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Application of AI
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Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is

considered a deadly malignancy of the hepatobiliary system. Most cases

of cholangiocarcinoma are asymptomatic. Therefore, early detection of

cholangiocarcinoma is significant but still challenging. The routine screening

of a tumor lacks specificity and accuracy. With the application of AI, high-risk

patients can be easily found by analyzing their clinical characteristics, serum

biomarkers, and medical images. Moreover, AI can be used to predict the

prognosis including recurrence risk and metastasis. Although they have some

limitations, AI algorithms will still significantly improve many aspects of

cholangiocarcinoma in the medical field with the development of computing

power and technology.
KEYWORDS
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Introduction

Cholangiocarcinoma (CCA) is an advanced and lethal malignancy with a rare

incidence of the disease (1). It arises from the epithelial cells of the biliary ducts.

According to the original anatomical site, cholangiocarcinoma is divided into

intrahepatic, perihilar, or extrahepatic (2). The annual incidence is approximately 1.26

cases of cholangiocarcinoma per 100,000 people, and two-thirds of cases are intrahepatic

type in the United States (3). The signs and symptoms associated with cholangiocarcinoma

are non-specific. The location of the lesion is suggested by the patient’s clinical presentation

and the initial radiographic findings (4). Extrahepatic cholangiocarcinoma becomes

symptomatic when the biliary drainage system is obstructed, including jaundice,

pruritus, and color change of the stools and urine. Intrahepatic cholangiocarcinoma is

usually asymptomatic and less possibly presents jaundice (5). Tumor markers, including

CEA, CA 19-9, and even the combined parameters of CA 19-9 and CEA, do not have

enough specificity and accuracy to detect early-stage cholangiocarcinoma (6–8).

Transabdominal ultrasound, as the first appropriate imaging study for patients with

jaundice, has a high sensitivity to detect the main reason for the biliary tract dilation
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and evaluate potential vascular involvement. However, early-stage

distal extrahepatic cancers may not be detected due to the limited

visualization of the distal common bile duct, especially if the small

lesion does not make the bile duct become visibly dilated (9, 10).

CT, MRI, and PET/CT are not recommended for asymptomatic

populations as routine examinations due to the low incidence of

cholangiocarcinoma and the financial cost involved (2, 11–13).

ERCP and other invasive procedures including percutaneous

cholangiography, brush cytology, and endoscopic ultrasound are

also not recommended (14, 15). Only a minority of patients present

with early-stage disease and are considered candidates for resection,

which is the only possible cure (1, 6, 16). Consequently, early

diagnosis of cholangiocarcinoma is still challenging nowadays.

Artificial intelligence (AI) was first proposed by John McCarthy

et al. in 1956, where it was widely considered as “thinking

machines.” AI is defined as investigating and developing a digital

computer or computer-controlled machine to simulate and perform

the intellectual process characteristic of humans (17). AI has shown

great success in a wide variety of medical studies, including

radiology (18, 19), pathology (20), gastroenterology (21), and

ophthalmology (22). AI has a great advantage in analyzing vast

amounts of data and identifying patterns and trends of disease, such

as histologic, cytologic, serum marker, and radiologic methods. In

the early diagnosis of cholangiocarcinoma, AI can analyze the input

histologic, cytologic, or radiologic images to extract features that are

specific for cholangiocarcinoma but not fully recognized by

humans, with the type of dimensionality reduction (23). Decision

tree algorithms can be trained with serum markers to determine the

better cutoff value and workflow for the diagnosis of

cholangiocarcinoma. Moreover, AI efficiently automates the

repetitive jobs for physicians, achieving more rapid identification

of the suspected nodule (17, 24). With the continuous improvement

of the computing power of computers, AI is the driving force in the

development of new treatments and technologies in the

medical field.

However, there are still some disadvantages to the application of

AI in the medical field, particularly in building user trust in AI

systems (25). Interpretability means that the cause and effect can be

determined (26). Nowadays, some AI algorithms function as

uninterpretable “black boxes” and are difficult to explain how

cholangiocarcinoma is being predicted by the input information.

Artificial intelligence itself cannot be the subject of a legal

relationship so a framework for determining the responsibilities

and legal liability for AI is also needed (27). Furthermore, medical

data from different institutions may be varied in quality and

complicated in feature labeling (28). It also raises our concerns

about data privacy during the application of AI (29). Most AI

applications currently approved by the FDA are studied in

retrospective studies, while few prospective studies investigated

the clinical application of AI algorithms (30).

In this review, “artificial intelligence,” “machine learning,” and

“cholangiocarcinoma” were used as the keywords. Relevant literature

published until September 2023 in PubMed, Embase, Web of Science,

and other databases were reviewed.We highlighted the AI function in

serum biomarkers, radiologic analysis, and pathological examination

in the tumor diagnosis process. In prognosis prediction, recurrence
Frontiers in Oncology 02
risk, metastasis, and overall survival of cholangiocarcinoma are

investigated by AI. Finally, we discussed the future challenges for

cholangiocarcinoma management.
Machine learning

Machine learning (ML) is a branch of artificial intelligence. By

making use of data and algorithms, it simulates the way how

humans think and execute (31). Machine learning can handle

large volumes of data and discover potential trends, especially in

radiology. The number of images often exceeds the processing

capacity of radiologists, while it can be rapidly studied by ML to

localize the cholangiocarcinoma for radiologists (32). Also, it is

widely used in the three-dimensional reconstruction of the biliary

system from the images so that the area of malignancy can be

automatically delineated for surgery and radiotherapy (33, 34).

