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therapy using the alternating
direction method of multipliers
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Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 5Hubei Key
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University of Science and Technology, Wuhan, China
Purpose: This study develop a novel linear energy transfer (LET) optimization

method for intensity-modulated proton therapy (IMPT) with minimum monitor

unit (MMU) constraint using the alternating direction method of

multipliers (ADMM).

Material and methods: The novel LET optimization method (ADMM-LET) was

proposed with (1) the dose objective and the LET objective as the optimization

objective and (2) the non-convex MMU threshold as a constraint condition.

ADMM was used to solve the optimization problem. In the ADMM-LET

framework, the optimization process entails iteratively solving the dose sub-

problem and the LET sub-problem, simultaneously ensuring compliance with the

MMU constraint. Three representative cases, including brain, liver, and prostate

cancer, were utilized to evaluate the performance of the proposed method. The

dose and LET distributions from ADMM-LET were compared to those obtained

using the published iterative convex relaxation (ICR-LET) method.

Results: The results demonstrate the superiority of ADMM-LET over ICR-LET in

terms of LET distribution while achieving a comparable dose distribution. More

specifically, for the brain case, themaximum LET (unit: keV/µm) at the optic nerve

decreased from 5.45 (ICR-LET) to 1.97 (ADMM-LET). For the liver case, the mean

LET (unit: keV/µm) at the clinical target volume increased from 4.98 (ICR-LET) to

5.50 (ADMM-LET). For the prostate case, the mean LET (unit: keV/µm) at the

rectum decreased from 2.65 (ICR-LET) to 2.14 (ADMM-LET).
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Conclusion: This study establishes ADMM-LET as a new approach for LET

optimization with the MMU constraint in IMPT, offering potential

improvements in treatment outcomes and biological effects.
KEYWORDS

intensity-modulated proton therapy (IMPT), relative biological effectiveness (RBE),
linear energy transfer (LET), treatment planning, alternating direction method of
multipliers (ADMM)
1 Introduction

Themost significant advantage of proton beam therapy is utilizing

its Bragg peak characteristics to spare the dose in the healthy tissue or

organs-at-risk (OARs) at the distal end of the target. A previous review

has reported that the overall dose of the proton is about 60% lower

than that of the photon radiotherapy (1). In the past few years, proton

beam therapy has been advanced to intensity-modulated proton

therapy (IMPT) based on active scanning technology, where it

optimizes each spot’s intensities and position as well as energy layer

distribution, providing a much better conformability compared to the

conventional passive-scattering technique (2, 3).

However, challenges remain in proton beam therapy, in which

the relative biological effectiveness (RBE) of proton beam therapy

still used at 1.1 for the last half-century. Because RBE is affected by

numerous factors, such as type of particle, dose, organ type,

biological micro-environment, clinical endpoint, and linear

energy transfer (LET), it is very challenging, if not impossible, to

apply the variable RBE model in the routine clinical settings. Even

though we know the constant 1.1 might not be precise, it is the most

acceptable value at present (4). Fortunately, a monotonic

relationship exists between RBE and LET along the proton beam

path (5, 6). As a physics parameter, the LET distribution can be well

defined, calculated, and optimized in the treatment plan (7–11),

which has the potential to be used as a surrogate of the RBE dose

calculation or correlated to the clinical end point (12, 13). Thus, to

provide IMPT with practical guidance on biological effects, existing

studies agree that this can be achieved by modulating the LET

distribution. Therefore, designing an optimization algorithm to

LET optimization is one of the development prospects of IMPT.

