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Pancreatic tumors are small in size, diverse in shape, and have low contrast and

high texture similarity with surrounding tissue. As a result, the segmentation model

is easily confused by complex and changeable background information, leading to

inaccurate positioning of small targets and false positives and false negatives.

Therefore, we design a cascaded pancreatic tumor segmentation algorithm. In the

first stage, we use a general multi-scale U-Net to segment the pancreas, and we

exploit a multi-scale segmentation network based on non-local localization and

focusing modules to segment pancreatic tumors in the second stage. The non-

local localizationmodule learns channel and spatial position information, searches

for the approximate area where the pancreatic tumor is located from a global

perspective, and obtains the initial segmentation results. The focusing module

conducts context exploration based on foreground features (or background

features), detects and removes false positive (or false negative) interference, and

obtains more accurate segmentation results based on the initial segmentation. In

addition, we design a new loss function to alleviate the insensitivity to small targets.

Experimental results show that the proposed algorithm canmore accurately locate

pancreatic tumors of different sizes, and the Dice coefficient outperforms the

existing state-of-the-art segmentationmodel. The codewill be available at https://

github.com/HeyJGJu/Pancreatic-Tumor-SEG.
KEYWORDS

pancreatic tumor segmentation, cascaded algorithm, deep learning, non-local
localization module, focusing module
1 Introduction

Pancreatic cancer is a malignant tumor of the digestive tract characterized by poor

therapeutic effects and unfavorable prognosis. Although this cancer currently accounts for

a mere 3% of total cancers in the United States, its malignancy remains the fourth leading

cause of cancer deaths in the United States (1). Pancreatic cancer patients have a 26% five-

year survival rate if the cancer is not metastatic and localized after diagnosis, and only 2%
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otherwise (2). Unfortunately, the pancreas is hidden behind the

liver and intestines, and conventional ultrasound examinations are

limited to the detection of pancreatic tumors larger than 3 cm. This

constraint poses challenges for achieving early diagnosis. If the

tumor is malignancy, it frequently manifests at an advanced stage,

accompanied by metastasis to other anatomical regions of the body

(3). Therefore, early localization and measurement of the location

and extent of pancreatic tumors (i.e., segmentation) are crucial for

the diagnosis and radiotherapy of advanced pancreatic cancer. In

clinical practice, radiologists manually delineate the boundaries of

pancreatic tumors in medical images following clinical experience.

Given that one single abdominal scan of a patient typically

comprises 100 to 200 slices at 5mm intervals, annotating these

slices would directly escalate the workload and time cost for

radiologists. In addition, the subjective factors among different

radiologists may result in disparities in the labeling results for

identical medical images, leading to deviations in the treatment

plan. Inappropriate treatment plans can lead to delays in the

condition and cause patients to miss the optimal time for timely

intervention. To reduce the burden on doctors and improve the

accuracy and objectivity of pancreatic tumor recognition, certain

scholars have conducted research on automatic tumor lesion

segmentation based on Deep learning.

Several efforts have been attempted for automating organ or

lesion segmentation, especially regularly-shaped and large-area

targets (4–7) such as lungs, liver, and heart. These efforts have
Frontiers in Oncology 02
achieved exciting performance. There are limited studies on

pancreatic tumor segmentation, and existing works (8–11) mainly

rely on attention modules or prior cues to enhance the feature

representation of the entire 2D or 3D pancreatic tumor images.

Nonetheless, these methods primarily emphasize the salient regions

within the image, making it challenging to pay attention to the local

details of the target. This is mainly because (1) As shown in

Figure 1A, the red highlighted area represents the pancreatic

tumor area, which accounts for a small proportion of the input

image. This leads to the network being easily confused by complex

and variable background information during training, resulting in

inaccurate tumor localization. (2) As shown in Figure 1B, the green

contour line represents the boundary of the pancreatic tumor. The

pancreatic tumor exhibits low contrast with the surrounding

background, and the boundary line is indistinct, resulting in

challenges such as false positives and undersegmentation issues

during the pancreatic tumor segmentation process. To accurately

locate and measure pancreatic tumors from medical images, clinical

doctors usually first determine the location of the pancreas to

ascertain the approximate range of a pancreatic tumor.

Subsequently, they carefully identify and reduce the range until a

clear pancreatic tumor is identified. Inspired by the doctor’s

diagnostic process, we propose a cascaded automatic neural

algorithm for pancreatic tumor segmentation, which consists of

two stages to gradually segment tumor targets. The prediction

probability map in the first stage reduces the input scale in the
A B

FIGURE 1

Different labeling patterns for pancreatic tumors. (A) Tumor area labeling; (B) Tumor contour labeling.
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second stage, effectively reducing substantial background

interference. These two stages are connected by salient change

modules and are joint ly optimized through gradient

backpropagation to sequentially segment the pancreas and

pancreas tumors. In the second stage, we further carefully design

a multi-scale pancreatic tumor segmentation network based on

non-local localization and focusing modules on solving the under-

segmentation or false-positive pancreatic tumors. Specifically, we

use a multi-scale U-Net network as the backbone to extract and fuse

multi-level features of pancreatic tumors, and further input these

features into five convolutional layers to reduce channels. Then, we

use our non-local localization module at the highest level of the

encoder to locate the approximate area of pancreatic tumors.

Finally, we design multiple focusing modules to gradually detect

and eliminate false negative and false positive interference. We find

that the low proportion of small-scale pancreatic tumors in the Loss

function is the main reason for the missed segmentation of

pancreatic tumors. Therefore, we introduced a Loss function

based on the shared boundary between classes to improve the

contribution of small-scale pancreatic tumors to network training.

Our main contributions are summarized as follows:
Fron
• We propose a novel cascaded automatic neural algorithm

for the pancreatic tumor segmentation task. This algorithm

contains two stages, which are jointly optimized by gradient

backpropagation during training.