The performance of an ML model is usually measured by the

AUROC, which determines the tradeoff value between sensitivity

and specificity (35). Other parameters, including accuracy, C-index,

and PPV, are also commonly used to evaluate the predictive result

of ML. The higher the values of the parameters are, the more

accurate the prediction of cholangiocarcinoma can be achieved.
Supervised learning

Supervised learning is a training algorithm that uses labeled

features to classify data and predict outcomes accurately (36). For

cholangiocarcinoma, clinical physicians labeled the specific site of

malignancy in radiology or abnormal serum biomarkers for

malignancy. Then, the labeled data are fed into the model, and

the cross-validation process is performed to adjust the weights

appropriately for diagnosis. In this review, most of the models are

established by supervised learning, typically in the differential

diagnosis part of cholangiocarcinoma with clinical features and

radiomic features (Figure 1).
Unsupervised learning

Without the need for human intervention for images of

cholangiocarcinoma, unsupervised learning analyzes unlabeled

data and discovers similarities and differences (37). Potential

patterns or data groupings can be identified by unsupervised

learning. Also, it can be used to map the original high-

dimensional data to achieve dimensionality reduction, typically in

radiomic studies for cholangiocarcinoma. PCA, SVD, and k-means

clustering are some common algorithms.
Semisupervised learning

In semisupervised learning, clinical physicians label smaller

data for cholangiocarcinoma and feed the algorithms to perform
frontiersin.org
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learning tasks on a bigger unlabeled database for the diagnosis of

cholangiocarcinoma (38). Semisupervised learning overcomes the

disadvantage of supervised learning, which requires large enough

labeled data. Moreover, using labeled data can prevent models from

learning false correlations to improve the accuracy of the model.
Reinforcement learning

Reinforcement machine learning is an ML model that is not

trained by sample data (39). This model learns by using trial and

error and simulates the process to maximize the cumulative reward.

For cholangiocarcinoma, the goal-oriented algorithm accumulates

the successful treatment outcomes for cholangiocarcinoma to

develop the best recommendation. Therefore, specific patients

who may benefit from the surgery can be identified.
Deep learning

Deep learning is a branch of machine learning that focuses on

deep artificial neural networks (40). Compared with machine

learning algorithms, deep learning eliminates some of the data

preprocessing and ingests the unstructured raw data (Figure 2). The

features for the classification of cholangiocarcinoma are

automatically extracted and analyzed to determine the most

important features to distinguish cholangiocarcinoma, such as the

biliary tract infiltration and the tumor size. Furthermore, it adjusts

and fits itself for accuracy through the processes of gradient descent

and backpropagation, especially when handling high-dimensional

data. Deep learning algorithms, such as CNN and RNN, have been

widely used in radiomics for cholangiocarcinoma and have

achieved great success in image classification in recent years

(41–43).
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AI and diagnosis

Cholangiocarcinoma lacks accurate early diagnostic methods,

which are important for patients at high risk of suffering from

primary sclerosing cholangitis, polycystic liver disease, and chronic

hepatolithiasis (44). Many researchers currently focus on applying

AI to the early diagnosis of cholangiocarcinoma using different

clinical information of the patients (Figure 3).

Table 1 summarized the application of AI in diagnosis of

cholangiocarcinoma. Spectroscopy is considered a useful method for

identifying subtle changes associated with cancer development in

biological samples (45, 46). Making use of patients’ serum samples,

Su et al. (47) applied Raman spectroscopy to identify typical

biomolecular components in CCA and achieved good diagnostic

accuracy combined with the SVM algorithm. Giordano et al. (48)

also applied mass spectrometry with SVM and RF to permit

cholangiocarcinoma identification, with an accuracy of 99.0%,

sensitivity of 98%, and specificity of 100%. Furthermore, sera from

CCA patients were detected by Chatchawal et al. to find out specific

molecular vibrations of molecules and gain cancer-specific biomarkers

using attenuated total reflectance-Fourier transform infrared (ATR-

FTIR) spectroscopy (49). SVM, RF, and NN models were established.

The variations of collagen molecules, phosphate groups, lipid ester

carbonyls, and polysaccharides were found in CCA patients. Specific

lipid metabolism in HCC and abnormal extracellular pathways in CCA

were found by mass spectrometry (50). RF was used to select the

features and establish the model with an area under the curve (AUC)

value of 0.92 and an accuracy of 90%. To differentiate adenocarcinomas

of the pancreas and biliary tree, Bollwein et al. (51) investigated the

mass spectrometric peptide sequences of histone and collagen with GB,

SVM, and KNN algorithms, achieving an AUC of 0.96 and accuracy of

0.91. Serum lipid and peptide detection was conducted by nano-

assisted laser desorption ionization mass spectrometry

to discriminate between benign bi l iary diseases and
FIGURE 1

Machine learning can be classified as supervised, unsupervised, semi-supervised and reinforcement learning. All data is labeled In supervised
learning, while unsupervised learning is unlabeled. Small amount of labeled data fed semi-supervised learning, and a large amount of unlabeled data
can be handled. Reinforcement learning interact with rewards or punishments from the environment.
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cholangiocarcinoma (52). Three algorithms (ANN, LASSO, SVM)

were used to investigate the lipidomics panel, peptidomics panel, and

multiomics panel, achieving sensitivity and specificity of 96.5% and

96.4% in the diagnosis.

Bile acid assessments are potentially involved in the

development and progression of CCA (53). Using plasma bile

acid profiles, the performance of six ML algorithms was evaluated

by Negrini et al. (54). Naive Bayes, using direct bilirubin

concentration as the normalization process, achieved the best

performance, with an AUC of 0.95, specificity of 1.00, PPV of

1.00, and accuracy of 86.4%, which was significantly better than the

other five algorithms (LR, KNN, RBF SVM, RF, XGBoost). CLU

protein was upregulated in bile proteomics in CCA, proven by

immunoblotting analysis, qRT-PCR, and immunohistochemistry

staining. Combined with serum CA 19-9, indirect bilirubin, GGT,

TG, LDLC, and TBA levels, the seven-panel models with LASSO

and RF methods had an AUC of 0.947, sensitivity of 90.3%,

specificity of 84.9%, and accuracy of 87.0% (55). Urman et al.