The minimum monitor unit (MMU) threshold in IMPT is

influenced by various factors, including the noise level of the

monitor chamber, beam current stability, beam shutdown time at

a specified monitor unit, and interlock requirements of the primary

and redundant monitor chambers (14, 15). Incorporating the MMU

constraint in IMPT treatment planning ensures the deliverability of

planned spots within the predefined machine limitations, thereby

enhancing treatment delivery feasibility and accuracy (16–19). This

integration of the MMU constraint in IMPT provides an essential

mechanism to guarantee the reliable execution of treatment plans,

improving overall treatment quality and patient outcomes.
02
In current studies focused on incorporating LET optimization

into IMPT, two primary methods are commonly employed: direct

optimization of biological dose (12, 20–22) and simultaneous

optimization of LET and physical dose (9, 13, 23, 24). For instance,

Unkelbach et al. (20) proposed a strategy to reduce the distribution of

LET at OARs by re-optimizing the initial IMPT treatment plan based

on the additional biological dose. However, due to uncertainties

associated with conversion coefficients and planning constraints in

the biological dose, recent studies have increasingly favored

simultaneous optimization of both LET and physical dose (13, 23, 24).

Nevertheless, while these studies have made significant

contributions to LET optimization in IMPT, they did not

consider the crucial MMU constraint in the optimization (9, 12,

20–23), which substantially impacts the accurate delivery of IMPT.

Although Liu et al. (13) and Li et al. (24) consider the deliverability

by specifying the MMU through the postprocessing procedure, its

plan quality in this way is not as good as considering the MMU

constraint in optimization (19).

To address this limitation, Li et al. (25) developed an optimization

method based on the iterative convex relaxation (ICR) approach that

explicitly incorporates the MMU constraint. The ICR method is often

used to assist in solving optimization problems in IMPT, such as to

address nonconvexity caused by dose-volume-histogram objective

(19), nonlinearity caused by the dose rate constraint (26). However, it

is important to note that when dealing with the nonlinearity of LET as

it relates to the optimization variable, employing the ICR method,

which relies on linear approximation, can introduce numerical errors

when solving nonlinear systems. In addition, the ICR approach did

not consider to transfer high LET distributions fromOARs to tumors.

Given the characteristics of LET optimization in IMPT, which

involves a non-convex MMU constraint, a linear physical dose

objective concerning the optimization variable, and a nonlinear

LET objective, a straightforward and effective method is needed to

decouple the non-convex constraint and efficiently solve the

nonlinear LET objective.

The alternating direction method of multipliers (ADMM) is a

simple but powerful algorithm well suited to distributed convex and

some nonconvex optimization problems (27–29). ADMM has

played a significant role in the inverse optimization of IMPT’s

treatment planning (15, 30, 26, 31, 32). It enables solving the inverse

optimization problem with the MMU constraint in IMPT while
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considering the dose optimization objective and other optimization

objectives simultaneously.

To summarize, this study aims to investigate the potential of

LET optimization with the MMU constraint in IMPT using the

alternating direction method of multipliers (ADMM-LET). This

approach allows for the escalation of the LET distribution in the

target while mitigating the LET distribution in the OARs.
2 Methods and materials

2.1 Formalize the dose objective

The dose objectives are integrated into the ADMM-LET

framework. In order to facilitate the algorithm’s presentation, we

initially express the original dose objectives formally. These objectives

encompass several terms: the squared deviation term, squared over

dosage term, squared under dosage term, maximum dose-volume-

histogram constraint (DVH) term, and minimum DVH term.

f dð Þ = p1 o
i∈WROI,1

di − d̂ 1

� �2

  + p2 o
i∈WROI,2

Q di − d̂ 2

� �
di − d̂ 2

� �2

  + p3 o
i∈WROI,3

Q d̂ 3 − di
� �

di − d̂ 3

� �2

  + p4 o
i∈WROI,4

Q di − d̂ 4

� �
Q ~dmax − di
� �

di − d̂ 4

� �2

  + p5 o
i∈WROI,5

Q d̂ 5 − di
� �

Q di − ~dmin

� �
di − d̂ 5

� �2

(1)

In Equation 1, f(d) represents the dose fidelity term in the sum of

squares. di represents the dose of the i-th voxel, d̂ denotes the

prescribed dose, and ed represents the dose at the prescribed volume.

