
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jiajia Zhou,
University of Michigan, United States

REVIEWED BY

Marcia Silveira Graudenz,
Federal University of Rio Grande do Sul, Brazil
Xiaoguang Shi,
China Medical University, China

*CORRESPONDENCE

Guo-Li Du

genemagic@126.com

†These authors have contributed equally to
this work

RECEIVED 21 October 2023

ACCEPTED 10 October 2024
PUBLISHED 29 October 2024

CITATION

Huo M-H, Adeerjiang Y, Abulitipu A, Khan U,
Li X-X, Zhang L, Tian Y, Jiang S, Xu C-C,
Chao X-Z, Yang Y-F, Zhang J-X
and Du G-L (2024) Th17/Treg cell
balance in patients with papillary
thyroid carcinoma: a new potential
biomarker and therapeutic target.
Front. Oncol. 14:1325575.
doi: 10.3389/fonc.2024.1325575

COPYRIGHT

© 2024 Huo, Adeerjiang, Abulitipu, Khan, Li,
Zhang, Tian, Jiang, Xu, Chao, Yang, Zhang and
Du. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 29 October 2024

DOI 10.3389/fonc.2024.1325575
Th17/Treg cell balance in
patients with papillary thyroid
carcinoma: a new potential
biomarker and therapeutic target
Meng-Han Huo1,2,3†, Yilinuer Adeerjiang1,2†,
Ayiguzhali Abulitipu1,2†, Umair Khan1,2, Xin-Xi Li4, Lei Zhang4,
Ye Tian4, Sheng Jiang1,2, Can-Can Xu5, Xian-Zhen Chao5,
Ye-Fan Yang5, Jin-Xia Zhang5 and Guo-Li Du1,2,6*

1State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in
Central Asia, Urumqi, China, 2Department of Endocrinology, First Affiliated Hospital of Xinjiang
Medical University, Urumqi, China, 3Department of Gastroenterology and Endocrinology, Tianjin
Haihe Hospital, Tianjin, China, 4Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang
Medical University, Urumqi, Xinjiang, China, 5First Clinical Medical College of Xinjiang Medical
University, Urumqi, Xinjiang, China, 6Department of Endocrinology, Bayingolin Mongolian
Autonomous Prefecture People's Hospital, Kuerle, China
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid

carcinoma. The most effective treatment for PTC is surgical resection, and

patients who undergo surgery have good survival outcomes, but some patients

have distant metastasis or even multiorgan metastases at the time of initial

diagnosis. Distant metastasis is associated with poorer prognosis and a higher

mortality rate. Helper T lymphocyte 17 (Th17) cells and regulatory T lymphocytes

(Tregs) play different roles in PTC, and the Th17/Treg balance is closely related to

the progression of PTC. Th17 cells play anticancer roles, whereas Tregs play

cancer-promoting roles. A Th17/Treg imbalance promotes tumor progression

and accelerates invasive behaviors such as tumor metastasis. Th17/Treg

homeostasis can be regulated by the TGF‐b/IL‐2 and IL‐6 cytokine axes.

Immune checkpoint inhibitors contribute to Treg/Th17 cell homeostasis. For

PTC, monoclonal antibodies against CTLA-4, PD-1 and PD-L1 inhibit the

activation of Tregs, reversing the Th17/Treg cell imbalance and providing a

new option for the prevention and treatment of PTC. This article reviews the

role of Tregs and Th17 cells in PTC and their potential targets, aiming to provide

better treatment options for PTC.
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Introduction

Thyroid carcinoma is the most common malignant tumor of

the head and neck. According to statistics, there were 586,000

patients with thyroid carcinoma worldwide in 2020, and it ranks

ninth among malignant tumors worldwide in terms of incidence

rate (1). In recent years, the incidence of thyroid carcinoma has

increased markedly worldwide (2). In China, the incidence of

thyroid carcinoma rapidly increased from 2005 to 2015 (3).

Papillary thyroid carcinoma (PTC) is the most common type of

thyroid carcinoma, accounting for 90% of new cases (4). Surgical

resection is one of the standard treatments for PTC (5). Patients

receiving surgical treatment have a better prognosis, and the 10-year

survival rate is 93% (6). However, approximately 30%-40% of PTCs

metastasize to regional lymph nodes (7, 8), and the presence of

cervical lymph node metastasis is related to a poorer prognosis and

a lower survival rate (9, 10). The recurrence rate of PTC patients

with cervical lymph node metastasis is 3.5 times greater than that of

PTC patients without cervical lymph node metastasis (11).

However, some patients have distant metastases at the time of

initial diagnosis. Toraih EA et al. reported that, of 89,694 PTC

patients, 1819 (2%) developed distant metastases at initial diagnosis,

26.3% of whom presented with multiorgan metastases. The most

common site of metastasis was the lung (53.4%), followed by the

bone (28.1%), liver (8.3%) and brain (4.7%).

The presence of distant metastasis significantly reduces survival

in patients with PTC. The 5-year survival rates for patients with

bone metastasis and lung metastasis are 25% and 21%, respectively,

whereas those for patients with brain and liver metastasis are only

6% and 12%, respectively. Compared with patients with single-

organ metastasis, patients with multiorgan metastases have a

significantly lower 5-year survival rate (15.3% versus 77.6%) (12).