(56) further analyzed the metabolomics and proteomics of human

bile with spectrometry. The NN algorithm was performed to extract

useful metabolomic data. A total of 15 molecular features were

identified with an AUC of 0.984, sensitivity of 94.1%, and specificity

of 92.3% in differentiating CCA from benign biliary stenoses.

Differentially expressed genes are also available for CCA

diagnosis (57). Human gene expression profiles of the ICC GEO
Frontiers in Oncology 04
database were investigated to screen out the differentially expressed

genes with three algorithms (LASSO, SVM-RFE, RF). MMP14 was

finally determined with high accuracy and an AUC of 0.999, which

affects the infiltration of monocytes and the activation of memory

CD4 T cells (58). Six hundred seventy-two mutations in 45 different

CCA genes were also detected by Ali Shah et al. (59). With three

long short-term models, gated recurrent units, and bidirectional

LSTM algorithms based on RNN, the deep learning model was

established with a sensitivity of 100%, specificity of 98%, and

accuracy of 99%. Liao et al. (60) screened out 166 CCA disease

signature genes by RF algorithms and built an ANN prediction

model for CCA, with an AUC of 0.980. Genomic profiles were used

to identify the gene alteration of HCC, CCA, and cHCC-CCA.

Murugesan et al. (61) built an RF model to classify cHCC-CCA by

integrating genomic-derived data. TP53, TERT, and PTEN were the

most common in gene alterations. Combined with the DNA

methylation data from public data and in-house patients, RF,

SVM, and NN were developed. Further improving by anomaly

detection, the accuracies were continually enhanced, and the best

balance was reached by NN concerning accuracy and the number of

samples (62). With the single-cell RNA-sequencing datasets, Swain

et al. (63) used KNN and SNN to cluster the cell group. Moreover,

UMAP and t-SNE identified the top 2 components to classify HCC

and ICC. Further analysis indicated the interaction between smooth

muscle cells and epithelial cells and cell adhesion pathway alteration
FIGURE 2

Application of artificial intelligence in multiple related fields of diagnosis of cholangiocarcinoma.
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in ICC. Transcriptomic data from public datasets were used to

identify the classification between ICC and ECC. Differentially

expressed genes in EMT, DNA repair, and the EGFR pathway

were identified. KNN, SVM, and fast unified RF were used to build

the prediction model (64). The translational proteomic approach

was also used to discover specific CCA biomarkers. Seven candidate

proteins and four significantly increased proteins proven by

enzyme-linked immunosorbent assays with SVM showed strong

predictive performances for CCA, with an AUC of 0.96 (28).
Frontiers in Oncology 05
Imaging technology plays an important part in the diagnosis of

CCA. Current technology includes ultrasound, CT, MRI, and 18F-

FDG PET/CT. Due to similar invasive features of hepatic alveolar

echinococcosis with malignancy, Wa et al. (65) utilized ultrasound

and CEUS features with LASSO regression to establish the US

scoring system for differentiation.

The first study with the application of the AI algorithm in CCA

CT images was in 2006 (66). HCC is a liver tumor due to the

abnormal proliferation of parenchyma, whereas dysregulation of
FIGURE 3

Diagram of machine learning and deep learning process. Machine learning needs four steps: input, feature extraction, classification, and output.
Deep learning is a subgroup of a machine learning algorithm, which can automatically extract labels.
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TABLE 1 Application of AI in the diagnosis of cholangiocarcinoma.

Reference
Sample
size

Data source Algorithms Aim Best result

Tang et al. 100 cases

1,200 radiomics
features extracted
from axial T1WI,
T2WI, DWI,
and ADC

Bagging classifier
Differentiate the
degree of ECC

AUC 0.90, accuracy 0.85, sensitivity
0.75, and specificity 0.88

Tang et al. 100 cases

1,200 radiomics
features extracted
from axial T1WI,
T2WI, DWI,
and ADC

Extreme gradient boosting classifier
Predict lymph node
metastasis of ECC

AUC 0.98, accuracy 0.90, sensitivity
0.75, and specificity 0.94

Shen et al. 2,269 cases Clinical features LASSO regression and random forest
Predict lymph node
metastasis of ICC

Accuracy 82.6%, AUC 0.867

Xu et al. 129 cases CE-CT
distance correlation (DC)_LDA
and RF_LDA

Differentiate ICC and
hepatic lymphoma

Accuracy 96.2%, AUC 0.997

Ren et al. 226 cases Ultrasound SVM
Differentiate between
HCC and ICC

AUC 0.936, sensitivity 0.900,
specificity 0.857, and accuracy 0.868

Liu et al. 85 cases MRI SVM

Differentiate between
combined
hepatocellular
cholangiocarcinoma

AUC 0.77

Hu et al. 24 cases Multiphasic MRI Tree-based pipeline optimization tool
Differentiate between
HCC and ICC

Accuracy 73%–75%, sensitivity
65%–75%, specificity 75%–79%

Liu et al. 100 cases
MRI and
clinical features

LASSO, Gaussian process regression,
KNN, LR, partial least squares-
discriminant analysis, quadratic
discriminant analysis, RF, SGD, SVM,
and XGBoost

Predict VEGF
expression and MVD
of ECC

AUC 0.912

Liao et al.