• We employ multi-scale U-Net as the backbone to obtain

deeper feature representations of pancreatic tumors. In the

second stage, we carefully designed a non-local localization

module and a focus module to capture target detail feature

representations, alleviating the under-segmentation and

false positives problems.

• We use the Sørensen–Dice coefficient, sensitivity, and

specificity to perform comparative experiments with other

state-of-the-art methods on the pancreatic tumor

segmentation dataset and pancreas segmentation dataset.

The experimental results show that our algorithm exhibits

the most superior performance in both segmentation

evaluation indicators and visual effects.
2 Related work

In the past decade, Deep learning algorithms have made great

achievements in the field of computer vision, especially in

computer-aided diagnosis (CAD). Segmentation of various organs

and tumors using medical images is always a mainstream task in

CAD. Due to the intuitive representation of tissues and organs

through medical images, high-quality medical images play an

important role in disease diagnosis. At present, there are various

medical imaging methods. Computed Tomography (CT) (12) and

Nuclear Magnetic Resonance Imaging (NMRI) (13) can clearly

reflect the anatomical structure of various tissues in the human

body, and are usually used in tumor diagnosis. Due to the sensitivity

of CT images to the area where the lesion occurs, they can display
tiers in Oncology 03
the location, size, and whether the tumor has metastasized. So the

application of CT images is more extensive.

At present, there has been a lot of research on medical image

segmentation tasks. The U-Net (14) adopted an encoder-decoder

structure and high-low feature skip connections, which can achieve

excellent segmentation results from a small amount of training data.

So the model was very suitable for medical image segmentation.

However, the fatal weakness of this Convolutional neural network is

that it pays equal attention to the features extracted from the image.

This problem results in the same impact of input features on the

model, causing the model to be unable to focus directly on the target

and reducing the rate of convergence of the model. Some works

introduced attention mechanisms to improve the accuracy of

medical image segmentation models. Ashish Sinha et al. (15)

utilized a self-attention mechanism to capture rich contextual

information and construct a dependency relationship between

local and global features. The model achieved better segmentation

performance in abdominal organs, cardiovascular structures, and

brain tumor segmentation experiments. Guimin Hou et al. (16)

proposed a medical image segmentation network based on attention

mechanism and feature fusion. A dual attention module composed

of parallel channels and spatial attention branches was added to the

backbone network to adaptively calibrate and weight features,

achieving the highest segmentation accuracy in the segmentation

experiment of the aorta and lung. Bangcheng Zhan et al. (17)

designed a multi-attention News aggregator to aggregate globally

effective features by fusing multi-level local attention. This model

solved the problem that the net paid too much attention to the

features of interest while ignoring the secondary salient features,

and obtained excellent evaluation results on the medical image

segmentation dataset. There were many other medical image

segmentation tasks that incorporated attention methods, such as

(18–20). Although these models based attention have achieved good

results, they were all designed for segmentation of large organs such

as the lungs (21), heart (22), liver (23), brain (24) or well-defined

tumors. Medical image segmentation tasks with small target scales,

blurred boundaries, and high background similarity such as

pancreatic tumors do not perform well.

Recently, some researchers have designed some models for the

segmentation of pancreatic tumors. Taleb et al. (9) proposed five

different 3D self-supervised methods for pancreatic tumor

segmentation in order to learn more features from unlabeled 3D

images and reduce the cost of manual annotation. Wang et al. (25)

proposed a model that took a 2D network as the backbone, used an

attention mechanism as the bridge to train classifiers, and used

Inductive Attention Guidance Network (IAG-Net) to obtain the

segmentation results of pancreatic cancer. It achieved image-level

and pixel-level segmentation. Zhu et al. (26) used a pancreatic tumor

segmentation network with multiple different input scales, with sizes

of 643 323 and 163, respectively. The network adopted a coarse and

fine segmentation strategy. This strategy first used a network with an

input image size of 643 for coarse segmentation and then used a

network with input scales of 323 and 163 to search for small

pancreatic tumors that may have been missed in the coarse

segmentation results. Simultaneously the network introduced non

parametric post-processing algorithms to remove erroneous
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segmentation results. These three methods were all one-stage

networks, although they showed some improvement in the

segmentation effect of pancreatic tumors. However, pancreatic

tumors of the small scale only occupy a small part of CT images

and have high variability in shape and position. These one-stage

networks cannot accurately locate pancreatic tumors, thus affecting

the segmentation results. Therefore, some researchers proposed the

two-stage segmentation algorithm. Jie Xue et al. (27) proposed a

cascaded multitasking 3D fully convolutional network (FCN) for

automatically segmenting the pancreas. The network consisted of two

parts. The first part focused on quickly locating the pancreatic region,

while the second part used a multi-task FCN with dense connections

to refine the segmented image for fine pixel segmentation. Qi Li et al.

(28) proposed a 3D full Convolutional neural network with three

temperature guidance modules, namely, balance temperature loss,

rigid temperature optimizer, and soft temperature indicator, to

achieve pancreatic tumor segmentation. The rigid temperature

optimizer utilized the Metropolis principle to guide the global

training of the network. When the model was stable, the training

loss and learning rate were updated to optimize the network

according to the soft temperature indicator. 3D networks can

combine information between image layers to ensure the continuity

of changes between image masks, thus improving performance to a

certain extent. However, the 3D network limits the maximum

receptive field of the network, losing some global information. This

type of network occupies too much video memory, resulting in the

conventional GPU limiting the training and testing of the network,

and hindering the further application of clinical diagnosis. There was

little research on the two-stage pancreatic tumor segmentation

algorithm based on 2D. Zhou et al. (29) proposed a two-stage

network for pancreatic tumor segmentation based on the high

correlation between pancreatic and pancreatic tumor locations,

which segmented pancreatic tumors on the basis of relatively easy
Frontiers in Oncology 04
pancreatic segmentation tasks. The network consisted of two stages.

