

training cohorts is depicted in Figure 3. In addition, the summary
A

B

FIGURE 2

QUADAS quality assessment per study (A) and per domain (B).
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ROC curve (SROC) with pooled AUC value of the training cohorts

is depicted in Figure 4A.

3.4.2 Diagnostic performance in
validation cohorts

Nine validation cohorts consisting of 256 lesions with high and

366 lesions with low Ki-67 were included for meta-analysis. The

pooled sensitivity, specificity, DOR, PLR, NLR, and AUC with 95%

CI were 0.78 (0.71-0.83), 0.70 (0.62-0.77), 8 (5-12), 2.6 (2.0-3.3),

0.32 (0.25-0.41), and 0.81 (0.77-0.84), respectively. The coupled

forest plot showing sensitivity, specificity, and heterogeneity

indicators (I2 and Cochran’s Q) for validation cohorts is depicted
Frontiers in Oncology 07
in Figure 5. In addition, the SROC with pooled AUC value of the

validation cohorts is illustrated in Figure 4B.
3.4.3 Heterogeneity assessment
3.4.3.1 Training cohorts’ heterogeneity

The Higgins’ I2 value and p-value of Cochran’s Q for sensitivity

and specificity were 74.20% (p-value=0.00) and 88.86% (p-

value=0.00), respectively, indicating a high heterogeneity among

training cohorts. The Spearman’s correlation coefficient (r) was

-0.402 (p-value=0.249), indicating lack of threshold effect as the

possible cause of heterogeneity.
TABLE 2 RQS quality assessment of the included studies.

Study I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 RQS

Zhou et al. (30), 1 1 0 0 1 0 1 1 1 0 0 -5 0 0 0 0 1

Gu et al. (38), 1 1 0 0 1 1 1 1 2 0 0 -5 0 0 0 0 3

Huang et al. (29), 1 1 0 0 1 0 1 1 1 1 0 2 0 0 0 0 9

Fu et al. (33), 1 1 0 1 1 1 1 1 2 1 0 2 0 2 0 0 14

Yan et al. (37), 1 1 0 0 1 1 1 0 2 2 0 4 0 2 0 0 15

Zhu et al. (34), 1 1 0 0 1 1 1 0 2 0 0 2 0 0 0 0 9

Bao et al. (36), 1 1 0 0 1 1 1 0 1 1 0 2 0 2 0 0 11

Dong et al. (32), 1 1 0 0 1 1 1 1 2 1 0 5 0 2 0 0 16

Liu et al. (31), 1 1 0 0 1 1 1 0 2 1 0 5 0 2 0 0 15

Sun et al. (35), 1 1 0 1 1 1 1 0 2 2 0 2 0 2 0 0 14

Mean Score 1 1 0 0.2 1 0.8 1 0.5 1.7 0.9 0 1.4 0 1.2 0 0 10.7
frontie
I1, Image Protocol Quality; I2, Multiple Segmentation; I3, Phantom Study; I4, Imaging at Multiple Points; I5, Feature Reduction; I6, Multivariable Analyses; I7, Biological Correlation; I8, Cut-off
Analyses; I9, Discrimination Statics; I10, Calibration Statics; I11, Prospective Study; I12, Validation; I13, Comparison to Gold Standard; I14, Potential Clinical Application; I15, Cost Effectiveness
Analyses; I16. Open science and Data.
FIGURE 3

Coupled forest plot of the diagnostic performance in training cohorts.
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3.4.3.2 Validation cohorts’ heterogeneity

The Higgins’ I2 value and p-value of Cochran’s Q for sensitivity

and specificity were 0.00% (p-value=0.86) and 48.08% (p-value=0.05),

respectively, indicating a low heterogeneity among validation cohorts.

The Spearman’s correlation coefficient (r) was +0.383 (p-value=0.275),

indicating lack of threshold effect as the possible cause of heterogeneity.

3.4.4 Heterogeneity exploration using
meta-regression
3.4.4.1 Training cohorts

Meta-regression was performed to rule out the possible source

of heterogeneity in training cohorts. Among all covariates that were

considered for subgroup analysis, only using contrast-enhanced

CT scan images (p-value=0.03), PyRadiomics for feature extraction
Frontiers in Oncology 08
(p-value=0.00), and Ki-67 cut-off of 14% (p-value=0.00)

contributed to the inter-study heterogeneity.

3.4.4.2 Validation cohorts

Only using 3D Slicer for feature extraction in validation cohorts

contributed to inter-study heterogeneity (p-value=0.04).