166
differentially
expressed
genes

Gene Expression
Omnibus
(GEO) database

RF and ANN
Diagnosis
of
cholangiocarcinoma

AUC 0.980

Giordano et al. 96 cases
Probe electrospray
ionization
mass spectrometry

SVM and RF
Diagnosis
of
cholangiocarcinoma

Accuracy 99.0%, sensitivity 98%,
specificity 100%

Liu et al. 112 cases MRI MFF, SRB, and CBAM
Differentiate between
HCC and ICC

AUC 0.9680, accuracy 92.26%,
sensitivity 86.21%, and
specificity 94.70%

Chen et al. 134 cases
Gd‐EOB‐DTPA-
enhanced MRI

SelectKBest, LASSO, LR, RF,
SGD, SVM

Differentiate between
atypical ICC and
poorly
differentiated HCC

AUC = 0.90

Urman et al. 129 cases

Mass spectrometry
and nuclear magnetic
resonance
spectroscopy

NN

Differentiate between
benign biliary
strictures
and
cholangiocarcinoma

AUC 0.984, sensitivity 94.1%, and
specificity 92.3%

Dragomir et al. 760 cases
genome-wide DNA
methylation data

NN, SVM, and RF

Differentiate between
ICC and hepatic
metastases of
pancreatic
ductal
adenocarcinoma

Accuracy 100%

Mahmoudi et al. 94 cases
CT radiomics features
and clinical features

t-SNE, LASSO, LR, ADB, SGB, and RF
Differentiate between
HCC and ICC

AUC = 0.82, sensitivity 0.733, and
specificity 0.857

(Continued)
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TABLE 1 Continued

Reference
Sample
size

Data source Algorithms Aim Best result

Yi et al. 107 cases Mass spectrometry RF
Differentiate between
HCC and ICC

AUC 0.92 and accuracy 90%

Huang et al. 494 cases CT LR, LASSO, SVM and RF
Differentiate between
HCC and ICC

AUC 0.987, accuracy 0.939

Wang et al. 179 cases
CT radiomics and
clinical features

SVM

Predict lymph node
staging for
hilar
cholangiocarcinoma

AUC 0.870

Piansaddhayanon
et al.

3 cases
Microscopy image of
organoid-derived cells

NN
Detect the circulating
tumor cell in the
blood sample

AUC 0.78

Silverstri et al. 543 cases
RNA-seq and
microarray platforms

KNN, SVM, and fast unified RF
Diagnosis
of
cholangiocarcinoma

AUC 0.99

Watcharatanyatip
et al.

63 cases
Translational
proteomic

SVM
Diagnosis
of
cholangiocarcinoma

AUC 0.96

Murugesan et al. 6,518 cases Genomic profiles RF

Diagnosis of
combined
hepatocellular
cholangiocarcinoma

Sensitivity 85.9%, specificity 93.4%,
and accuracy 91%

Kiani et al. 80 cases
hematoxylin and
eosin-stained whole-
slide images

CNN

Pathologically
differentiate between
HCC
and
cholangiocarcinoma

Accuracy 0.885

Peng et al. 589 cases
Ultrasound-
based radiomics

Extremely randomized trees, RF,
LASSO, naive Bayes, SVM

Differentiate between
infected focal liver
lesions and ICC

AUC 0.949

Wang et al. 196 cases MRI radiomics LASSO, SVM Diagnosis of ICC
AUC 0.91, sensitivity 0.88,
specificity 0.89, accuracy 0.89

Xu et al. 211 cases CT radiomics features LASSO, SVM
Differentiate between
HCC and ICC

AUC 0.855

Huang et al. 149 cases
CT/MR image and
serum biomarker

RF
Predict ICC lymph
node metastasis

AUC 0.758, C-index 0.837,
sensitivity 0.82, specificity 0.90, PPV
0.93, NPV 0.75, false positive 0.41,
false negative 0.28, accuracy 0.85

Gao et al. 644 cases Proteomics data LASSO, RF, t-SNE
Diagnosis
of
cholangiocarcinoma

AUC of 0.947, sensitivity of 90.3%,
specificity of 84.9%, accuracy
of 87.0%

Ponnoprat et al. 257 cases Multiphase CT NN, KNN, DT, RF, MLP, and SVM
Differentiate between
HCC and ICC

Accuracy 88.19%

Ali Shah et al. 516 cases Gene sequence LSTM and GRU
Diagnosis
of
cholangiocarcinoma

Accuracy 99%, sensitivity 100%,
specificity 98%

Bollwein et al. 82 cases
mass spectrometric
peptide features

GB, SVM, and KNN

Differentiate
adenocarcinomas
between the pancreas
and biliary tree

AUC 0.96, accuracy 0.91

Wa et al. 120 cases

conventional
ultrasound and
contrast-
enhanced ultrasound

LASSO

Differentiate between
hepatic alveolar
echinococcosis
and ICC

Sensitivity 82.5%, specificity of
86.4%, AUC 0.913

(Continued)
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TABLE 1 Continued

Reference
Sample
size

Data source Algorithms Aim Best result

Chatchawal et al. 46 cases

Serum markers in
attenuated total
reflectance-Fourier
transform
infrared spectroscopy