Therefore, there is still a need to discover new molecular markers

and therapeutic targets to improve the therapeutic efficacy for PTC

patients with distant metastasis and improve patient prognosis and

survival. A growing body of research has demonstrated that

treatment for thyroid malignancies includes immune checkpoint

inhibitors. An increasing number of immune checkpoint inhibitors,

including the monoclonal antibodies anti-cytotoxic T lymphocyte

antigen 4 (anti-CTLA-4), anti-programmed cell death protein 1

(anti-PD-1), and anti-programmed cell death ligand-1 (anti-PD-

L1), have been shown to be effective in the treatment of

cancers (13).
Overview of Th17 cells and tumors

Th17 cells participate in the regulation of the body’s immune

system by releasing the proinflammatory cytokine interleukin-17

(IL-17), which promotes the release of inflammatory mediators by

epithelial cells, fibroblasts, or macrophages (14, 15). Th17 cells are

transformed from CD4+ T cells, which depend on interleukin-6 (IL-

6), transforming growth factor-b (TGF-b), interleukin-23 (IL-23),

interleukin-1b (IL-1b) and interleukin-21 (IL-21), as shown in
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Figure 1. IL-6 and TGF-b are considered key cytokines that

induce the transcription factor RAR-related orphan receptor in

naive CD4+ T cells, which in turn drives Th17 cell differentiation.

The SKI-SMAD4 complex inhibits acetylation of the Rorc locus,

inhibiting the related orphan receptor gt (RORgt). TGF-b has been

shown to degrade the SKI-SMAD4 complex, allowing RORgt to be

expressed in CD4+ T cells and ultimately driving Th17 cell

differentiation (16). A low dose of TGF-b can also inhibit IL-2-

mediated signal transduction and activator of transcription 5

(STAT5) activation, inhibiting the differentiation of Tregs and

promoting the lineage of Th17 cells (17). Recent studies have also

shown that phosphatase and tensin homolog (PTEN) in Th17 cells

inhibits the IL-2 signaling pathway and upregulates signal

transducer and activator of transcription 3 (STAT3). STAT3 is a

transcription factor that supports the Th17 cell pathway and is

activated together with TGF-b and IL-6 during T-cell receptor

(TCR)/costimulatory signal stimulation, and STAT3 induces the

expression of RORgt, which induces Th17 subgroup differentiation

(18). TGF-b and IL-6 can also induce IL-23 receptor (IL-23R)

expression in Th17 cells (19). IL-23 further maintains the long-term

proinflammatory properties of Th17 cells by activating STAT3,

RORa, and RORgt in Th17 cells (19, 20). Recent reports have also

revealed the role of IL-1b and IL-21 in Th17 cells. IL-1b induces

alternative splicing of the transcription factor forkhead box P3

(FoxP3), inhibits Treg differentiation, and promotes IL-17

production (21). IL-21 activates downstream STAT3 and induces

Th17 cell differentiation even in the absence of IL-6 (22). Th17 cells

produce IL-21, which amplifies the response of Th17 cells and

enhances the effect of Th17 cells. IL-21 regulates the function of

CD8+ T cells through the tumor necrosis factor-a (TNF-a)/IL-17
pathway, mediating tumor regression (Figure 2) (23). Ghiringhelli

et al. reported that IL-6 and TGF-b induced the polarization of

Th17 cells, which express CD39 and CD73, in mice to promote

tumor growth. IL-6, IL-1b and IL-23 can induce the expression of

CD39 and CD73 in Th17 cells but have no direct effects on tumor

growth (24, 25).

Th17 cells, important inflammatory cells, promote the

mobilization, recruitment, and activation of neutrophils by

regulating the secretion of proinflammatory cytokines, which

contributes to the inflammatory response and prevents the

immune escape of cancer cells (26, 27). Th17 cells can suppress

tumor growth and metastasis and promote cancer cell apoptosis by

secreting TNF-a, the soluble dimer cytokine interferon (IFN)-g, IL-
17, IL-21, and IL-22. Th17 cells also recruit macrophages, dendritic

cells, granulocytes, natural killer (NK) cells, and CD8+ T cells by

secreting chemokines and IFN-g to clear tumors (28). IFN-g-
dependent Th17 cells play important roles in the clearance of

tumor cells. In the microenvironment around tumor tissue, Th17-

derived cells (ex-Th17 or nonclassical Th1 cells) express more BCL-

2, promoting increased IFN-g expression to facilitate the antitumor

immune response (29).