The first stage segmented the pancreas. The second stage segmented

pancreatic tumors and the first stage provided location information

for the second stage. However, when optimizing the network, the

segmentation models of the two stages were optimized separately,

resulting in inconsistent training and testing processes. To solve this

problem, we connect the two stages through a saliency change

module and use gradient backpropagation for joint optimization to

improve their respective segmentation performance. In addition, on

the basis of adding channel attention and spatial attention, we

improve the multi-scale feature extraction network to extract multi-

scale pancreatic tumor features. In order to alleviate the problem that

small targets have relatively little impact on model training, we

improve the overall Loss function and increase the contribution of

small pancreatic tumors to the Loss function.
3 Methods

Our goal is to accurately segment pancreatic tumors from a given

abdominal CT scan. As shown in Figure 2, we design a cascade

segmentation neural algorithm for segmenting pancreatic tumors.

The algorithm contains two stages with a multi-scale U-Net as the

backbone, where the first stage uses a multi-scale U-Net as the basic

network to segment the approximate pancreatic region as the input for

the second stage. In the second stage, we carefully design a multi-scale

U-Net network based on non-local localization and focusing modules

to segment pancreatic tumors to alleviate the problems of under-

segmentation and false positives. In the training process, the small-scale

pancreatic tumor is easily ignored due to its small contribution to the

loss function, so we introduce an inter-class shared boundary-based

metric for assisting the algorithm to obtain more robust parameters.

We next detail the two stages and the loss function settings.
FIGURE 2

A two-stage cascade segmentation algorithm for pancreatic tumors.
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3.1 Multi-scale pancreas
segmentation network

Pancreatic tumors, with variable scale and shape, and only a

small part of the input data, bring certain difficulties to accurate

segmentation. Pancreatic tumors are often closely related to the

pancreas, so accurately locating the pancreas helps measure

pancreatic tumors. Thus, we design a multi-scale pancreas

segmentation network, which extracts and fuses multi-level

features of the pancreas with the different sizes of convolutional

kernels and connects with the network in the second stage by salient

change modules.

3.1.1 Multi-scale U-Net network
We design a multi-scale U-Net network to extract and fuse

contextual information from images at different scales, aiming to

achieve high-precision pancreatic segmentation. As shown in

Figure 3, each convolutional layer uses three convolutional

kernels with different scales to extract features, which carry

contextual information of multiple scales and retain fine-grained

pancreatic position information. Multi-scale U-Net networks have a

similar architecture to U-Net networks, both of which include a

contraction and expansion stage with skip connections. Unlike U-

Net with only one branch during the contraction phase, a multi-

scale U-Net network consists of two encoder branches. In addition,

the multi-scale U-Net network has two skip connections between

the encoder and decoder, which allows the network to retain high-

resolution features and transmit them to the decoder. Specifically,

for the i-th block, we represent the outputs of its two encoders as

Ci,1 and Ci,2, and the output of the next block Ci+1,1 and Ci+1,2 can be

represented as Equations 1 and 2.

Ci+1,1 = p(conv3�3(conv3�3(Ci,1))) (1)

Ci+1,2 = p(conv3�3(conv1�1(Ci,2))⊕ conv3�3(conv5�5(Ci,2))) (2)
Frontiers in Oncology 05
where convn�n represents the convolution operation with a

kernel size of n×n. C0,1 and C0,2 represent the input image of the

network, C0,1 = C0,2. p(⋅) represents the maximum pooling

operation. ⊕ represents a concatenation operation. For the

central layer, C5,1 and C5,2 can be represented as Equation 3.

C5 = C5,1 = C5,2 = conv3�3(conv1�1(C4,1))

⊕conv3�3(conv3�3(C4,2))

⊕conv3�3(conv5�5(C4,2))

(3)

In this network, from the first block to the fourth block, each

block is applied with three convolutional kernels of different sizes,

namely 1×1, 3×3, 5×5, which can capture image features at three

different scales. In general, when we perform downsampling

operations, the feature dimension will decrease and some semantic

information will be lost. To address this problem, we add a 1×1

convolutional kernel to the second branch of the encoder to enhance

the model’s representation ability. In the decoder section, the original

U-Net architecture copies features after the second convolutional

layer of the encoder and connects them to the corresponding layer of

the decoder. In our multi-scale U-Net network, the output of the first

branch in the encoder is concatenated with the first convolution

result of the corresponding decoder. The output of the second branch

in the encoder is concatenated with the second convolution result of

the decoder, and the features of the blocks in the two encoders are

fused to enrich contextual information. If Ui is the output of the i-th

upsampled block, the output of the previous block can be expressed

mathematically as Equation 4.

Ui−1 = conv3�3((conv3�3(DeConv(Ui)⊕ Ci−1,1))⊕ Ci−1,2) (4)

where DeConv(·) represents deconvolution operation.

3.1.2 Salient change module
Cascade segmentation strategies are widely used in scenarios

with small target proportions in various fields. The existing

methods (8, 30) obtain the approximate region of the target in
FIGURE 3

Architecture of multi-scale U-Net network.
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the first stage as input for the second stage, and then finely segment

the target in the second stage. The two stages of these methods are

trained separately, meaning that the gradients in the second stage

cannot update the network in the first stage. However, during

testing, these two stages collaborate with each other in an iteration,

resulting in inconsistent training and testing processes. What’s

more, it is difficult to combine multi-level visual features into

segmentation. For instance, the segmentation mask from the first

stage, which carries rich feature information, is typically discarded

except for the bounding box. This may result in poor convergence

of the second stage network. To alleviate this disadvantage, we

design a salient change module that connects the first and second

stages. The salient change module uses the segmentation probability

map from the first stage as prior information for the second stage,

which can connect the two stages. During training, the first and

second stages can be jointly optimized to improve their respective

segmentation performance.
3.2 A multi-scale pancreatic tumor
segmentation network based on non-local
localization and focusing