SVM, RF, and NN
Diagnosis
of
cholangiocarcinoma

Sensitivity 80%–100%, specificity
83%–100%

Qu et al. 235 cases Serum multiomics ANN, SVM, LASSO

Accurate
discrimination of
benign biliary diseases
and
cholangiocarcinoma

Sensitivity 96.5%, specificity 96.4%

Peng et al. 668 cases
Ultrasound-
based radiomics

LASSO
Diagnosis
of
cholangiocarcinoma

AUC 0.920

Swain et al. 51,927 cases
Single-cell
transcriptome
analysis

KNN, SNN, UMAP, and t-SNE
Diagnosis
of
cholangiocarcinoma

–

Wu et al.
2
GEO
databases

Gene
expression profiles

LASSO, SVM-RFE, RF
Diagnostic gene of
intrahepatic
cholangiocarcinoma

AUC 0.999

Sun et al. 880 scenes

Multidimensional
hyperspectral
cholangiocarcinoma
images

CNN, RF
Diagnosis
of
cholangiocarcinoma

Accuracy 88.2%

Wang et al. 494 cases Multiphasic MRI CNN
Diagnosis
of
cholangiocarcinoma

Positive predictive value 83.3%

Midya et al. 814 cases
Portal venous
phase CT

Inception v3 network
Diagnosis
of
cholangiocarcinoma

Accuracy 96%, sensitivity 94%

Starmans et al. 486 cases
T2-weighted
MRI radiomics

SVM, RF, LR, linear and quadratic
discriminant analysis, Gaussian naive
Bayes, ADB, and XGBoost

Diagnosis
of
cholangiocarcinoma

AUC 0.78

Hamm et al. 494 cases Multiphasic MRI CNN
Diagnosis
of
cholangiocarcinoma

Accuracy 92%, sensitivity 92%,
specificity 98%, AUC 0.992

Gao et al. 519 cases MRI CNN

Preoperative
prediction of
microvascular
invasion in
intrahepatic
cholangiocarcinoma

AUC 0.888, accuracy 86.8%,
sensitivity 85.7%, specificity 87.0%,
positive predictive value 63.2%,
negative predictive value 95.9%

Zhu et al. 138 cases CE-CT SVM
IDH mutation status
of ICC

Accuracy 0.863, sensitivity 0.727,
specificity 0.885, AUC 0.813

Wolff et al. 11 cases
Optical
coherence
tomography

CNN
Differentiate between
ICC and
liver parenchyma

Sensitivity 0.94, specificity 0.93

Xu et al. 106 cases
T1-weighted contrast-
enhanced MR images

SVM, mRMR
Predict lymph node
status of ICC

AUC 0.870

Nakai et al. 617 cases
CT and
tumor marker

CNN
Differentiate between
HCC and ICC

Accuracy 0.61, specificity 0.68

Guo et al. 342 cases

Dynamic contrast-
enhanced MRI
radiomics and
clinical features

LASSO

Differentiate between
combined
hepatocellular-
cholangiocarcinoma
and HCC

AUC 0.863, specificity 0.918, and
sensitivity 0.738

(Continued)
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epithelioid cells of the biliary tract results in ICC. ANN is designed

based on the 24 CT image features and 9 clinical findings. The AUC

was 0.961 and the radiologist’s performance with the ANN model

significantly improved (p < 0.02). With multiphase CT scan images,

SVM was utilized by Ponnoprat et al. to develop a method and

achieve an accuracy of 88% in the classification of liver cancer (67).

Portal venous phase images from CT scans analyzed by the

modified Inception v3 network algorithms obtained an accuracy

of 96% and sensitivity of 94% in ICC classification (68). Combining

CT images with the tumor markers, the CNN model was developed

to categorize ICC from HCC, achieving better accuracy and

specificity than the radiologist (43).

Different from the previous study concerning gene expression

profiles, several phases of the CE-CT were enrolled in the study to

investigate the different radiological features in different CCA-

related gene expression levels (58, 59). The IDH gene, which

translated key enzymes in the tricarboxylic acid cycle, frequently

mutated and participated in the carcinogenesis of ICC. Venous

phase images showed great accuracy of 86.3% and specificity of

88.5% in predicting the IDH mutations with the SVM

algorithm (69).

MRI has become the better choice for the staging and

differentiation of CCA because of the high sensitivity of the

infiltration and high resolution. Shen et al. (70) developed a

nomogram based on LASSO and RF to identify ICC among

intrahepatic lithiasis patients, with an accuracy of 82.6%. Hu et al.

(71) made use of a tree-based pipeline optimization tool. After

manual segmentation of the tumors, different thresholds of feature

selections and classifiers were evaluated. The best combinations
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were established with an accuracy of 73%–75%. To differentiate the

cHCC-CCA, the LASSO model, composed of clinical features

(tumor size, age, etc.) and MRI images, was built with an AUC of

0.863 and specificity of 91.8% (72). CNN with multiphasic MRI

features achieved a specificity of 98% and AUC of 0.992 in

classifying six hepatic tumors. Further study about the radiologic

imaging features for each hepatic tumor reached a PPV of 83.3% in

differentiating the ICC from liver lesions (41, 42). The strided

feature fusion residual network, a deep learning workflow

composed of MFF, SRB, and CBAM, was also proposed to

automatically utilize the MRI features to distinguish ICC, with an

AUC of 0.9680 (73). Compared with the deep learning workflow,

Gd‐EOB‐DTPA-enhanced MRI features with RF, SGD, and SVM

algorithms achieved an AUC of 0.90 in differentiating atypical

intrahepatic mass-forming CCA from poorly differentiated HCC.