3.4.5 Subgroup analysis
3.4.5.1 Training cohorts

In training cohorts (Table 3), the sensitivity of studies with a

sample size smaller than 150, non-contrast-enhanced CT, logistic

regression for modeling, and PyRadiomics for feature extraction was

significantly higher (p-value< 0.01). In addition, the sensitivity of

studies that used biopsy for tissue obtaining and LASSO for feature
A B

FIGURE 4

Summary ROC curve with confidence and prediction regions in training (A) and validation (B) cohorts.
FIGURE 5

Coupled forest plot of the diagnostic performance in validation cohorts.
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reduction was higher but not statistically significant (0.05<p-value<

0.10). The specificity of studies with a sample size smaller than 150,

used PyRadiomics for feature extraction or used semiautomatic

segmentation was significantly higher (p-value< 0.05).

3.4.5.2 Validation cohorts

In validation cohorts (Table 4), the sensitivity and specificity of

studies with a sample size smaller than 150 were significantly higher

(p-value< 0.01). In addition, the sensitivity of studies that used surgery
Frontiers in Oncology 09
for tissue obtaining and 3D Slicer for feature extraction was higher but

not statistically significant (0.05<p-value< 0.10). In addition, studies

that used semiautomatic segmentation had a higher specificity but

were not statistically significant (0.05<p-value< 0.10).

3.4.6 Publication bias
We found publication bias in training cohorts based on Deeks’

asymmetry test (p-value=0.01). However, in validation cohorts,

publication bias was not significant (p-value <0.13). Deeks’ funnel
TABLE 3 Subgroup analysis and meta-regression results in training cohorts.

Covariates N Sensitivity PSEN Specificity PSPEC Joint model

Likelihood
ratio chi2

I2 P value

Sample size <150 7 0.80 [0.74 - 0.86] 0.00 0.84 [0.76 - 0.92] 0.03 1.84 0 0.40

>150 3 0.74 [0.66 - 0.82] 0.73 [0.57 - 0.89]

Publication year After 2020 8 0.80 [0.74 - 0.86] 0.22 0.83 [0.75 - 0.91] 0.96 2.09 2 0.35

Before 2020 2 0.71 [0.59 - 0.82] 0.72 [0.50 - 0.93]

Segmentation Manual 8 0.78 [0.72 - 0.84] 0.14 0.79 [0.69 - 0.90] 0.01 4.82 43 0.09

Semiautomatic 2 0.77 [0.63 - 0.91] 0.91 [0.80 - 1.00]

Contrast Enhanced CT Yes 3 0.74 [0.61 - 0.86] 0.01 0.87 [0.77 - 0.97] 0.56 7.36 68 0.03

No 7 0.80 [0.73 - 0.86] 0.78 [0.69 - 0.87]

Reference standard Surgery 7 0.77 [0.70 - 0.84] 0.08 0.82 [0.71 - 0.93] 0.53 1.23 0 0.54

Biopsy 3 0.82 [0.72 - 0.91] 0.83 [0.66 - 0.99]

Ki-67 cut-off 5% 2 0.81 [0.70 - 0.91] 0.01 0.82 [0.66 - 0.98] 0.30 0.26 0 0.88

Other 8 0.77 [0.71 - 0.84] 0.80 [0.71 - 0.89]

10% 2 0.75 [0.64 - 0.86] 0.01 0.70 [0.52 - 0.89] 0.04 2.05 0 0.36

Other 8 0.79 [0.73 - 0.85] 0.83 [0.75 - 0.90]

14% 9 0.77 [0.71 - 0.82] 0.73 0.78 [0.71 - 0.84] 0.13 4.77 83 0.00

Other 1 0.89 [0.76 - 1.00] 0.95 [0.89 - 1.00]

40% 4 0.76 [0.66 - 0.86] 0.01 0.84 [0.71 - 0.97] 0.27 2.21 0 0.33

Other 6 0.79 [0.72 - 0.86] 0.81 [0.69 - 0.93]

50% 1 0.73 [0.57 - 0.88] 0.05 0.67 [0.37 - 0.96] 0.16 1.25 0 0.54

Other 9 0.79 [0.73 - 0.85] 0.82 [0.74 - 0.89]

Modeling Algorithm LR 7 0.78 [0.72 - 0.85] 0.02 0.81 [0.72 - 0.90] 0.25 0.01 0 1.00

Others 3 0.77 [0.68 - 0.88] 0.80 [0.66 - 0.94]