Martin-Orozco reported that Th17 cells promote the activation

of tumor-specific CD8+ T cells and have an indirect antitumor effect

(30). They reported that adoptive T-cell therapy using tumor-
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https://doi.org/10.3389/fonc.2024.1325575
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huo et al. 10.3389/fonc.2024.1325575
specific Th17 cells could generate a strong antitumor immune

response, since T cells can recruit dendritic cells into tumor

tissues and promote their migration into tumor-draining lymph

nodes (31). Research on ovarian cancer patients has shown that

tumor-accumulated Th17 cells may play antitumor roles by

expressing a variety of cytokines, such as IL-17, inducing helper T

lymphocyte 1 (Th1) cell-related chemokines and recruiting T cells

to the tumor microenvironment (TME) (32). In breast cancer, IL-22

produced by Th17 cells is associated with reduced tumor formation

and a good prognosis (33). In ovarian cancer, the increase in IL-17

produced by Th17 cells improved patient survival (32). Th17-

deficient mice are prone to pulmonary melanoma, and adoptive

transfer of tumor-specific Th17 cells prevents tumor development

(34). Sfanos KS analyzed the correlation between the Th17 cell

number in tumor-infiltrating prostate cancer cells and the Gleason

grade of prostate cancer and reported that they were negatively

correlated (35). Small cell lung cancer (SCLC) is a highly malignant

tumor with a tendency to spread. The Th17 cell number in patients

with nonmetastatic tumors and primary patients is greater than that

in patients with advanced and recurrent disease. The concentration

of Th17 cells is also associated with long-term survival in SCLC

patients (36). These studies have shown that Th17 cells play

antitumor roles. Many research groups have also confirmed that

Th17 cell transplantation can lead to tumor regression (34, 37–39).

However, studies have shown that the accumulation of Th17

cells in tumor tissues is associated with a poor prognosis. In lung

cancer tissues, Th17 cell accumulation induces epithelial

−mesenchymal transition in lung cancer cells, promoting the

migration and diffusion of cancer cells through IL-17 (40). By

inhibiting tumor cell apoptosis, IL-17 may promote tumor growth

and progression and accelerate tumor angiogenesis in some types of

cancer (41).
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Overview of Tregs and tumors

Tregs, formerly known as suppressor T cells, are a subset of

CD4+ T cells that regulate the immune system and are characterized

by the expression of FoxP3, which is a specific marker of Treg cells.

Tregs play important roles in maintaining self-tolerance and

immune system homeostasis, limiting bactericidal immunity and

inhibiting antitumor immunity (42). Tregs restrain the activation

and proliferation of various immune cells through cytotoxic T

lymphocyte antigen 4 (CTLA-4), glucocorticoid-induced tumor

necrosis factor receptor (GITR) or the secretion of inhibitory

cytokines, such as interleukin-10 (IL-10), TGF-b and interleukin-

35 (IL-35), weakening immune function and maintaining the

stability of the immune system (43). Other Treg cell surface

molecules include programmed cell death protein 1 (PD-1), T-cell

immunoreceptor with IG and ITIM domains (TIGIT), indoleamine

2,3-dioxygenase 1 (IDO1), and glycoprotein a repetitions

predominant (GARP) but are not unique to Tregs (44). There is

an antagonistic relationship between Tregs and Th17 cells, although

differentiation is stimulated by similar cytokines (45–47). Tregs and

Th17 cells share common precursor cells (naive CD4+ T cells),

which require a common tumor growth factor (TGF-b) signal to
mediate initial differentiation. TGF-b is necessary to induce FoxP3

expression in Tregs and RORgt expression in Th17 cells.

Proinflammatory signals regulate the differentiation of these cells.

For example, IL-2 and TGF-b induce naive CD4+ T cells to

differentiate into FoxP3+ Tregs, whereas IL-6 and TGF-b induce

naive CD4+ T cells to differentiate into Th17 cells (45, 46, 48)

(Figure 1). This feature results in a complex dynamic equilibrium

state, coordinating the body’s immune state. As mentioned above,

IL-6 and IL-21 induce STAT3 expression, which inhibits the FoxP3

pathway. IL-2 induces STAT5 expression and reduces STAT3
FIGURE 1

Th17/Treg cell differentiation. Th17/Treg cells differentiate from CD4+ T cells. The presence of IL-2 and TGF-b stimulates the initial development of
CD4+ T cells into Tregs, which express transcription factors such as STAT5 and FoxP3 and secrete cytokines, including TGF-b, IL-10, and IL-35.
Tregs play an immunosuppressive/tolerance-promoting role by inhibiting the activation and proliferation of a variety of immune cells, such as NK
cells and CD8+ T cells. TGF-b, IL-6, and IL-21 promote the development and stabilization of Th17 cells. Th17 cells are most commonly classified by
their expression of RORgt and STAT3. Th17 cells can release proinflammatory cytokines to mediate inflammation, inhibit tumor growth, and promote
cancer cell apoptosis.
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binding, inhibiting Th17 differentiation (19, 49–51). IL-2

supplementation in the treatment of autoimmune diseases may

augment Treg cell function and increase self-tolerance of the

immune system. As a marker of Tregs with immunosuppressive

functions, IL-2Ra (CD25) induces the expression of FoxP3, the

master transcriptional regulator that is essential for the

development and immune tolerance of Tregs. In mice, CD25

labels a population of CD4+ T cells that normalize immune

function and prevent lethal autoimmune responses (52, 53).

Reconstruction of neonatal thymectomized mice with CD4+

CD25+ T cells can prevent the occurrence of autoimmune

diseases (54). Deficiency of IL-2Ra or IL-2Rb, or neutralization of

IL-2 induces severe autoimmune responses (55–57). As shown in

Figure 2, Th17/Treg cell homeostasis could be regulated by the

TGF-b/IL-2 and IL-6 cytokine axes. Blusten and colleagues reported
that the expression of FoxP3 in Tregs was also negatively correlated

with the expression of CD127 (IL-7Ra). They reported that the

phenotype of CD4+CD25+CD127− cells typically represents that of

human Tregs (58).