Radiomics is defined as the extraction and analysis of advanced

quantitative features from medical images of ultrasound, CT, MRI,

and 18F-FDG PET/CT. Radiomics features can be extracted after

the region of interest is delineated. Several algorithms were used to

establish the predictive model and had favorable value to predict

CCA from infected focal liver lesions (74). Ren et al. (75) performed

SVM based on ultrasonics to distinguish ICC from HCC, with an

AUC of 0.936 and a sensitivity of 0.900. Also, the ultrasound-based

radiomics with LASSO algorithm analysis achieved an AUC of

0.920 (76). Xu et al. (77) employed 45 models based on the

combination of 5 selection methods and 9 classification methods

to study radiomics in CE-CT. The RF algorithm combined with

LDA achieved the highest AUC and accuracy (0.997 and 0.969,

respectively) to differentiate between ICC and hepatic lymphoma.
TABLE 1 Continued

Reference
Sample
size

Data source Algorithms Aim Best result

Matake et al. 120 cases Dual-phase CE-CT ANN
Diagnosis
of
cholangiocarcinoma

AUC 0.961

Su et al. 38 cases
Serum
Raman spectroscopy

SVM
Diagnosis
of
cholangiocarcinoma

sensitivity 94.55%, specificity 98.18%

Negrini et al. 112 cases
Plasma bile
acid profiles

LR, KNN, naive Bayes, RBF SVM,
RF, XGBoost

Screening
of
Cholangiocarcinoma

Area under the curve (AUC) 0.95,
sensitivity 0.79, specificity 1.00,
positive predictive value 1.00,
negative predictive value 0.73,
accuracy 86.4%

Tsilimigras et al. 826 patients
Tumor size and
median CA 19-9
and NLR

Classification tree
differentiate between
HCC and ICC

k = 0.93

Jiang et al. 127 cases
18F-FDG PET/CT
radiomic features

Sequential forward floating
Differentiate between
HCC and ICC

AUC 0.90, accuracy 0.77, sensitivity
0.75, specificity 0.80
CE-CT, contrast-enhanced computed tomography; MRI, magnetic resonance imaging; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; ADC,
apparent diffusion coefficient; VEGF, vascular endothelial growth factor; MVD, microvessel density; AP, arterial phase; PVP, portal venous phase; 18F-FDG PET/CT, 18F-fluorodeoxyglucose
positron emission tomography/computed tomography; CA 19-9, carbohydrate antigen 19-9; NLR, neutrophil-to-lymphocyte ratio; SBRT, stereotactic body radiotherapy; DL, deep learning;
LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine; ANN, artificial neural network; MFF, multilayer feature fusion module; SRB, stationary
residual block; CRAM, convolutional block attention module; LR, logistic regression; SGD, stochastic gradient descent; NN, neural network; t-SNE, t-distributed stochastic neighbor embedding;
ADB, AdaBoost; SGB, stochastic gradient boosting; KNN, K-nearest neighbors; CNN, convolutional neural network; MLP, multilayer perception; DT, decision tree; LSTM, long short-term
model; GRUs, gated recurrent units; SNN, shared nearest neighbor; UMAP, uniform manifold approximation and projection; XGBoost, extreme gradient boosting; mRMR, maximum relevance
minimum redundancy; GBM, gradient boosting machine; CART, classification and regression tree; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; ICC, intrahepatic
cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma; HCC, hepatocellular carcinoma; PHC, perihilar cholangiocarcinoma; AUC, area under the curve; NPV, negative predictive value;
PPV, positive predictive value.
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TABLE 2 Application of AI in the prognosis of cholangiocarcinoma.

Reference
Sample
size

Data source Algorithms Aim Best result

Zhou et al.
4,398 +
504 cases

Clinical features RF
Predict the short-term prognosis
of ICC

C-index 0.73, AUC 0.7478

Qin et al. 641 cases
CE-CT, clinical features,
and molecular features

LASSO
Predict early recurrence after curative
resection of PHC

AUC 0.883, accuracy 0.826,
sensitivity 0.810

Ji et al.
649 +
401 cases

Clinical features and
surgery information

GBM
Predict prognosis after liver resection
of ICC

C-statistic 0.751

Alaimo et al. 536 cases
Clinicopathologic
characteristics

RF Predict the recurrence of ICC AUC 0.904

Ruan et al. 266 cases
Proteome and
transcriptome datasets

LASSO
Predict metastasis and risk
stratification of ICC

Accuracy 97.1%, AUC 0.958

Zhang et al. 98 cases AP and PVP MRI LASSO
Predict PD-1/PD-L1 expression and
outcome in ICC

AUC 0.897, C-index 0.721

Wang et al. 169 cases
Clinicopathologic
characteristics

DeepSurv,
LASSO, RF

Predict prognosis and guide
postoperative chemotherapy for
distal cholangiocarcinoma

C-index 0.746, AUC 0.823

Alaimo et al. 600 cases
Clinicopathologic
characteristics

RF
Assess optimal margin width in
hepatectomy and long-term outcomes
of ICC

AUC 0.81

Jolissaint et al. 138 cases CT RF
Predict early liver recurrence after
resection of ICC

AUC 0.84, sensitivity 0.91,
specificity 0.57, PPV 0.44, and
NPV 0.94

Song et al. 311 cases CT and clinical features LightGBM
Predict early recurrence risk after
curative resection of ICC

AUC 0.974

Li et al. 1,390 cases Clinical features
XGBoost, RF,
and GBDT

Prognostic scoring system of ICC C-index 0.693

Bo et al.
127
patients

AP and PVP CE-CT
LR, RF, NN, Bayes,
SVM, LightGBM,
and XGBoost

Predict early recurrence of ICC after
curative resection

AUC 0.89

Muller et al.
417
patients

Clinical features ANN Survival prediction in ICC AUC 0.89

Tang et al. 101 cases
CT radiomics and
clinical features

LASSO Prognostic nomogram of ICC AUC 0.783

Tsilimigras
et al.

1,146 cases
Demographic and
clinicopathologic data

CART
Identify the benefit associated with
resection for ICC

–

Bagante et al. 1,116 cases Clinical features CART
Define the prognostic ICC groups
after resection

–

Kaibori et al. 225 cases
Preoperative blood
test biomarkers

CART
Serum markers and risk classification
of ICC

–

Ibragimov
et al.