The term is calculated over the region of interest (ROI), corresponding

to the voxel indexΩ. The weights assigned to each term in the objective

function are denoted by p. The Heaviside function, Q, is used as a step
function to enforce certain conditions based on the dose values.

The objective function consists of the squared deviation term,

which is convex, as the first term. However, the second to fifth terms

introduce non-convexity due to the presence of the Heaviside function.

To address this non-convexity, the active set, denoted as Ωd, needs to

be determined. The active setΩd is obtained as the union offive subsets:

Ωd =  ∪5
i=1 Ωi. Specifically, the subsets are defined as Equation 2:

W1 = WROI,1

W2 = k ∈ WROI,2jdk ≥ d̂ 2

n o
W3 = k ∈ WROI,3jdk ≤ d̂ 3

n o
W4 = k ∈ WROI,4jdk ≥ d̂ 4 ∧ dk ≤ ~dmax

n o
W5 = k ∈ WROI,5jdk ≤ d̂ 5 ∧ dk ≥ ~dmin

n o
(2)

In summary, the objective function f(d) can be represented as

Equation 3 (33):
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f (d) = o
s∈Wd

ps ds − d̂ s

��� ���2
2
= o

s∈Wd

ps Dsx − d̂ s

��� ���2
2
= Ax − bk k2Wd

: (3)

where D represents the dose influence matrix, x represents the

spot weights that need to be optimized, Dsx denotes the dose

distribution at the s-th voxel. The matrices are related as follows:

ATA =osD
T
s psDs and ATb =osD

T
s psd̂s.
2.2 The LET objective

In order to enhance the LET at the target region and reduce the

LET at the OARs, this study employed the squared under LET term

for the target and the squared over LET term for the OARs (24), the

form of the LET objective is shown in Equation 4:

ɡ(LET) = wlet o
i∈WCTV

Q  LbETCTV − LETi

� �
  LETi − LbETCTV

� �2

  + wlet o
i∈WOARs

Q  LETi − LbETOARs

� �
  LETi − LbETOARs

� �2
(4)

Where

LETi =
1
di
o
Ns

j=1
(DijLijxj), i = 1,⋯,Nv , (5)

LETi, defined as Equation 5, represents the LET distribution at

the i-th voxel, L the LET influence matrix, Ns the number of spots,

Nv the number of voxels. Dij and Lij represent the dose and LET

delivered by the j-th spot located at the i-th voxel, respectively.

Similar to the dose objective, the LET objective is also non-

convex due to the presence of the Heaviside function. The active set

Ωl can be determined as the same set as Ωd. Thus, the LET objective

can be expressed as Equation 6:

g(L(x)) = wlet L(x) − l0k k2Wl
: (6)

where L(x) represents the calculated LET distribution based on

the spot weights x, and l0 denotes the desired LET value. This

formulation captures the deviation between the calculated LET

distribution and the desired LET value within the active set Ωl.
2.3 The LET optimization problem

Overall, the LET optimization problem involves optimizing the spot

weights x by considering both dose and LET objectives. Simultaneously,

the problem takes into account theMMU constraint. The objective is to

find the optimal distribution of spot weights that satisfies the dose

requirements, enhances LET in the target region, and minimizes LET in

the OARs while adhering to the MMU constraint. The LET

optimization problem considered in this study is defined as Equation 7:

min
x
 f (d) + ɡ(LET),

s : t :

di =o
Ns

j=1
 (Dijxj), i = 1,⋯,Nv ,

LETi =
1
di o

Ns

j=1
 (DijLijxj),

x ∈ 0f g ∪ ½ɡ, +∞),

8>>>>>>><>>>>>>>:
(7)
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where g represents the MMU threshold of the proton

therapy system.

To facilitate the demonstration of the ADMM algorithm for

solving this problem, we first express it in standard form as Equation 8:

min
x,z1,z2

 f (x) + ɡ (z1) +m (z2),

s : t :
x − z1 = 0,

x − z2 = 0,

(
(8)

This formulation introduces z1 and z2 as dummy variables.