In several types of cancers, including ovarian cancer, lung cancer,

glioblastoma, non-Hodgkin’s lymphoma, melanoma and other

malignancies, Tregs can inhibit the antitumor immune response,

promote the development of an immunosuppressive tumor

microenvironment, promote immune escape and cancer

progression, and decrease the survival rate of patients with cancer
Frontiers in Oncology 04
(59, 60). The expression of the GARP gene in tumors enhances the

activity of TGF-b and induces the differentiation of CD4+ T cells

into Tregs in the cancer microenvironment, hindering the immune

response (61). The presence of Tregs in the tumor microenvironment

is associated with advanced stage, invasion, and poor prognosis

in patients with malignant tumors (59, 60). The depletion of

Treg cells in the tumor microenvironment in mice inhibits the

immunosuppression of tumor-infiltrating CD8+ T cells, improving

the antitumor efficacy of endogenous effector T cells (62).

Tregs are usually enriched in primary tumors, draining lymph

nodes and the peripheral blood of cancer patients (63). Recent studies

have shown that increased numbers of Tregs are associated with

tumor progression and poor prognosis (64). The accumulation of

FoxP3+ Tregs, especially a relatively high ratio of Tregs: T effector cells

(Teffs), is often associated with a poor prognosis in many tumors,

including ovarian cancer (65, 66), lung cancer (67), glioblastoma (68),

melanoma and other malignancies (69, 70). The role of Tregs in

immune escape has been demonstrated in many clinical studies and

in vitro studies. For example, in patients with advanced melanoma,

transient Treg cell depletion leads to the regression of metastatic

lesions (71). In breast cancer patients, pretreatment with Treg cells is

associated with an antitumor immune response and improved clinical

symptoms (72). In patients with metastatic breast cancer, Treg

depletion followed by cancer antigen inoculation produces effective

antitumor CD4+ T and CD8+ T cells (73).
FIGURE 2

Functional plasticity of Tregs and Th17 cells. Multiple molecules can affect the functional plasticity of Tregs and Th17 cells. TGF-b and IL-2 induce
the differentiation of Tregs, which exert immunosuppressive functions and promote immune escape through the secretion of inhibitory cytokines
such as IL-10 and VEGF or through the cell-mediated engagement of inhibitory checkpoint molecules such as GITR, PD-1, CTLA-4, TIGIT, CD25,
IDO1, and GARP. IL-1b induces alternative splicing of FoxP3, inhibits Treg cell differentiation, and promotes IL-17 production. RORgt is a key
transcription factor in Th17 cell development. The SKI-SMAD4 complex inhibits RORgt, in which the SKI protein inhibits acetylation of the Rorc site.
TGF-b was shown to modulate the SKI-SMAD4 complex, and in the presence of TGF-b, SKI is degraded, allowing RORgt to be expressed in CD4+ T
cells and ultimately driving Th17 cell differentiation. IL-2 induces STAT5, reduces STAT3 binding, and inhibits Th17 differentiation. PTEN in Th17 cells
inhibits the IL-2 signaling pathway, reduces STAT5 and Treg differentiation, and upregulates STAT3. When FoxP3+ Tregs are exposed to IL-6 with or
without IL-1b and IL-23, FoxP3 is downregulated, which promotes the expression of Th17 genes, including IL-17, IL-22, IL-23R, and RORgt. TGF-b
and PGE2 can also induce Th17-to-Treg cell conversion.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1325575
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huo et al. 10.3389/fonc.2024.1325575
Tregs and PTC

Inflammation is thought to be associated with thyroid

carcinoma, indicating that immune cells play important roles in

the pathogenesis of PTC. There are many immune cells and their

mediators in the microenvironment of thyroid carcinoma. The

infiltration of immune cells in the PTC microenvironment is

closely related to tumor progression. M2 macrophages, dendritic

cells, mast cells, neutrophils, and myeloid-derived suppressor cells

play tumor-promoting roles in PTC, whereas CD8+ T cells, NK cells

and helper T lymphocyte 9 (Th9) cells play antitumor roles in

PTC (13).

As shown in Figure 3, Tregs play roles in maintaining the

tolerance of thyroid carcinoma. FoxP3 is a key regulatory gene for

the development of Tregs that inhibits the antitumor immune

response by producing immunosuppressive molecules, such as IL-

10, CTLA-4 and PD-1, and releasing vascular endothelial growth

factor (VEGF) to stimulate tumor angiogenesis (74, 75). Tregs can

also promote antitumor inhibitory activity by inhibiting CD8+ T

cells (76). A lower intratumoral CD8+/FoxP3+ ratio was found in

PTC patients with the BRAFV600E mutation, and it was associated

with high expression levels of the immunosuppressive molecules

arginase-1, IDO1 and programmed cell death ligand-1 (PD-L1)
Frontiers in Oncology 05
(77). In addition, an increase in the number of Tregs in the