Feature Extraction Software AK 7 0.76 [0.70 - 0.83] 0.02 0.81 [0.72 - 0.91] 0.18 1.92 25 0.38

Others 3 0.81 [0.74 - 0.89] 0.79 [0.63 - 0.94]

Feature Extraction Software 3D Slicer 2 0.70 [0.61 - 0.80] 0.00 0.71 [0.51 - 0.91] 0.07 3.21 39 0.20

Others 8 0.80 [0.75 - 0.85] 0.84 [0.75 - 0.90]

Feature Extraction Software PyRadiomics 2 0.89 [0.80 - 0.98] 0.00 0.96 [0.93 - 1.00] 0.00 18.98 91 0.00

Others 8 0.75 [0.71 - 0.79] 0.73 [0.69 - 0.78]

Feature Selection LASSO 6 0.80 [0.74 - 0.87] 0.06 0.81 [0.71 - 0.90] 0.23 2.92 44 0.17

Others 4 0.75 [0.66 - 0.84] 0.81 [0.69 - 0.93]
fro
Bolded values considered significant.
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plots are shown in Figure 6. Publication bias was observed

exclusively in training cohorts, which typically exhibit higher

diagnostic performance compared to validation cohorts. This

occurrence, where training cohorts tend to produce more positive

results than negative ones, is a prevalent cause of potential

publication bias. Various factors, including the inclination to

publish novel or statistically significant findings, can contribute to

the emergence of this bias.

3.4.7 Sensitivity analysis
To find the possible source of publication bias in training cohorts,

we eliminated each study from the analysis and pooled the remaining

studies to re-evaluate Deeks’ p-value (Table 5). It was found that after

eliminating the results by Sun et al., Zhe et al., and Gu et al., the p-
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value increased; however, it still was <0.05. When removing studies

two by two, the Deeks’ p-value of remaining results significantly

increased, and this increase reached its maximum after the removal of

three studies together (p-value=0.22). Therefore, we concluded that

these studies might have contributed to the publication bias. It should

be noted that overall results, even with removing these three studies,

did not change significantly (Table 5), suggesting that the results

are consistent.

3.4.8 Leave-one-out analysis
Leave-one-out analysis was performed to investigate the

robustness of the results by removing each study one by one. In

the included training cohorts, it was observed that upon excluding

the cohorts by Sun et al. or Dong et al., there was a slight decrease in
TABLE 4 Subgroup analysis and meta-regression results in validation cohorts.

Covariates N Sensitivity PSEN Specificity PSPEC Joint model

Likelihood
ratio chi2

I2 P value

Sample size <150 7 0.78 [0.71 - 0.85] 0.01 0.72 [0.64 - 0.80] 0.04 0.73 0 0.69

>150 2 0.77 [0.68 - 0.87] 0.66 [0.54 - 0.78]

Segmentation Manual 8 0.78 [0.73 - 0.84] 1.00 0.68 [0.61 - 0.76] 0.08 1.86 0 0.39

Semiautomatic 1 0.69 [0.44 - 0.95] 0.82 [0.65 - 0.98]

Contrast Enhanced CT Yes 1 0.69 [0.44 - 0.95] 0.23 0.82 [0.65 - 0.98] 0.83 1.86 0 0.39

No 8 0.78 [0.73 - 0.84] 0.68 [0.61 - 0.76]

Reference standard Surgury 6 0.78 [0.72 - 0.84] 0.09 0.70 [0.61 - 0.79] 0.18 0.12 0 0.94

Biopsy 3 0.76 [0.64 - 0.88] 0.69 [0.57 - 0.82]

Ki-67 cut-off 5% 3 0.73 [0.64 - 0.83] 0.00 0.77 [0.66 - 0.88] 0.55 2.69 26 0.26

Other 6 0.80 [0.74 - 0.86] 0.66 [0.58 - 0.74]

10% 2 0.82 [0.75 - 0.90] 0.05 0.60 [0.53 - 0.67] 0.00 3.97 50 0.14

Other 7 0.75 [0.69 - 0.82] 0.73 [0.67 - 0.80]

14% 1 0.80 [0.64 - 0.97] 0.41 0.75 [0.53 - 0.97] 0.85 0.37 0 0.83

Other 8 0.77 [0.71 - 0.83] 0.70 [0.62 - 0.77]

40% 3 0.76 [0.64 - 0.88] 0.04 0.69 [0.57 - 0.82] 0.14 0.12 0 0.94

Other 6 0.78 [0.72 - 0.84] 0.70 [0.61 - 0.79]