Specifically, z1 separates the dose and LET objectives, while z2 is

employed to decouple the MMU constraint. The function m(z2)

enforces the MMU constraint and is defined as Equation 9:

m(z2) =
0, if z2 ∈ 0f g ∪  ½ɡ, +∞),

+∞, otherwise :
:

(
(9)

By incorporating the dummy variables and introducing the

appropriate constraints, the LET optimization problem is

transformed into a standard form that can be effectively solved

using the ADMM algorithm.
2.4 The algorithm via ADMM

The augmented Lagrange function of Equation 8 is indeed as

Equation 10:

L(x, z1, u1, z2, u2) = f (x) + g(z1) +m(z2)

+r1 x − z1 + u1 ‖2 +r2
�� ��x − z2 + u2 ‖2,

(10)

where u1 and u2 are the scaled dual variables associated with the

equality constraints, and r1 and r2 are the penalty parameters

controlling the strength of the penalty terms.

The ADMM iteration loop, which aims to solve the

optimization problem defined by Equation 8, can be summarized

as Equation 11:

xk+1 = argmin  
x

L x, zk1, u
k
1, z

k
2, u

k
2

� �
,

zk+11 = argmin  
z1

L xk+1, z1, u
k
1, z

k
2, u

k
2

� �
,

uk+11 = uk1 + xk+1 − zk+11 ,

zk+12 = argmin  
z2

L xk+1, zk+11 , uk+11 , z2, u
k
2

� �
,

uk+12 = uk2 + xk+1 − zk+12 :

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(11)

For the x sub-problem (also noted as the dose sub-problem), its

specific form is to solve the following problem (Equation 12):

xk+1 = arg min  
x

Ax − bk k2+r1 x − zk1 + uk1
�� ��2+r2 x − zk2 + uk2

�� ��2,
(12)

Therefore, updating x comes from the optimal condition of the

dose sub-problem taking ∂xL = 0 (29, 34), and its solution form is

shown in Equation 13:
Frontiers in Oncology 04
xk+1 = ½ATA + r1 + r2ð ÞI�−1 r1 zk1 − uk1
� �

+ r2 zk2 − uk2
� �

+ ATb
h i

(13)

The dose sub-problem is formulated as a differentiable least

squares problem, requiring the solution of a system of linear

equations. In this problem, the coefficient matrix is symmetric

and positive definite. To solve this problem efficiently, numerical

algebra techniques such as the preconditioned conjugate gradient

method (PCG) (35) can be utilized.

The specific form of the z1 sub-problem, referred to as the LET

sub-problem, is to solve the following problem (Equation 14):

zk+11 = argmin  
z1

 g(z1) + r1 ‖ xk+1 − z1 + uk1 ‖2, (14)

It presents a nonlinear least squares problem, which differs from

the dose sub-problem. The most suitable method is the gradient

descent method to address this sub-problem within the LET

optimization framework. Three main types of solvers are

commonly used: the gradient algorithm, the quasi-Newton

algorithm, and the trust region algorithm. For example, the

Barzilar-Borwein (BB) method (36), the limited memory

Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS) (37) and

the Levenberg-Marquardt-Fletcher method (LMF) (38).

For the z2 sub-problem (Equation 15):

zk+12 = arg  min 
z2

 m(z2) + r2 ‖ xk+1 − z2 + uk2 ‖2, (15)

it has analytical solution given by Equation 16 (31):

zk+12 = S(xk+1 + uk2,ɡ), (16)

where the projection operator S(z, g) is defined as Equation 17:

S(z,ɡ) =
0, z < ɡ=2

max (z,ɡ), if z ≥ ɡ=2
:

(
(17)