metastatic lymph nodes of thyroid carcinoma patients is

associated with increased incidence of invasive thyroid carcinoma

(78). FoxP3+ Tregs were found in PTC tumor tissues, and their

infiltration was associated with disease stage and lymph node

metastasis (79). Compared with that in simple nodular goiter

tissue, the FoxP3+ Treg cell number in PTC tumor tissue is

greater, and it is positively correlated with disease stage (80). Yu

et al. reported that, compared with that in patients with nontoxic

multinodular goiter (MNG), the number of FoxP3+ Tregs in thyroid

tissue and peripheral blood was significantly greater in PTC

patients. Szyberg et al. reported that the FoxP3+ Treg cell number

was greater in PTC patients than in MNG patients (81, 82). Ugolini

et al. (83) reported that Treg cells can be detected in PTC patients

(up to 43%). In addition, increased infiltration of FoxP3+ Treg cells

was associated with lymph node metastasis, extrathyroidal

infiltration, and multifocality in papillary thyroid microcarcinoma

(PTMC) (84). French et al. reported that the frequency of FoxP3+

Treg cells was associated with lymph node metastasis in 110 PTC

patients (79). An increase in the number of FoxP3+ Tregs was

associated with late TNM stage and PTC lymph node metastasis

(79, 80). Zeng et al. (85) reported that high expression of FoxP3 in

the tumor microenvironment of PTC patients was significantly
FIGURE 3

Tregs and PTC. Tregs exert immunosuppressive functions by producing inhibitory cytokines such as IL-10, CXCL8, and VEGF and promote tumor
angiogenesis. The inhibitory receptors IDOI and PD-1 on the surface of Tregs can inhibit the activity of NK cells and CD8+ T cells, promoting
immune escape. PD-I can also bind to PD-L1 on the surface of PTCs to promote the proliferation of tumor cells. CD28 and CTLA-4 can
competitively bind to CD80/CD86 on the surface of APCs, thereby enhancing the inhibitory function of Tregs. FoxP3 can maintain the inhibitory
effect of Tregs on the immune system by forming a 400–800 kDa multiprotein complex with its transcription partners. Thyroid cancer cells can
produce VEGF, recruit mast cells to infiltrate thyroid cancer tissue, and stimulate mast cells to produce IL-6, TNF-a, GM-CSF and CXCL-10,
accelerating tumor growth. Thyroid cancer cells can also release CCL20 and CXCL8, which promote PTC invasion and metastasis in vitro. The miR-
125b gene negatively regulates the expression of FoxP3 and promotes autophagy in thyroid cancer. IFN-a/b can increase the expression of PDE4 in
Tregs, suppress the production of cAMP, and promote the apoptosis of thyroid tumor cells. NKG2D on the surface of NK cells can bind to UL-16 on
the surface of thyroid cancer cells and cause the apoptosis of tumor cells.
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greater than that in patients with lower expression. These findings

suggest that high expression of FoxP3 in PTC patients may promote

lymph node metastasis. Cunha et al. (86) reported that nuclear

FoxP3 staining in differentiated thyroid cancer cells was stronger in

young patients and those with lymph node metastasis than in the

corresponding control groups, indicating that FoxP3 expression

might be associated with thyroid cancer aggressiveness.

Studies have also shown that the expression of FoxP3 in thyroid

carcinoma cells is significantly related to the drug resistance

phenotype of PTC to radioactive iodine therapy (83). Zhongqin

Gong reported that inhibiting the expression of FoxP3 induced the

apoptosis of thyroid carcinoma cells and suppressed their

proliferation and migration (87). The expression of FoxP3 in

tumor cells likely contributes to carcinogenesis. Some molecules,

including nuclear factor of activated T cells (NFAT) (88) and runt-

related transcription factor 1 (RUNX1) (89), can bind to the

promoter region of the FOXP3 gene and activate the

differentiation of Tregs. FOXP3 overexpression in Treg cells can

promote tumor cell growth in non-small cell lung cancer (NSCLC).

FOXP3 was found to regulate CD4+/CD25+ or CD4+/CD25− Treg

cell development and function (90–92). CD4+/CD25+/FOXP3+

Treg cells suppress the immune system and promote tumor

progression by reducing the anticancer immunity of CD4+ T or

CD8+ effector T cells. The activation of Tregs reduces

antipathogenic or anticancer immunity, leading to cancer

progression and infection (93). In addition, the miR-125b gene

negatively regulates the expression of FoxP3, promotes autophagy

in thyroid carcinoma, and enhances the therapeutic effect of

cisplatin (94). Therefore, FoxP3 may be an important

intervention target for thyroid carcinoma treatment.

How do Tregs play roles in the development of PTC? Studies

have confirmed that to sustain the inhibitory effect of Tregs in the

immune system, FoxP3 cooperates with its transcription partners.

Rudra D reported that FoxP3 forms a 400–800 kDa multiprotein

complex and identified 361 related proteins. FoxP3 regulates

approximately 30% of the proteins in this complex at the

transcriptional level (95). FoxP3 can interact with most of the

cofactors of the complex and promote each other. A number of

key molecules have been identified through continuous research,

such as NFAT (88), runt-related transcription factor (RUNX) (96),

GATA transcription factor 3 (GATA3) (97) and the transcription

factor forkhead box P1 (FoxP1) (98).
Th17 cells and PTC

Th17 cells exert antitumor effects through the secretion of IL-17

(99, 100). Xie et al. reported that IL-17 can exert antitumor effects

by inhibiting tumor angiogenesis (101). In a tumor model in IL-17-

deficient mice, tumor growth and distant metastasis were

accelerated, suggesting that IL-17 has an antitumor effect (31).