Pancreatic tumors have similar intensity and low contrast to the

surrounding background in CT imaging and are highly correlated

with camouflaged object detection and segmentation tasks. Inspired

by the work of camouflaged object detection (31), we design a

multi-scale pancreatic tumor segmentation network based on non-

local localization and focusing modules on the second stage of the

algorithm. Specifically, as shown in Figure 4, we first use a multi-

scale U-Net encoder to extract multi-level features and input these

features into five convolutional layers to reduce the number of
Frontiers in Oncology 06
channels. Then, a non-local localization module is added at the

highest level of the encoder to locate the approximate area of the

pancreatic tumor. Finally, a multiple focusing module is used to

gradually detect and eliminate false negative and false positive

interference. The input of the second stage is obtained by

cropping the original image based on the segmentation

probability map P output from the first stage.

A cropping function is defined, denoted as “crop”, and P is used

as the reference image to binary it to Z. Pixels in Z that are not 0 are

searched for, and the minimum 2D boundary including all pixels is

calculated. The matrix is enlarged with a K-pixel wide margin, and

crops the original coarse scale image accordingly. By reducing the

input region in the second stage, the multi-scale pancreatic tumor

segmentation network based on non-local localization and focusing

can focus on smaller targets, preventing pancreatic tumors from

being confused by the background region.

3.2.1 Non-local localization module
The non-local localization module consists of a channel

attention module and a spatial attention module, used to capture

feature information between channels and spatial positions and to

search for potential pancreatic tumors from a global perspective.

The detailed structure of the non-local positioning module is

shown in Figure 5. Given the top-level features of the multi-scale U-

Net network decoder F ∈ RC�H�W , where C represents the number

of channels, H represents height, and W represents the width, then

the features F are reshaped to obtain queries Q, keys K, and values

V, where Q,K ,Vf g ∈ RC�N ,N = H �W and H, W are all pixel

values. Then matrix multiplication is performed on the

transposition of Q, and K, and the channel attention map is

calculated using the softmax function. The formula for the above

process is shown in Equation 5.
FIGURE 4

A multi-scale pancreatic tumor segmentation network based on non-local localization and focusing.
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xi,j =
exp(Qi : � Kj :)

oc
j=1exp(Qi : � Kj :)

(5)

where Qi : represents the i-th row of the matrix Q,Kj : represents

the j-th row of the matrix K , and xi,j represents the calculated

impact of the j-th channel on the i-th channel. Then we perform

Matrix multiplication between the matrix and the matrix, and the

resulting matrix reshape is RC�H�W . Finally, in order to enhance

fault tolerance, we multiply the obtained results by parameters g
and complete skip connection with the feature map F. The formula

for the above process is shown in Equation 6.

F
0
i : = go

c

j=1
(xi,j � Vj :) + Fi : (6)

where g is a learnable proportional parameter that gradually learns

weights from the initial value, with an initial value of 1. The final feature

F0 can capture long-term semantic information between feature map

channels, which is more recognizable than the initial feature F.

After obtaining the output feature F0 of the channel attention

mechanism, it will be used as the input for the spatial attention

mechanism. First, we use three convolution kernels of 1×1 after

inputting the features F’. The result of convolution is reshaped to

obtain three new feature maps Q0, K 0 and V 0, where Q,Kf g ∈
RC1�N ,C1 = c=8,V 0 ∈ RC�N . Then perform Matrix multiplication

on the transposition of Q0,K 0, and use the Softmax normalization

function to calculate the spatial attention map X 0 ∈ RN�N . The

formula for the above process is shown in Equation 7.

x
0

i,j =
exp(Q

0

: i � K
0

: j)

oN
j=1exp(Q

0
: i � K

0
: j)

(7)
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where Q
0
: i represents the i-th column of the matrix Q′, K

0
: j

represents the j-th column of the matrix K′, and x
0
i,j represents the

calculated impact of the j-th position on the i-th position. Then we

perform Matrix multiplication between the matrix X
0
and the matrix

V
0
, and the resulting matrix is reshaped RC�H�W . Finally, similar to

the channel attention mechanism, in order to enhance fault tolerance,

we multiply the obtained results by the parameters g
0
and complete

skip connection with the feature map F
0
. The formula for the above

process is shown in Equation 8.

F”
i : = g

0
o
N

j=1
(V

0
: j � x

0
j,i) + F

0
: i (8)

where g
0
is gradually updated from the initial value, and the

initial value is also set to 1. The final feature F” can capture the

semantic correlation between feature map positions.

After obtaining the feature map F”, we connect a convolutional

kernel with padding of 3 and size of 7×7 after F” to obtain the

approximate area where the pancreatic tumor is located. Then the

localization of the pancreatic tumor will be gradually improved by

the focusing module.

3.2.2 Focusing module
Due to the low contrast between some pancreatic tumors and

the surrounding background, tumors segmented through the

multi-scale U-Net network and the localization module often

suffer from undersegmentation and false positives. To remove

these erroneous segmentation errors, we perform contextual

inference when predicting the target area (32). In order to detect

false negative interference that is different from the determined

background prediction area or false positive interference that is
FIGURE 5

Illustration of non-local localization module.
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different from the determined foreground prediction area, we

propose a focusing module. The focusing module takes the

current layer features, higher-level features, and predictions of

the multi-scale U-Net network decoder as inputs, and outputs

more refined features and more accurate predictions.

The structure diagram of the focusing module is shown in

Figure 6. Similar to the anti-attention mechanism (33), we first

upsample the prediction results of the higher layer and normalize

them using the softmax function. Then, we multiply the upsampling

reverse and normalized results by the current layer’s features Fc to

obtain background Fba and foreground attention features Ffa.