In other words, if the value z is less than half of the threshold g,

the projected value is set to 0. Otherwise, if z is greater than or equal

to g/2, the projected value is the maximum of z and g. Applying this

projection operator can efficiently solve the z2 sub-problem,

ensuring that the MMU constraint is satisfied.
2.5 Materials

Three representative cases were selected for testing the

proposed method, including brain (50 Gy in 25 fractions), liver

(60 Gy in 30 fractions), and prostate (60 Gy in 30 fractions). To

generate the dose influence matrix and LET influence matrix, an

open-source treatment planning platform called matRad (39) was

utilized. The beam spot lateral spacing was set to 5 mm, and the

dose grid had a resolution of 3 mm3. It is worth noting that the

MMU threshold, denoted as g, was set to 1.1 MU, which

corresponds to the limit for the Varian ProBeam system (32).

A fair comparison was performed between the new method

(ADMM-LET) and a state-of-the-art method (ICR) (25). The ‘ICR’

refers to just considering the dose optimization, while the ‘ICR-LET’

denotes the LET optimization using the ICR method. Four proton
frontiersin.org
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beams (45°, 135°, 225°, 315°) were used for brain and liver, and two

proton beams (90°, 270°) were used for prostate. The beam angle

setting was the same as that of the published ICR method for better

comparison of method. Besides, it is worth noting that all plans,

including ‘ICR’, ‘ICR-LET’, and ‘ADMM-LET’, utilized the same

dose objective. Furthermore, the LET objective was consistent for

the ‘ICR-LET’ and ‘ADMM-LET’ plans, ensuring a fair and

meaningful comparison between the methods.

The ADMM-LET results presented in this study utilize the BB

method as the solver for the LET sub-problem. The details on

determining the LET sub-problem solver, including the BB, L-

BGFS, and LMF method, are provided in Supplementary Material

Section 1.
2.6 Evaluation plan

The dose distribution was evaluated using the conformity index

(CI) and dose-volume histogram (DVH), and the LET-volume
Frontiers in Oncology 05
histogram (LVH) was evaluated to assess the LET distribution.

The CI measures the conformity of target coverage and is defined as

Equation 18 in matRad (39):

CI =
V2
95

V � VD95
, (18)

where V95 represents the volume of the target receiving at least

95% of the prescription dose, V is the target volume, and VD95 is the

total volume enclosed by at least 95% of the prescription isodose

line. An ideal CI value is 1, indicating perfect conformity.
3 Results

Figures 1–3 present the dose and LET distributions and their

corresponding volume histograms for three representative

examples. The assessment for all plans is summarized in Table 1.

In addition, the convergence comparison of solutions between the

ICR-LET plan and the ADMM-LET plan is presented in Figure 4,
FIGURE 1

The brain case. A representative slice of dose distribution for (A) ICR plan; (B) ICR-LET plan; (C) ADMM-LET plan (the display window is [0, 120%] of
prescription dose). A representative slice of LET distribution for (D) ICR plan; (E) ICR-LET plan; (F) ADMM-LET plan (the display window is [0, 6] keV/
µm). (G, H) Comparison of DVH, LVH between ICR (dashed line), ICR-LET (dotted line), and ADMM-LET (solid line). D, Dose; L, LET.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1328147
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fan et al. 10.3389/fonc.2024.1328147
and the information regarding the computational efficiency of

different methods is provided in Table 2.
3.1 The brain case

The ICR, ICR-LET, and ADMM-LET plans demonstrate

similar dose distributions. The ICR and ADMM-LET plans

achieve a CI of 0.91, and the CI of the ICR-LET plan is 0.92.

Representative dose distribution slices for these plans are shown

in Figures 1A–C, while Figure 1G compares the corresponding

DVH. The LET distribution, as depicted in Figures 1D–F,

indicates improved results for the ICR-LET and ADMM-LET

plans compared to the ICR plan. The ADMM-LET plan exhibits

the most favorable LET distribution among the three plans.