Compared with that in healthy controls, the concentration of Th17

cells in the peripheral blood and tissue of PTC patients is greater

(99). The Th17 cell concentration in peripheral blood is positively

correlated with the level of serum IL-17, but negatively correlated

with tumor size (99). In PTC, the infiltration of Th17 cells and the
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expression of the transcription factor RORgt are negatively

correlated with lymph node metastasis (102).

The antitumor effect of Th17 cells occurs through the recruitment

of immune cells and the secretion of specific cytokines rather than

through killing tumor cells directly (32). Th17 cells lack the

expression of cytotoxicity-related molecules, such as granzymes and

perforin. As shown in Figure 4, Th17 cells attract Th1 cells, CD8+ T

cells, NK cells, and other effector cells to accumulate in tumor tissues

and kill tumor cells through the secretion of chemokines such as

CXCL-9 and CXCL-10 (103). In the tumor microenvironment, the

infiltration of Th17 cells has been observed to be positively correlated

with that of immune effector cells (including CD8+ T cells and NK

cells), and the infiltration of these cells promotes cytotoxic cell-

mediated antitumor responses (32, 104). In the thyroid carcinoma

microenvironment (105), NK cells kill thyroid carcinoma cells by

expressing the activation receptor NKG2D, which binds to its ligand

UL16 expressed on thyroid carcinoma cells (106). On the other hand,

Th17 cells inhibit tumor angiogenesis by secreting TNF-a, IFN-g, IL-
17F, IL-21 and IL-22, which inhibit tumor growth and promote the

apoptosis of cancer cells (28). IL-17 produced by Th17 cells can also

induce IL-6 secretion, thereby activating the STAT3 signaling

pathway (107). Th17 cells also strongly induce the expression of

CCL20 in tumor tissue, stimulating the mobilization of dendritic cells

and other leukocytes to the tumor site, where they activate CD8+ T

cells to suppress tumor growth (107). The Th17 profile, which

includes immune cells, cytokines, chemokines, and their receptors,

has protective effects, serving as a trigger for the clearance of thyroid

tumors (108).

The lymphocyte infiltration rate of PTC patients was greater

than that of patients with benign thyroid lesions. However, PTC

combined with thyroiditis is associated with a better prognosis (109,

110). Poorly differentiated thyroid carcinoma and anaplastic

thyroid carcinoma have poor prognoses. Compared with that in

PTC, the infiltration of lymphocytes in these two thyroid

carcinomas is significantly reduced, indicating that these

lymphocytes may exhibit protective functions in thyroid

carcinoma (111). However, Galano Carvalho reported that the

protein expression of IL-17 in benign lesions (follicular thyroid

adenoma and goiter) was lower than that in malignant lesions

(differentiated thyroid carcinoma and medullary thyroid

carcinoma) (112). Therefore, Th17 cells may play roles in

promoting tumorigenesis and development. IL-17 induces the

expression of vascular endothelial growth factor, which in turn

induces TGF-b, promoting tumor growth and metastasis (113–

115). Tumor cells can stimulate IL-17 secretion by monocytes

through the expression of C-C motif ligand 2 (CCL2), and further

promote inflammation and tumor growth (116, 117).
The plasticity and balance of Th17
cells and Tregs

In the past 20 years, it has been believed that the precursor cells

derived from the differentiation of naive CD4+ T cells are

irreversible. However, during the cell polarization process,
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although different T-cell subsets express different genes and have

different regulatory characteristics, each subset retains significant

developmental plasticity. Th17 cells are distributed mainly in the

intestine, lung, skin, and other barrier sites and are highly plastic.

The plasticity relationship between Th17 cells and Tregs has also

been gradually recognized (118–120). Increasing evidence has

shown that Th17 cells and Tregs have greater developmental

plasticity than other cell subsets do. As FoxP3+ Tregs are exposed

to IL-6 (with or without IL-1b and IL-23), FoxP3 expression is

downregulated in favor of the expression of Th17 cell genes,

including IL-17, IL-22, IL-23R, and RORgt (121). Th17 cells can

also be converted into Tregs under certain conditions (122). This

conversion may be affected by TGF-b and prostaglandin E2 (PGE2)

(122) (Figure 2). Phillips reported that Tregs expressed ROR-gt and
IL-17 in the peripheral blood of patients with NSCLC (123). Voo

also reported that IL-17-producing cells can simultaneously express

FoxP3 and ROR-gt (124). Although they transform into Th17 cells,

Tregs can continuously express ROR-gt and secrete IL-17 in vitro.

Memory Tregs that secrete IL-17 have the same phenotypic and

functional characteristics as traditional Th17 cells do (125). Th17

cells that accumulate in melanoma, breast cancer, ovarian cancer,

and colon cancer can express FoxP3 (126). Th17 cells cloned from T

lymphocytes in human tumor tissues can differentiate into FoxP3+

Tregs and repeatedly stimulate T-cell receptors in vitro (127). These

studies provide evidence that Th17 cells that accumulate in tumors

can differentiate into Tregs.
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In recent years, the role of the balance of Th17/Treg cells in

autoimmune diseases and tumors has attracted much attention. A

large amount of evidence shows that the Th17/Treg cell balance is the

basis of the pathogenesis of autoimmune diseases (128, 129).