Afterward, the features of these two parts are input into the context

exploration module, and contextual reasoning is used to detect false

negative interference Ffnd and false positive interference Ffpd.

The context exploration module mainly consists of four

branches, each containing a convolution kernel of 3×3 which is

used to reduce channels, a convolution kernel of Ki×Ki which is

used to extract local features, and a dilation convolution of 3×3

which is used to perceive contextual information. The dilation

factor is ri, where i∈ {1,2,3,4}, Ki is set to 1, 3, 5, 7, and ri is set to 1,

2, 4, 8. Each convolutional layer is connected to a BN layer and a

ReLU nonlinear activation layer. Then we input the output of the

i-th context exploration module into the i+1-th context

exploration module, which can be further processed in a larger

Receptive field, where i∈ {1,2,3}. Finally, these four branches are

overlaid together on the channel dimension and fused through a
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3×3 convolutional layer. With this design, contextual information

can be perceived over a large range, enabling contextual

reasoning and information mining. Following the context

exploration module, false positives and false negatives are

eliminated. The mathematical formulas of the context

exploration module are shown in Equation 9.

Fup = U(CBR(Fh))

Fr = BR(Fup − lFfpd)

F
0
r = BR(Fr + g Ffnd)

(9)

where Fh represents the features of the higher input layer, CBR

represents the combination of the convolutional layer, BN layer,

and ReLU linear activation layer, U represents bilinear upsampling,

F
0
r represents finer features of the output, l and g are all learnable

proportional parameters, with their initial values set to 1. Here, we

use element-by-element subtraction to suppress ambiguous

backgrounds (i.e. false positive interference) and element-by-

element addition to supplement the identified foreground (i.e.

false negative interference). Finally, convolutional layers are used

on more refined features to obtain more accurate prediction maps.

We use real annotations to supervise the generated prediction

graph, forcing it to have a more accurate expression. This can

guide the context exploration module to discover interference in the

form of features, and then perform interference detection

and removal.
FIGURE 6

Structure diagram of focusing module.
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3.3 Loss function and network training

During the entire training phase of the focusing module

structure diagram, the update of network parameter weights

depends on three parts: the segmentation loss of the pancreas in

the first stage, the segmentation loss of the pancreatic tumor in the

second stage, and the measurement loss based on shared boundaries

between classes.

3.3.1 Loss function of pancreas segmentation in
the first stage

The first stage Loss function uses Dice loss, a widely used metric

in medical image segmentation. The Dice loss function formula is

shown in Equation 10.

DiceLoss = 1 −
2 X ∩ Yj j
Xj j + Yj j (10)

where X and Y represent the predicted results and the actual

annotation respectively.

3.3.2 Loss function of pancreatic tumor
segmentation in the second stage

The second stage has five prediction outputs, one from the

localization module and the other four from the focusing

module. For the predicted output from the localization

module, we use the combination of Binary Cross entropy loss

(BCE Loss) and Intersection-over-union loss (IOU loss) as the

loss function. Equation 11 to help the localization module

locate the approximate area where the pancreatic tumor

is located.

Lpm = Lbce + Liou (11)

For the focusing module, our objective is to enhance attention

towards areas prone to confusion, which are usually located at

the boundary area and cavity of the tumor. Therefore, we use the

combination of weighted BCE loss and weighted IOU loss as the

loss function used in the focusing module. The loss function

formula of the focusing module is shown in Equation 12.

Lfm = Lwbce + Lwiou (12)

The overall Loss function of the second stage can be expressed

as Equation 13.

Lseg2 = Lpm +o
5

i=2
2(4,i)Lifm (13)

where Lifm is the loss predicted by the focusing module on the i-

th layer of the multi-scale pancreatic tumor segmentation network

based on non-local localization and aggregation.

Throughout the entire training process, the first stage needs to

provide reasonable spatial weights and position information for the

second stage, indicating that the segmentation in the first stage needs to

be relatively accurate. However, in the early stages of training, the

segmentation results are often inaccurate. Therefore, significant

changes in the operational process of modules greatly affect the
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training effectiveness. We divide the training process into three steps:

S, I, and J. This division is necessary because, during the early stages of

training, the first stage may not accurately generate output, thereby

limiting its ability to provide reliable segmentation results to the second

stage. So, in the first step S, we turn off the saliency transformation

module, optimize the two segmentation modules separately, and use

real annotations as a reference to crop the image, which is used as input

for the second stage. In the second step I, we start optimizing the

saliency change module, allowing the spatial weights of the first stage to

be transmitted to the second stage, while still using real annotations to

control the cropping region. In step three J, we use the output of the

second stage as a reference to control the cropping area, and the entire

network is the same as in the testing stage.

3.3.3 Loss function based on the measure of
shared boundary between classes

The low proportion of small-scale pancreatic tumors in the Loss

function seriously impacts the accurate segmentation of pancreatic

tumors. In the commonly used pixel-by-pixel Cross entropy Loss

function, the large target dominates the network training, while the

small target contributes far less than the large target. Inspired by the

measuring method based on the shared boundary between classes

proposed by Guo et al. (34), we introduce this method to measure

the spatial adjacency between each pair of object classes, and design

a Loss function based on the measure of shared boundary between

classes to solve the problem of small-scale targets.