122 cases
CT images and delivered
dose plans

CNN
Recognition of consistent dose patterns
and generation of toxicity risk maps
of chemotherapy

Accuracy 0.73

Xie et al. 127 cases
H&E-stained whole-
slide images

mRMR, LDA, QDA,
and DT

Predict survival in ICC
AUC 0.74 ± 0.06, accuracy 0.70 ±
0.10, specificity 0.74 ± 0.10,
sensitivity of 0.73 ± 0.11

Jeong et al. 1,421 cases
Serum biomarkers and
clinicopathological features

TensorFlow
DL algorithm

Latent ICC susceptible to adjuvant
treatment risk after resection

AUC 0.78

Ibragimov
et al.

125 cases
Treatment characteristics,
CT image, and SBRT
treatment plans

CNN, SVM, RF,
and NN

Predict individualized hepatobiliary
toxicity after liver SBRT

AUC 0.85

(Continued)
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Combined CT radiomics features and clinical features can detect

early malignant lesions and predict the tumor prognosis. Utilized by

Mahmoudi et al. (19), four independent ML models were

established and LR achieved the best AUC of 0.82. A better AUC

of 0.855 was achieved by Xu et al. with LASSO and SVM algorithms

to classify ICC with CT radiomics features (78). Moreover, SVM

was conducted by Liu et al. to differentiate cHCC-CCA by using

MRI radiomics features, with an AUC of 0.81, while CT radiomics

was of limited value (79). Meanwhile, LASSO and SVM may

provide a better AUC of 0.91 and an accuracy of 89% with MRI

radiomics to distinguish different pathological types of liver cancer,

including cHCC-CCA, HCC, and ICC. The workflow for optimal

radiomics classification toolbox, involving eight machine learning

approaches, analyzed T2-weighted MRI radiomics to distinguish

malignant and benign primary solid liver lesions, with an AUC of

0.78. Furthermore, the CSAM-Net model was established with

better AUC values and accuracy than those of the conventional

radiomics models (80).

Microscopic hyperspectral (HSI) pathological images of CCA

are collected, typically with more pixel information than the

traditional RGB images. Exploration was conducted using deep

CNN and further RF algorithms to predict CCA on a pathological

patch size of 299, with an accuracy of 88.2% (81). Optical coherence

tomography is available for scanning the resection specimens to

determine the resection margins intraoperatively. Trained with

CNN, the sensitivity and specificity reached 94% and 93%,

respectively (82). To identify the impact of AI algorithms in

assisting pathologists to differentiate between HCC and CCA,

CNN was trained to classify hematoxylin and eosin-stained

whole-slide images, with an accuracy of 0.885. The algorithm

improved the accuracy of the well-experienced pathologists (p =

0.045). Meanwhile, the accuracy of the algorithm had a great impact

on the decision-making of the pathologists (83).
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AI and prognosis

Accurately predicting the prognosis of CCA is important for

individual treatment strategy. For potentially curative

cholangiocarcinoma, the long-term prognosis depends on various

factors, including the location and stage of the primary lesion,

surgery-associated complications, and treatment-related

complications (1, 2, 84, 85). The main prognostic factors are

margin status and lymph node involvement (86, 87). For

advanced cholangiocarcinoma, the prognosis is mainly predicted

by the M stage, primary lesion site, and elevated serum alkaline

phosphatase levels (88). Chemotherapy and clinical trials may not

significantly improve the prognosis (89).

Table 2 summarized the application of AI in prognosis of

cholangiocarcinoma. Clinical features and TNM stage are

frequently used in predicting the survival and prognosis of CCA

patients. Classification algorithms can easily identify the important

factors concerning the prognosis. To detect the burden of the ICC

and predict the prognosis, the CART algorithm was used to find out

the best estimator. Lymph node metastasis and tumor size had a

great effect on long-term prognosis (90). Also, the CART algorithm

was used by Kaibori to make risk classification in ICC. Preoperative

biomarkers, including CA 19-9, CRP, and CAR (ratio between CRP

and albumin), were used for predicting OS and RFS (91).

Tsilimigras et al. (92) divided the ICC into three phenotypes by

tumor size, CA 19-9, and NLR. The classification tree algorithm

assigned patients to different clusters and indicated different OS

rates. Zhou et al. (93) established three RF models and developed an

online tool, with an AUC of 0.7478. Serum albumin-to-fibrinogen

ratio and CA 19-9 were used to develop the DeepSurv model to

predict the prognosis of ECC and guide individualized

postoperative chemotherapy as shown in the study by Wang et al.

(87). The prognostic scoring system of ICC was constructed based
TABLE 2 Continued

Reference
Sample
size

Data source Algorithms Aim Best result

Plachouris
et al.

19 cases
SPECT, CT scans, and
clinical target volume

Generative
adversarial network

Predict biodistribution of 90Y
microspheres in
liver radioembolization

–

Liang et al. 139 cases
AP contrast-
enhanced MRI

LASSO Predict early recurrence in ICC AUC 0.90

Bagante et al. 649 genes Whole-exome sequencing ANN
Survival analysis
of cholangiocarcinoma

C-index 0.71

Xu et al. 265 cases CE-CT DenseNet
Predict posthepatectomy liver failure
after hemihepatectomy

Accuracy 84.15%, AUC 0.7927

Shao et al. 288 cases Clinical features ANN
Predict early occlusion of bilateral
plastic stent placement