Correction of this imbalance has been used as a strategy for the

treatment of several diseases, including rheumatoid arthritis (RA),

psoriasis, psoriatic arthritis, ankylosing spondylitis, systemic lupus

erythematosus (SLE), multiple sclerosis (MS) and inflammatory bowel

disease (IBD) (128, 129). Monoclonal antibodies have been shown to

be effective at neutralizing Th17-related cytokines, including IL-6,

TNF-a, IL-17, and IL-23 (128, 129). Monoclonal antibodies against

human IL-6R, tocilizumab and sarilumab increase the concentration

of Treg cells, reducing the number of Th17 cells in RA patients and

affecting the proportion of Th17/Treg cells (130–132).

The balance of Th17/Treg cells affects the development and

metastasis of cancer. An imbalance of Th17/Treg cells contributes

to the immune escape of tumor cells and is closely related to the

stage of the tumor and the poor prognosis of patients (28, 36, 44,

133, 134). Under normal physiological conditions, Th17 cells and

Tregs inhibit the differentiation and function of each other and

maintain a dynamic balance, maintaining immune self-stability.

The Th17/Treg cell ratio in the peripheral blood of patients with

NSCLC, renal cell carcinoma (RCC), endometrial carcinoma (EC),

and cervical cancer is significantly greater than that in the

peripheral blood of healthy controls (135–140). In other cancers,

such as epithelial ovarian cancer (EOC), pancreatic cancer (PC),
FIGURE 4

Th17 cells and PTC. Th17 cells exert indirect antitumor effects by secreting chemokines such as CXCL-9 and CXCL-10 to attract effector cells such
as Th1 and CD8+ T cells and NK cells to accumulate and kill tumor cells in tumor tissues. Th17 cells can also inhibit the formation of tumor blood
vessels and promote PTC cell apoptosis by producing IFN-g, TNF-a and IL-17. IL-17 can enhance the effect of IL-6, transforming CD4+ T cells into
Th17 cells. PTC cells can produce CCL2, which stimulates monocytes to produce IL-17, promoting tumor cell proliferation.
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tongue squamous cell carcinoma (TSCC), hepatocellular carcinoma

(HCC), and oral squamous cell carcinoma (OSCC), the ratio of

Th17/Treg cell is low (134, 141–144). Huo et al. reported that as the

number of Treg cells in the spinal cord of a bone cancer pain (BCP)

mouse model increased, the Th17 cell number increased, resulting

in Th17/Treg cell imbalance, which promoted the activation of

microglia and the development of BCP (145). Wu et al. reported

that the number of Th17 cells in the peripheral blood of a lung

cancer mouse model was significantly reduced, whereas the number

of Treg cells was increased, resulting in tumor-associated

immunosuppression (146). Lin et al. reported that a disrupted

Th17/Treg cell balance was attributed to the progression of

cervical cancer (UCC) and that this imbalance was reversed after

treatment (138, 139). These studies suggest that the Th17/Treg cell

balance plays very important roles in the development of cancer.

Reversing the Th17/Treg cell imbalance could be an effective

therapeutic strategy for treating tumors.
Checkpoint blockade

Malignancy is accompanied by a high mortality rate. Surgical

resection is one of the standard treatments for PTC. Patients who

receive surgical treatment have a better prognosis than those who

do not. However, metastasis, such as cervical lymph node metastasis

or site-specific metastasis, including lung, bone, liver and brain

metastasis, indicates a poor prognosis and low survival rates in PTC

patients (12). Therefore, traditional surgical excision treatment has

limited feasibility. Treatments for thyroid malignances include

immune checkpoint inhibitors (shown in Figure 5) in addition to
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surgical resection. Inhibition of inhibitory receptors (checkpoints)

on Tregs with monoclonal antibodies can inhibit melanoma,

bladder cancer, breast cancer, renal cell carcinoma, ovarian

cancer, lung cancer, and colorectal cancer (147). An increasing

number of immune checkpoint inhibitors, including monoclonal

anti-CTLA-4, anti-PD-1, and anti-PD-L1 antibodies, have been

shown to be effective in the treatment of cancers. During the

progression of PTC, neoantigens can be captured by APCs and

MHC-II molecules on the surface of APCs, which can bind to TCRs

on Tregs. The activation of Tregs requires a costimulatory signal

transmitted by CD28, which is activated by binding to CD80 and/or

CD86 on the APC. Tumor cells upregulate CTLA-4 on Tregs, and

CTLA-4 competes with CD28 for binding to CD80/CD86 on APCs.

The interaction of CTLA-4 with CD80/CD86 leads to inhibitory

signal transduction in Tregs, which favors the proliferation of

thyroid carcinoma cells (148). The immunosuppressive activity of

CTLA-4 is mediated by downregulating Th17 cells and enhancing

Tregs, which can disrupt Treg/Th17 homeostasis. In addition,

tumor cells express high levels of PD-L1 and/or PD-L2, which

bind to PD-1 on Tregs, resulting in inhibitory signals (149).