Modeling Algorithm LR 7 0.77 [0.71 - 0.84] 0.01 0.72 [0.64 - 0.79] 0.46 0.92 0 0.63

Others 2 0.79 [0.69 - 0.89] 0.64 [0.51 - 0.77]

Feature Extraction Software AK 5 0.75 [0.67 - 0.83] 0.00 0.71 [0.61 - 0.81] 0.18 0.70 0 0.71

Others 4 0.80 [0.73 - 0.87] 0.69 [0.58 - 0.79]

Feature Extraction Software 3D Slicer 1 0.82 [0.74 - 0.91] 0.07 0.57 [0.49 - 0.65] 0.00 6.26 68 0.04

Others 8 0.76 [0.70 - 0.83] 0.73 [0.67 - 0.79]

Feature Extraction Software PyRadiomics 1 0.80 [0.64 - 0.97] 0.41 0.75 [0.53 - 0.97] 0.85 0.37 0 0.83

Others 8 0.77 [0.71 - 0.83] 0.70 [0.62 - 0.77]

Feature Selection LASSO 8 0.77 [0.71 - 0.83] 0.41 0.70 [0.62 - 0.77] 0.85 0.37 0 0.83

Others 1 0.80 [0.64 - 0.97] 0.75 [0.53 - 0.97]
fro
Bolded values considered significant.
ntiersin.org

https://doi.org/10.3389/fonc.2024.1329801
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1329801
the values of specificity, PLR, and DOR. This suggests that these

cohorts exhibited slightly higher diagnostic performance compared

to other studies (Supplementary Figures S1-3). However, no

significant changes were noted in the sensitivity, specificity, PLR,

NLR, or DOR values upon the removal of each validation cohort

(Supplementary Figures S4-6). Taken together, no concern existed

regarding the robustness of the results.
4 Discussion

The present meta-analysis showed that CT-based radiomics

have an excellent diagnostic performance for predicting Ki-67

expression with pooled AUCs > 0.80 in both training and

validation cohorts of ten studies. In addition, the quality of the

included studies was evaluated using two different tools, including

QUADAS-2 and RQS, indicating that the included studies have an
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acceptable quality. The interpretation of results in a meta-analysis is

significantly impacted by the quality of the included articles. In the

realm of radiomics research and the application of the RQS, the

overall reliability of meta-analysis findings relies on the

methodological rigor and thoroughness of each individual study.

If the articles included in the analysis have low RQS scores,

indicating inadequate methodological quality and presentation, it

introduces a risk of bias and reduces confidence in the pooled

results. Additionally, variations in study design, reporting, and

validation practices among low-quality studies can introduce

heterogeneity, complicating the integration of data and potentially

leading to less robust conclusions. Thus, a careful evaluation of the

quality of individual articles, facilitated by tools like RQS, becomes

crucial to ensure the accuracy and applicability of meta-analytic

outcomes in the field of radiomics and beyond. In a recently

published meta-analysis on the diagnostic performance of MRI-

based radiomics for predicting Ki-67 in breast cancer (24), the mean
A B

FIGURE 6

Deeks’ funnel plots for training (A) and validation (B) cohorts.
TABLE 5 Results of the sensitivity analysis.

Name of removed study Deeks’ test P-value SEN SPEC PLR NLR DOR AUC

Zhou et al. (30), 0.01 0.79 0.83 4.7 0.25 19 0.86

Gu et al. (38), 0.03 0.79 0.84 4.9 0.25 20 0.86

Huang et al. (29), 0.02 0.79 0.82 4.5 0.26 17 0.86

Fu et al. (33), 0.01 0.79 0.83 4.7 0.25 19 0.86

Yan et al. (37), 0.02 0.77 0.83 4.6 0.27 17 0.84

Zhu et al. (34), 0.03 0.79 0.84 5.0 0.25 20 0.86

Bao et al. (36), 0.02 0.78 0.84 4.8 0.26 18 0.85

Dong et al. (32), 0.01 0.77 0.78 3.4 0.30 11 0.83

Liu et al. (31), 0.02 0.78 0.82 4.3 0.27 16 0.85

Sun et al. (35), 0.05 0.77 0.79 3.6 0.29 12 0.83

Gu AND Zhu 0.08 0.80 0.86 5.7 0.23 25 0.88

Gu AND Sun 0.08 0.78 0.80 4.0 0.28 14 0.85

Zhu AND Sun 0.10 0.78 0.80 4.0 0.27 15 0.85

Zhu AND Sun AND Gu 0.22 0.79 0.82 4.5 0.26 18 0.85
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RQS of the included studies was around 6, significantly lower

compared to our study. This suggests that the quality of the

articles included in our meta-analysis was higher.