We define the metric misb based on shared boundaries between

classes as a nc×nc matrix, where nc is the number of divided

categories. The metric based on shared boundaries between classes

is calculated from the pancreatic tumor segmentation result graph s,

where s(x, y) ∈ 1,…, ncf g is the class label at the pixel points (x,y) in
the segmentation graph. The value of misb(i,j) is equal to the ratio of

the length of the boundary shared between the i-th and j-th objects to

the circumference of the i-th object. The li represents the perimeter of

the i-th object and the lij represents the length of the shared boundary

between the i-th and j-th objects. The formula for the (i,j)-th element

in misb can be expressed as Equation 14.

misb(i, j) =
lij
li

(14)

where i = j = 1,…, nc, misb(i, j) is equal to 0. Because the

circumference of different objects is usually different, misb is

usually an asymmetric matrix. For the input image of 1� h� w,

calculating the metric based on shared boundaries between classes

for the segmentation prediction graph, the prediction graph of the

segmentation network is a matrix nc � h� w, which is the

probability that each pixel belongs to a class c ∈ 1,…, ncf g. But
when calculating the matrix misb, the first step is to convert the

predicted probability values into class labels, so that each pixel has

only one class label and the boundary of the class can be

determined. The category of pixel (x, y) is determined by the

category corresponding to the maximum prediction probability.

The mathematical formula for this process is shown in Equation 15.

c* = argmaxc∈1,…,nc s(c, x, y) (15)
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where s(c, x, y) is the probability that pixel points (x, y) are

predicted as category c, c* represents the label corresponding to the

maximum probability value.

In the Loss function based on the measure of shared boundary

between classes, we use the mean squared error loss function. The

mean squared error loss function formula is shown in Equation 16.

Lisb =
1

nc � nco
nc

i=1
o
nc

j=1
(mpred

isb (i, j) − (mgt
isb(i, j))

2 (16)

where mpred
isb (i, j) is the predicted matrix of misb, and mgt

isb(i, j) is

the actual matrix of misb.

3.3.4 Overall loss function
The total loss function is the combination of the loss function

based on the measure of the shared boundary between classes and

the two-stage segmentation loss function:

L = Lseg1 + aLseg2 + bLisb (17)

where Lseg1 and Lseg2 represent the Loss function of the first and

second stages respectively, as well as a and b represent the

proportion of each loss function respectively.
4 Experiment

4.1 Datasets and evaluation criteria

4.1.1 Datasets
Following John Mongan et al. (35), we demonstrate the

effectiveness and superiority of our algorithm on the pancreatic

tumor dataset MSD and the pancreas dataset NIH. The code of our

algorithm will be made public at https://github.com/HeyJGJu/

Pancreatic-Tumor-SEG. Pancreatic tumor dataset MSD: this

dataset comes from the pancreatic tumor segmentation dataset of

the Medical Segmentation Decathlon (MSD) Challenge (36). It

contains 281 available cases in NIFTI format with a resolution of 512

× 512, and the slice spacing is 5mm. Then we convert the NIFTI format

to PNG, resulting in 2537 labeled sections, since there are 4 to 25

pancreatic tumor sections labeled by radiologists in each patient’s CT

sequence.We apply 1957 images of 216 cases as the training sets and the

remaining 580 images from 65 cases as the test sets. Pancreas dataset

NIH: this dataset is developed by the US National Institute of Health

(NIH) (37), which contains 82 available CT scans with a spatial

resolution of 512 × 512 and the slice number varies from 181 to 466.

We apply 5304 images of 62 cases as the training sets and the remaining

1699 images from 20 cases as the test sets.

4.1.2 Evaluation criteria
Sørensen–Dice coefficient (Dice), sensitivity (SEN) and

specificity (SPE) are used in our work. Among them, the

mathematical formula of Dice indicator is shown in Equation 18.

Dice =
2 X ∩ Yj j
Xj j + Yj j =

2TP
2TP + FP + FN

(18)

where, TP represents true positives, indicating that the sample is

identified as a pancreatic tumor and is indeed a pancreatic tumor;
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FP is false positives, signifying that the sample is identified as a

pancreatic tumor when it is not actually a pancreatic tumor but

rather background or other tissue; FN is false negatives, which

means that the sample is determined not to be a pancreatic tumor,

but actually it’s a pancreatic tumor. SEN represents the proportion

of paired positive samples. The mathematical formula of SEN

indicator is shown in Equation 19.

SEN =
A ∩ B
B

=
TP

TP + FN
(19)

SPE and SEN are similar in that they represent the recognition

ability of negative samples. The mathematical formula of SPE

indicator is shown in Equation 20.

SPE =
Ac ∩ Bc

Bc =
TN

FP + TN
(20)

where TN is true negatives, which means that the sample is

judged as the background and actually it is also the

background pixel.
4.2 Implementation details

Our algorithm is implemented by PyTorch and trained on

NVIDIA GeForce RTX 1080 GPU. We use multi-scale U-Net as

the backbone for the pancreatic tumor segmentation branch and

pancreatic tumor segmentation branch. In subsection 4.3.2, the

training process is divided into three stages: S, I, and J. Stage S trains

2 epochs, Stage I trains 4 epochs, and Stage J trains 50 epochs. The

batch size sets the size to 1. The optimizer selects SGD, the learning

momentum is 0.9, the initial learning rate is set to 0.00001, and the

weight attenuation is le-7. The hyperparameters a and b in

Equation 17 are set to 0.9 and 0.4.
4.3 Comparisons with State-of-the-arts
on MSD

4.3.1 Quantitative evaluation
To verify the effectiveness and superiority of our proposed

algorithm, 14 sets of experiments are conducted in this paper,

which are compared with classical segmentation network models

U-Net++ (38), Attention Unet (39), ResNet50 (40), Res_ UNet (41),

U-Net (14), Dense-UNet (42), nnUnet (43), C2FNAS (44), V-NAS

(45), and other existing tumor segmentation models HyperSegNAS

(46), U-Shiftformer (47), DHT-Net (48) and IAG-Net (49). Table 1

shows the detailed comparison results. The segmentation results of

our proposed algorithm have the highest Dice value. Compared

with the classic one-stage U-Net, the Dice value has increased by

10.11%, and compared with the currently best tumor segmentation

model, the Dice value has increased by 1.62%. Overall, our

algorithm has an increase in Dice values ranging from 1.62% to

16.35%, and the SPE value of the algorithm is also the highest,

indicating that the algorithm can effectively solve the problem of

false positives in pancreatic tumor segmentation. The SEN value has

also improved compared to some models, but the overall SEN value
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is still low, indicating that there is still a problem of under-

segmentation in the segmentation results. This may be due to

unclear boundaries of pancreatic tumors and low contrast with

the surrounding background.