Monoclonal antibodies targeting CTLA-4 (e.g., ipilimumab), PD-

1 (including atezolizumab, pembrolizumab, and spartalizumab) and

PD-L1 (e.g., atezolizumab, durvalumab, and avelumab) inhibit the

interaction of CTLA-4/CD80/86 and PD-1/PD-L1, respectively,

and inhibit the activation of Tregs, reversing the Th17/Treg cell

imbalance. However, the roles of Th17 cells or other IL-17-

producing immune cells in the mechanism of checkpoint

blockade therapy have not been adequately described (44). The

combination of surgical resection with immune checkpoint

suppression therapy is expected to be widely used in future
FIGURE 5

Checkpoint blockades reverse the Th17/Treg imbalance and improve the treatment of PTC.
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clinical practice, especially for aggressive PTCs, providing a new

option for the prevention and treatment of PTC.

The extent of surgical lymph node dissection and the use of

adjuvant radioiodine therapy are still highly debated in the

management of patients with PTC. The identification of novel

prognostic markers would be helpful in predicting the risk of

disease recurrence and aggressiveness (78). Th1 polarization,

characterized by the production of interferon (IFN)-g and the

activation of cytotoxic CD8+ T cells, is known to promote tumor

elimination (150). A clinical trial assessing the efficacy of the PD-1-

blocking antibody MDX-1106 in cancer therapy showed promising

results with minimal adverse effects (151). In recent years, different

genetic alterations in molecular pathways that determine the

development and progression of PTC have been identified (BRAF

mutations, TERT promoter mutations, RAS mutations, RET/PTC

gene rearrangements and RET mutations). As small organic

compounds, tyrosine kinase inhibitors (TKIs) inhibit tyrosine

kinase autophosphorylation and activation. Most of them are

multikinase inhibitors that act on the above reported molecular

pathways. Clarification of the factors involved in PTC progression,

including tumor growth, angiogenesis, and local and distant

metastasis, have provided new therapeutic directions for

aggressive PTC (152, 153). The development of new drugs is

promising because of the absence of specific and effective drugs

for the treatment of aggressive PTC.
Summary

In conclusion, Th17 cells and Tregs play different roles in the

development of PTC, and their balance is closely related to the

progression and invasive characteristics of PTC. Th17 cells play

anticancer roles, whereas Tregs play cancer-promoting roles. This

imbalance affects tumor progression and invasive behaviors such as

tumor metastasis, and the TGF-b/IL-2 and IL-6 cytokine axes

greatly contribute to Th17/Treg homeostasis. At present,

molecular targeted therapies for Th17 cells and Tregs have been

approved for the treatment of inflammatory diseases, such as RA,

psoriasis, psoriatic arthritis, ankylosing spondylitis, systemic lupus

erythematosus, MS, and IBD. Th17/Treg cells are involved in the

pathogenesis of PTC. Immunotherapy against Th17/Treg cells has

good potential in PTC and is worthy of further study.
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PTC papillary thyroid carcinoma
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Th17 helper T lymphocyte 17
Treg regulatory T lymphocyte
IL-2 interleukin-2
TGF-b transforming growth factor-b
STAT5 signal transducer and activator of transcription 5
FoxP3 factor forkhead box P3
IL-10 interleukin-10
IL-35 interleukin-35
NK natural killer
IL-6 interleukin-6
IL-21 interleukin-21
RORgt related orphan receptor gt
STAT3 signal transducer and activator of transcription 3
TCR T cell receptor
VEGF vascular endothelial growth factor
GITR glucocorticoid-induced tumor necrosis factor receptor
PD-1 programmed cell death protein1
CTLA-4 cytotoxic T lymphocyte antigen 4
TIGIT T Cell Immunoreceptor with Ig and ITIM Domains
IDO1 indoleamine 2,3-dioxygenase 1
GARP glycoprotein a repetitions predominant
IL-1b interleukin-1b
IL-17 interleukin-17
IL-23 interleukin-23
IL-22 interleukin-22
PGE2 prostaglandin Eion 5
PTEN phosphatase 2
CXCL C-X-C motif ligand
PD-L1 programmath ligand-1
APC antigen-presenting ed cell decell
Teff cell T effector cell
TNF-a tumor necrosis factor-a
GM-CSF granulocyte-macrophage colony-stimulating factor
IFN interferon
Th1 helper T lymphocyte 1
TME tumor microenvironment
ECM extracellular matrix
Th9 helper T lymphocyte 9
PDE4 phosphodiesterase 4
MNG multinodular goiter
PDC plasmacytoid dendritic cells
PTMC papillary thyroid microcarcinoma
MHC-I major histocompatibility complex-1
VEGFR vascular endothelial growth factor receptor
Camp cyclic AMP
CCL2 C-C motif ligand 2
13
NSCLC non-small cell lung cancer
SLE systemic lupus erythematosus
MS multiple sclerosis
IBD inflammatory bowel disease
RCC renal cell carcinoma
EC endometrial carcinoma
EOC epithelial ovarian cancer
PC pancreatic cancer
TSCC tongue squamous cell carcinoma
HCC hepatocellular carcinoma
OSCC oral squamous cell carcinoma
BCP bone cancer pain
MTAbs monoclonal antibodies
anti-CLA-4 anti-cytotoxic T lymphocyte antigen 4
anti-PD-1 anti-programmed cell death protein-1
anti-PD-L1 anti-programmed cell death ligand-1
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