A meta-analysis encompassing 15 studies and 1931 patients

demonstrated the prognostic significance of Ki-67 in stage I

NSCLC. The analysis revealed that a high Ki-67 labeling index (LI)

in stage I NSCLC is predictive of poorer OS and DFS. Furthermore,

the study explored the prognostic impact, specifically in stage I

adenocarcinoma, providing novel insights. Despite acknowledged

limitations, such as reliance on pooled data and potential

publication bias, the meta-analysis recommends Ki-67 as a routine

biomarker in stage I NSCLC. It suggests that patients with high Ki-67

LI may benefit from adjuvant therapy (10). These data highlight the

prominent role of Ki-67 in the prognosis of lung cancer patients. The

limitations of lung cancer biopsy include poor discriminatory

capability of imaging, late diagnosis, variability in diagnostic

pathways, and potential complications from biopsy procedures

(39). Radiomics, a field focused on extracting and analyzing

quantitative features from medical images, offers a promising

solution to these challenges. By providing a more detailed and

comprehensive characterization of lesions, radiomics enhances the

discriminatory capability of imaging, aids in early detection, and

enables risk stratification. Additionally, it supports personalized

medicine by identifying tumor heterogeneity and potential

molecular targets, potentially reducing the need for invasive

biopsies. Radiomics also facilitates monitoring treatment response,

allowing clinicians to assess therapy effectiveness and make timely

adjustments to treatment plans (40–42). Integrating radiomics into

current prognostic workflows for predicting Ki-67 expression in lung

cancer involves incorporating radiomic features extracted from

imaging data, such as CT scans, into existing prognostic models.

This process requires the development of algorithms that capture

intricate patterns related to Ki-67 expression, with subsequent

validation against established indicators and clinical outcomes (43,

44). Collaboration between radiologists, oncologists, and data

scientists is crucial for optimization, standardization, and the

establishment of protocols. Education programs for healthcare

professionals ensure proper interpretation of radiomic data, and

continuous refinement through research and clinical feedback

contributes to the ongoing improvement of these models. The

successful integration of radiomics necessitates a multidisciplinary

approach, technological standardization, and collaborative efforts

across healthcare settings (45).

CT-based radiomics emerges as an efficient tool for predicting

Ki-67 expression in lung cancer, particularly in NSCLC, providing

several advantages. The ease of acquisition and non-invasiveness of

CT scans allows for early Ki-67 expression prediction. The

integration of radiomics-based analyses with radiologist

assessment proves beneficial in clinical decision-making for

NSCLC patients. This approach has already been investigated for

predicting EGFR mutation status, facilitating the identification of

patients suitable for targeted therapies. CT radiomics-based models

present distinct advantages over conventional methods by

leveraging existing imaging data, eliminating the need for invasive

procedures, and minimizing patient discomfort and risk. Routine

CT scans yield readily available data for radiomics-based models,
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enabling a comprehensive assessment of tumor characteristics

throughout the entire tumor volume. Advanced imaging analysis

techniques quantify features, enhancing the precision of predicting

genetic mutations. Serial CT scans enable longitudinal monitoring

of tumor characteristics, allowing for the evaluation of treatment

response, disease progression, and monitoring emerging genetic

mutations over time. While CT radiomics-based models should not

replace confirmatory molecular testing methods, they significantly

contribute to noninvasive and comprehensive assessments in lung

cancer management (46).

In this meta-analysis, we observed a significant heterogeneity in

training cohorts, which made meta-regression necessary. First, we

observed that contrast-enhanced CT-scan images contributes to

inter-study heterogeneity. This finding was justifiable as

inconsistencies and differences can occur in different process of

enhanced CT-scan acquisition due to various reasons such as

temporal imaging and lesion enhancement patterns. Second, we

found that using PyRadiomcis for feature extraction contributed to

interstudy heterogeneity. Utilizing diverse software tools for

radiomics feature extraction introduces interstudy heterogeneity,

primarily stemming from algorithmic dissimilarities, variations in

parameter configurations, discrepancies in segmentation methods,

differences in image preprocessing approaches, disparities in

normalization and scaling procedures, diverse criteria for feature

selection, and potential inconsistencies in software updates and

versions. These distinctions in radiomic processes yield distinct sets

of features, complicating direct comparisons between studies (47).