4.3.2 Qualitative assessment
The visual comparison of different methods on partial test

image slices is shown in Figure 7. The green contour lines

represent the predicted results of each network, and the red

contour lines represent the true annotations. From the graph, it

can be seen that U-Net and nnUnet often suffer from inaccurate

localization. This is because small-scale pancreatic tumors have a

small coverage range on the input image, resulting in less effective

features learned by the network, and making the entire network

insensitive to small-scale pancreatic tumors. Compared to U-Net

and nnUnet, HyperSegNAS and IAG-Net networks have relatively

better segmentation results compared to other networks, but some

tumors still suffer from undersegmentation and false positives. This

is because pancreatic tumors have a similar appearance to the

background tissue and the boundaries are not clear. Therefore,

when extracting features, the network is easily confused by chaotic

similar regions in the background area, resulting in inaccurate

segmentation. For these challenging issues, our algorithm is able

to achieve segmentation edges that are very close to the true

annotation of pancreatic tumors, resulting in more accurate

segmentation of pancreatic tumors. This is because we design the

segmentation network into two stages. By using the pancreatic

prediction results in the first stage to shrink the input area of

pancreatic tumors in the second stage and provide weight

information for the second stage, we can more accurately locate

the region where the pancreatic tumor is located. Simultaneously,
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multi-scale U-Net networks are used to extract contextual

information and retain fine-grained information, making the

localization of pancreatic and small-scale pancreatic tumors more

accurate. In addition, we design a non-local localization module

that can provide the focusing module with an approximate location

of pancreatic tumors. In contrast, the focusing module can infer

interference information from a complex background similar to

surrounding tissues and eliminate these interferences. Thereby, the

module can generate the real area where pancreatic tumors are

located. Finally, the Loss function is improved by introducing a

method based on the measure of the shared boundary between

classes to increase the contribution of small-scale pancreatic tumors

to the segmentation Loss function, improve the segmentation

accuracy of pancreatic tumors, and make the segmentation

boundary more consistent with the real labeled boundary. The

experimental results once again demonstrate the superiority and

accuracy of our proposed algorithm.
4.4 Comparisons with state-of-the-arts
on NIH

We conduct 11 experiments to compare the effectiveness of our

algorithm in pancreas segmentation with one-stage segmentation

methods such as U-Net (14), Attention Unet (39), Nishio et al. (50),

Li et al. (51), LMNS-Net (52) and the two-stage segmentation

methods like Fixed-point (53), RSTN (54), Yu et al. (55), Zhang

et al. (56), RTUNet (57). Table 2 summarizes the results of the

evaluation, obviously showing that the pancreatic segmentation task

is challenging, and the Dice values of previous methods are relatively

close. Overall, the two-stage segmentation method performs better

than the one-stage segmentation method. Our algorithm in terms of

Dice, achieves a score of 87.63% on the NIH. This is better than the

best one-stage segmentation method LMNS-Net and the best two-

stage segmentation method RTUNet, with improvements of 2.26%

and 1.38% respectively. Additionally, our algorithm also outperforms

other segmentation methods in terms of SEN and SPE.

In Figure 8, we show the visual segmentation results to

intuitively compare with other state-of-the-art methods. It can be

obviously shown that U-Net and Attention UNet are not accurate

enough for pancreas localization due to their inability to learn

effective features. RSTN is more accurate in capturing pancreas but

edge segmentation is imprecise and segmentation results have false

negatives. In contrast, our algorithm produces highly precise

segmentation results that further verify the effectiveness of multi-

scale U-Net in capturing finer details as well as the superiority of the

non-local localization module and the focusing module in

improving the performance of the algorithm.
4.5 Ablation studies

To verify the effectiveness of the different modules added, we

conduct comprehensive ablation experiments on the MSD, using

the Dice coefficient as the evaluation metric. All the experiments are

done with the same settings for consistency.
TABLE 1 Comparison with state-of-the-art methods for pancreatic
tumor segmentation on MSD dataset.

Method Dice SEN SPE

U-Net++ (38) 0.4289 0.3966 0.9971

Attention Unet (39) 0.4317 0.5714 0.9977

ResNet50 (40) 0.4695 0.6056 0.9972

Res_UNet (41) 0.5264 0.7110 0.9960

U-Net (14) 0.4913 0.6846 0.9971

Dense-UNet (42) 0.5276 0.6133 0.9977

nnUnet (43) 0.5456 0.7268 0.9981

C2FNAS (44) 0.5636 0.6856 0.9982

V-NAS (45) 0.5730 0.6325 0.9942

U-Shiftformer (47) 0.5307 0.6833 0.9970

DHT-Net (48) 0.5618 0.6779 0.9975

HyperSegNAS (46) 0.5488 0.7123 0.9968

IAG-Net (49) 0.5762 0.7342 0.9969

Ours 0.5924 0.6824 0.9988
The bold value indicates the maximum value under the same indicator.
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4.5.1 Effects of each module
In our segmentation model, the deep supervised information

based on the pancreas in the first stage is added through the

significance change module in the second stage. The traditional U-

Net network is improved in the multi-scale pancreatic tumor

segmentation network based on non-local localization and focusing,

introducing multi-scale feature information, and adding a non-local

localization module and focusing module. The design method and

results of the ablation experiment are shown in Table 3. U represents

the traditional U-Net network. M represents changing U-Net to a

multi-scale U-Net network. P represents using the predicted results of

pancreatic segmentation to reduce the input for pancreatic tumor

network segmentation. T represents migrating the pancreatic

segmentation model to the pancreatic tumor segmentation task

during training. L and F represent adding the non-local localization

module and the focusing module to the model respectively. Dice

represents the Dice value of each segmentation model.