Specifically, the mean LET (unit: keV/μm) within the CTV

increased from 3.76 (ICR) to 4.61 (ICR-LET) and 4.83 (ADMM-

LET), respectively. The maximum LET (unit: keV/μm) at the optic

chiasm decreased from 5.13 (ICR) to 4.11 (ICR-LET) and 3.97

(ADMM-LET), respectively.
Frontiers in Oncology 06
3.2 The liver case

For the liver case, both the ICR-LET and ADMM-LET plans

exhibit similar dose distributions. The CI of the ADMM-LET plan

(0.81) and the ICR-LET plan (0.88) is slightly lower than that of the

ICR plan (0.89). Figures 2A–C display representative dose

distribution slices for the three plans, and Figure 2G compares

the corresponding DVH. As depicted in Figures 2D–F, the LET

distribution shows improved results for the ICR-LET and ADMM-

LET plans compared to the ICR plan. Notably, the ADMM-LET

plan exhibits the most favorable LET distribution among the three

plans. Specifically, the mean LET (unit: keV/μm) within the CTV

increased from 3.55 (ICR) to 4.98 (ICR-LET) and 5.50 (ADMM-

LET), respectively.
3.3 The prostate case

The three plans yield similar dose distributions, with respective

CI values of 0.72, 0.75, and 0.73. Figures 3A–C display
FIGURE 2

The liver case. A representative slice of dose distribution for (A) ICR plan; (B) ICR-LET plan; (C) ADMM-LET plan (the display window is [0, 120%] of
prescription dose). A representative slice of LET distribution for (D) ICR plan; (E) ICR-LET plan; (F) ADMM-LET plan (the display window is [0, 7] keV/
µm). (G-H) Comparison of DVH, LVH between ICR (dashed line), ICR-LET (dotted line), and ADMM-LET (solid line). D, Dose; L, LET.
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representative dose distribution slices for these plans, and Figure 3G

compares the corresponding DVH. Representative slices of the LET

distribution in Figures 3D–F indicate improved LET distributions

for both the ICR-LET and ADMM-LET plans compared to the ICR

plan. Notably, the ADMM-LET plan demonstrates the most

favorable LET distribution among the three plans. Specifically, the

mean LET (unit: keV/μm) within the CTV increased from 3.24

(ICR) to 3.32 for both the ICR-LET and ADMM-LET plans. The

mean LET (unit: keV/μm) at the rectum decreased from 2.87 (ICR)
Frontiers in Oncology 07
to 2.65 (ICR-LET) and 2.14 (ADMM-LET), respectively. Moreover,

the mean LET (unit: keV/μm) at the bladder decreased from 1.56

(ICR) to 1.51 (ICR-LET) and 1.40 (ADMM-LET), respectively.
4 Discussion

The topic of LET optimization in proton beam therapy has

garnered significant interest within the particle therapy community
FIGURE 3

The prostate case. A representative slice of dose distribution for (A) ICR plan; (B) ICR-LET plan; (C) ADMM-LET plan (the display window is [0, 120%]
of prescription dose). A representative slice of LET distribution for (D) ICR plan; (E) ICR-LET plan; (F) ADMM-LET plan (the display window is [0, 7]
keV/µm). (G-H) Comparison of DVH, LVH between ICR (dashed line), ICR-LET (dotted line), and ADMM-LET (solid line). D, Dose; L, LET.
TABLE 1 The dose and LET evaluation parameters of all plans.

Disease Site Region of Interest Quantity ICR ICR-LET ADMM-LET

Brain
CTV
OpticChiasm
OpticNerve_R

CI
Mean LET
Max LET
Max LET

0.91
3.76
5.13
3.10

0.92
4.61
4.11
5.45

0.91
4.83
3.97
1.97

Liver CTV
CI
Mean LET

0.89
3.55

0.88
4.98

0.81
5.50

Prostate
CTV
Bladder
Rectum

CI
Mean LET
Mean LET
Mean LET

0.72
3.24
1.56
2.87

0.75
3.32
1.51
2.65

0.73
3.32
1.40
2.14
conformity index, CI; linear energy transfer, LET (unit: keV/μm).
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(8–10, 12, 13, 20–23, 25). Among the various optimization