The superiority of PyRadiomics compared to other feature

extraction software has also been mentioned in a previous meta-

analysis (48). Lastly, using a Ki-67 cut-off of 14% could also cause

interstudy heterogeneity. Different cut-off values for Ki-67

expression were used in the included studies, causing a

significant heterogeneity.

Our subgroup analyses have revealed common findings in

validation and training cohorts. Firstly, studies with sample sizes

smaller than 150 had a significantly higher diagnostic performance.

The observed phenomenon of significantly higher diagnostic

performance in studies with sample sizes smaller than 150 could be

attributed to various factors. These include the sensitivity of smaller

sample sizes to outliers, increased heterogeneity in smaller studies, a

potential publication bias that favors the reporting of positive results

in smaller studies, a more substantial impact of random variation due

to limited sample size, specific clinical contexts where certain

diagnostic tests perform better in smaller populations, and

interactions between the characteristics of the studied subgroups

and the sample size. Each of these factors may contribute to or

influence the apparent difference in diagnostic performance observed

in the subgroup analysis. Second, we observed that semi-automatic

segmentation may increase the specificity of the results. This method

allows for accurate delineation of the ROI, enabling correction of

errors, customization for complex structures, and adaptability to

anatomical variability.

In our meta-analysis, we also observed a significant publication

bias for training cohorts based on Deeks’ test. Publication bias

happens when studies with positive or statistically significant results

are more likely to be published, while studies with null or negative
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findings are less likely to be published. We identified three studies as

the possible source of publication bias. However, eliminating these

studies one by one or even together could not change the overall

diagnostic performance of the radiomics approach for the

prediction of Ki-67 in lung cancer, indicating that the results

were consistent. Publication bias occurs when research findings

are selectively published based on their nature and direction, often

leading to an overemphasis on positive or statistically significant

results. To mitigate publication bias, researchers can pre-register

studies, encouraging the publication of negative results, and

promoting systematic reviews that include unpublished studies.

Journals can adopt policies prioritizing study design over results,

and open access to data can facilitate result verification.

Transparent reporting guidelines, publication of study protocols,

and rigorous editorial and peer review processes further contribute

to reducing the impact of publication bias, ensuring a more

balanced representation of scientific evidence (49, 50).
5 Limitations

Several limitations in this meta-analysis warrant consideration:
Fron
1. Lack of Validation Cohorts: A notable limitation is the

absence of validation cohorts in several studies,

necessitating the pooling of training and validation

cohorts separately, which may impact the generalizability

of the findings.

2. Retrospective Study Design: The retrospective nature of

all included studies introduces inherent biases and limits

the establishment of causal relationships, emphasizing

the need for prospective investigations to validate the

observed associations.

3. Geographic Bias: The exclusive focus on studies conducted

in China introduces regional bias, potentially limiting

the generalizability of findings to a broader, more

diverse population.

4. Limited Segmentation Information: While all studies utilized

3D segmentation, the absence of information on 2D

segmentation performance for predicting Ki-67 in lung

cancer underscores a potential gap in understanding the

comparative effectiveness of these methods.

5. Scarcity of Automatic Segmentation: The limited use of

automatic or semiautomatic segmentation in only two

studies emphasizes the necessity for further research to

explore the performance and advantages of automated

segmentation methods.

6. Absence of Deep Learning Approaches: The exclusion of

deep learning-based radiomics methods in all studies

underscores a current gap in exploring the potential

benefits of advanced machine learning techniques, which

could enhance predictive accuracy (51).

7. Variability in Ki-67 Expression Cutoffs: The inconsistency in

defining lesions as positive for Ki-67 expression due to

different cutoff points across studies poses a challenge to
tiers in Oncology 13
standardization, suggesting the need for authors to test

multiple cutoff points in their investigations.

8. Publication Bias Concerns: The identification of publication

bias raises awareness of a potential inclination toward

reporting positive results. Encouraging journals and

authors to publish negative results can help address this

bias and provide a more comprehensive understanding of

the predictive capabilities of CT-based radiomics for Ki-67

expression in lung cancer.
6 Conclusion

In conclusion, this meta-analysis of 10 retrospective studies

investigating CT-based radiomics for predicting Ki-67 expression in

lung cancer demonstrates promising diagnostic performance,

indicating the potential clinical utility of radiomic features. These

findings collectively highlight the potential of radiomics in

noninvasive prediction of Ki-67 expression, emphasizing the

importance of cautious interpretation and the need for further

research to address methodological heterogeneity and potential biases.
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