Comparing the experimental results of U and M, the Dice value

increases from 0.4913 to 0.5234. The performance comparison
TABLE 2 Comparison with state-of-the-art methods for pancreatic
segmentation on NIH dataset.

Method Dice SEN SPE

U-Net (14) 0.7470 0.5131 0.9964

Attention Unet (39) 0.8437 0.7764 0.9970

Nishio et al. (50) 0.7890 0.6883 0.9977

Li et al. (51) 0.8303 0.7207 0.9965

LMNS-Net (52) 0.8537 0.8115 0.9978

Fixed-point (53) 0.8257 0.6294 0.9968

RSTN (54) 0.8508 0.8466 0.9987

Yu et al. (55) 0.8453 0.8009 0.9972

Zhang et al. (56) 0.8490 0.7852 0.9975

RTUNet (57) 0.8625 0.8916 0.9981

Ours 0.8763 0.9126 0.9988
The bold value indicates the maximum value under the same indicator.
FIGURE 7

Visual comparison of pancreatic tumor segmentation produced by our algorithm and baseline networks.
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indicates the superiority of a multi-scale U-Net network over the

traditional U-Net. The multi-scale U-Net effectively extracts and fuses

information from different scales of images, enabling the network to

segment tumors across various scales. The Dice value of the M-P

experiment is 0.5319. This indicates that reducing the input scale of the

pancreatic tumor segmentation model through the segmentation

results of the pancreas can to some extent reduce the input of

redundant information and prevent the network from being

confused by background information. Compared with M-P, the Dice

value of M-P-T in the experiment increased from 0.5319 to 0.5533,

which proves the correlation between the pancreatic segmentation task
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and the pancreatic tumor segmentation task. The majority of

pancreatic tumors appear in the pancreas. If the network masters the

relevant features of the pancreas, it can help the network locate the

location of pancreatic tumors more accurately and accelerate the

training process of the network. After adding a non-local localization

module to the model, the Dice value in the M-P-T-L experiment is

0.5651, which increases by 0.0118 compared to the M-P-T experiment.

This proves that the non-local localization module can capture more

detailed global feature information, and help the model locate the

approximate range of tumors from a global perspective. Among all

methods, the M-P-T-L-F experiment that fuses all modules yields the

best results, with a Dice value of 0.5924. This is because the focus

module detects and removes false positive and false negative

interference through the context exploration module, thereby

achieving more refined and accurate pancreatic tumor targets. The

results of the M-P-T-L experiment and the M-P-T-L-F experiment

reflect the effectiveness and design rationality of the non-local

localization module and the focusing module.

Figure 9 shows the prediction results of some CT image slices. It

can be clearly seen that the segmentation results of pancreatic tumors

based on the U-Net network and multi-scale U-Net network cannot

accurately locate some small-scale and unclear boundaries of

pancreatic tumors, and there are even omissions. In addition, those

segmentation results often have the problem of undersegmentation or

false positives. After introducing the deep supervised information based

on the pancreas, more accurate position and weight information is

provided for the segmentation of pancreatic tumors, which improves
TABLE 3 Ablation study results.

Method M P T L F Dice

U 0.4913

M ✓ 0.5234

M-P ✓ ✓ 0.5319

M-P-T ✓ ✓ ✓ 0.5533

M-P-T-L ✓ ✓ ✓ ✓ 0.5651

M-P-T-L-F ✓ ✓ ✓ ✓ ✓ 0.5924
We compare the quantitative results of our full pipeline and baseline networks on different
settings. U, U-Net network; M, multi-scale U-Net network; P, using the predicted results of
pancreatic segmentation to reduce the input for pancreatic tumor network segmentation;
T, migrating the pancreatic segmentation model to the pancreatic tumor segmentation task
during training; L, non-local localization module; F, focusing module.
FIGURE 8

Visual comparison of pancreatic segmentation results produced by different methods.
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the problem of inaccurate localization of small-scale pancreatic tumors.

M-P-T-L-F effectively solves the problems of undersegmentation and

false positives by adding the non-local localization module and the

focusing module. However, due to the low clarity and resolution of CT

images on soft tissues, the images refined by the focusing module still

have some degree of undersegmentation issues, especially inaccurate

edge segmentation, such as in the fourth image slice.

4.5.2 Effects of focusing module
The findings presented in Figure 10 demonstrate the effects of false-

positive interference (Ffpd), false-negative interference (Ffnd), and both

on the performance of our algorithm. The results clearly show that the
Frontiers in Oncology 14
combination of both types of interference yields the best segmentation

results compared to only using Ffpd or only using Ffnd. This is because

exploring interference information in features with discrimination

helps the algorithm focus on easily confused areas, and pay close

attention to tumor edges for contextual exploration, thereby achieving

the finest edge segmentation.
5 Conclusions

In order to assist doctors in diagnosing pancreatic tumors

and facilitate subsequent radiation therapy, we have designed a
FIGURE 9

Visual comparison of pancreatic tumor segmentation produced by ablation study results.
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two-stage automatic segmentation algorithm for pancreatic

tumors. The first stage uses a multi-scale network to segment

the pancreas, and its segmentation results are used to reduce the

input area of the second stage. The segmentation probability map

of the first stage is used to provide prior information for the

second stage. In the second stage, we develop a multi-scale

network based on non-local localization and focusing on

pancreatic tumor segmentation. We introduce a loss function

based on shared boundary measures between classes to alleviate

the problem of the low contribution of small-scale targets.

Extensive experiments verify the effectiveness of our algorithm

in pancreatic tumor segmentation tasks, outperforming other

existing advanced segmentation methods. Our algorithm not

only makes a certain contribution to the medical image

community but also has a certain reference value for small

target segmentation tasks in other fields.
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