frameworks available, ADMM has emerged as a prominent

approach for addressing this challenge and has been successfully

employed in numerous inverse optimization studies (15, 30, 26, 31,

32). The results of this study demonstrate that ADMM-LET has the

potential to effectively regulate the distribution of LET while

preserving the dose distribution. By leveraging the ADMM

framework, the proposed method balances dose objectives, LET
Frontiers in Oncology 08
objectives, and the MMU constraint. ADMM-LET enables the

generation of treatment plans that optimize the dose distribution

and control the LET distribution, leading to improved

treatment outcomes.

Some existing studies only spare the LET distribution in OARs

(12, 25, 40). However, it is also important to transfer high LET

distribution from OARs to the tumors (21, 23, 24). Therefore, the

optimization objective of LET in this study is not only to reduce the
A

B

C

FIGURE 4

Convergence comparison of solutions between the ICR-LET plan with the ADMM-LET plan. (A) Brain case, (B) Liver case, and (C) Prostate case.
TABLE 2 The dimension information of the optimization problem and the computational efficiency of different methods.

Disease Site Number of Voxels Number of Spots Optimization Time

ICR ICR-LET ADMM-LET

Brain 8739 3559 22s 60s 68s

Liver 458093 3752 28s 458s 152s

Prostate 80367 6180 188s 1333s 490s
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high LET distribution in OARs but also to transfer the high LET

distribution from OARs to the tumors.

LET optimization in IMPT is a bi-objective optimization

problem, where the goal is to find a trade-off between dose

distribution and LET distribution. The solution to the problem

requires how the bi-objective trade-off is considered. ADMM-LET

achieves this trade-off by adjusting the weight value of the

objectives. This trade-off method is not specific to ADMM-LET

and can be applied to other optimization algorithms. In

Supplementary Material Section 2, the test results demonstrate

that optimizing the LET distribution more can lead to a

compromise in the dose distribution. This trade-off between the

objectives is inherent due to the physical characteristics of proton

beams. Through the ADMM-LET platform, we could find a suitable

weight value that can ensure the dose distribution and modulate the

LET distribution well.

On the other hand, this study’s results and phenomena are

based on a fixed number of gantry angles in the IMPT. The degree

of freedom will significantly increase with the new development of

Spot-scanning Proton Arc therapy (SPArc). Recent publications

indicated a better ability of LET modulation with more beam angles

(41–45). In SPArc therapy, the beam angle or arc trajectory

selection and its associated spot and energy layer placement or

optimization play a critical role in LET optimization (24, 41).

Furthermore, to make the LET-integrated SPArc therapy more

challenging, the treatment delivery time plays a key role in the

degree of freedom. The number of spots, the energy layer, and the

proton gantry’s mechanical constraint determine the total delivery

time. Thus, this study serves as a starting point toward the

advantage of SPArc LET optimization.

A recent study has highlighted that while ADMM effectively

solves the optimization problem in IMPT with small MMU

thresholds, it may face challenges when dealing with larger MMU

thresholds (19). In such cases, alternative methods are required to

tackle the LET optimization problem. One promising approach for

addressing the optimization problem with larger MMU thresholds

is the stochastic coordinate descent method (19). However, the

specific implementation and utilization of this method for LET

optimization in IMPT still needs further investigation. Besides, the

ADMM-LET method proposed in this study currently relies on the

open-source dose calculation and optimization toolkit [matRad

(39)] for proton therapy treatment planning. This is still a long

way from a commercial treatment planning system (TPS).

Therefore, this is a direction that this study needs to strive for in

the future.
5 Conclusion

This work proposed an ADMM-based approach for solving the

LET optimization problem with a non-convex MMU constraint in

IMPT. The results demonstrated that the ADMM framework could

balance the dose and LET objectives while considering the MMU

constraint, which has the potential advantage of modulating the

LET distribution in IMPT treatment plans.
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