AUC 0.9648
CE-CT, contrast-enhanced computed tomography; MRI, magnetic resonance imaging; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; ADC,
apparent diffusion coefficient; VEGF, vascular endothelial growth factor; MVD, microvessel density; AP, arterial phase; PVP, portal venous phase; 18F-FDG PET/CT, 18F-fluorodeoxyglucose
positron emission tomography/computed tomography; CA 19-9, carbohydrate antigen 19-9; NLR, neutrophil-to-lymphocyte ratio; SBRT, stereotactic body radiotherapy; DL, deep learning;
LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine; ANN, artificial neural network; MFF, multilayer feature fusion module; SRB, stationary
residual block; CRAM, convolutional block attention module; LR, logistic regression; SGD, stochastic gradient descent; NN, neural networks; t-SNE, t-distributed stochastic neighbor embedding;
ADB, AdaBoost; SGB, stochastic gradient boosting; KNN, K-nearest neighbors; CNN, convolutional neural network; MLP, multilayer perception; DT, decision tree; LSTM, long short-term
model, GRUs, gated recurrent units; SNN, shared nearest neighbor; UMAP, uniform manifold approximation and projection; XGBoost, extreme gradient boosting; mRMR, maximum relevance
minimum redundancy; GBM, gradient boosting machine; CART, classification and regression tree; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; ICC, intrahepatic
cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma; HCC, hepatocellular carcinoma; PHC, perihilar cholangiocarcinoma; AUC, area under the curve; NPV, negative predictive value;
PPV, positive predictive value.
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on XGBoost, RF, and GBDT to evaluate the prognosis by

biomarkers, with a C-index of 0.693 (94). The psoas muscle

index, defined as the area of the psoas muscle at the L3 vertebra

level divided by the squared body height, combined with the

features of tumor burden and hepatic reserve in ANN, with an

AUC of 0.89 in the 1-year survival prediction in ICC, was

significantly higher than the Fudan score (95, 96). Clinical risk

factors and CT radiomics, selected by the LASSO algorithm, were

also used to build a nomogram to preoperatively predict the

prognosis of patients with ICC, with an AUC of 0.783 in a 3-year

OS (97). To identify patients who will benefit the most from

surgery, Tsilimigras et al. (98) further utilized preoperative

estimated tumor number and size, albumin–bilirubin (ALBI)

grade, and preoperative lymph node by the CART algorithm to

generate four different groups, achieving different R0 resection

rates, microvascular invasion rates, 5-year OS, and 5-year DFS.

Clinical features and serum biomarkers were conveniently obtained

and trained with the algorithms. Tools established by those features

can be easily found online, but they may not provide a more

accurate prediction of prognosis.

Molecular alterations of cancer cells were also useful as the

prevalence of sequencing. Ruan et al. (99) combined LASSO and

Cox regression to establish the final risk scoring of 21 gene-pair

signatures to predict the prognosis, with an AUC of 0.88.

Angiogenesis is a factor of rapid development and metastasis of

malignancy, including CCA. Liu et al. (100) developed and validated

a model based on several ML algorithms to predict vascular

endothelial growth factor (VEGF) expression and microvessel

density of ECC, with an AUC of 0.912. For further classifications

and survival analysis of hepatobiliary cancers, ANN algorithms with

whole-exome sequencing in the TCGA database revealed that IDH or

METH-2 molecular subtypes of CCA may have a worse prognosis,

with a C-index of 0.71 (90). Target therapy toward the PD-1/PD-L1

pathway has shown capability in improving CCA patients’ survival.

The expression status of PD-1/PD-L1 was commonly assessed by

immunohistochemical staining. Zhang et al. (101) first selected

radiomics features from AP and PVP MR images to construct PD-

1 and PD-L1 predictive models based on LASSO, with an AUC of

0.897. Xie et al. (102) focused on the tumormicroenvironment of ICC

and explored the lymphocyte number and segment features in the

H&E-stained whole-slide images. After feature selection by the

mRMR algorithm, three algorithms, namely, LDA, QDA, and DT,

were selected to predict the survival of ICC, achieving the best AUC

of 0.74 ± 0.06 by DT. Molecular subtyping of CCA with different

prognoses now can be identified by several methods, which also

provide patients with precision therapy options. However, such

methods involve high costs.

A treatment strategy should be determined by surgeons to

improve the long-term outcomes of CCA. For operable CCA,

Alaimo et al. (103) set up an optimal policy tree model based on

the RF algorithm to help surgeons determine margin width in

hepatectomy, with an AUC of 0.81. Liver failure after

hemihepatectomy for liver malignancy is the leading fatal reason

for postoperative complications. For preoperative prediction, a dense

neural network block was used to detect the radical information from

CE-CT, with an accuracy of 84.15% (104). For inoperable hilar CCA,
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bilateral plastic stent placement is commonly used for maintaining

biliary drainage. To predict the early occlusion of bilateral plastic

stent placement, the ANN model analyzed the cancer stage and the

Bismuth stage, achieving a larger AUC than the logistic regression

model (0.9648 vs. 0.8763) (105). Radiation therapy and

radioembolization with isotopes are available adjuvant therapies for

CCA. Ibragimov et al. (106) combined CT images and delivered dose

plans with the CNN algorithm to detect the specific anatomical

regions with high hepatobiliary toxicity risk after radiation therapy.

Consequently, the individual-delivered dose was determined with an

accuracy of 0.73. Furthermore, the authors used the CNN + SVM+

RF + FcNN algorithms to predict the potential radiation toxicity of

healthy organs and reach an AUC of 0.85 (34). Radioisotope 90Y

microspheres in radioembolization were used in CCA treatment. The

biodistribution of the isotopes used to be predicted with difficulty, but

generative adversarial network algorithms with PET/CT scans and

dose volume input have accurately predicted the biodistribution and

are suitable for personalized pretreatment planning (107). AI now

can provide better accuracy and simulation of the determination of

the treatment strategy.
Recurrence

Although surgery may offer the potential cure for localized and

resectable CCA, the prognosis still remains low, with a 5-year

survival of 25%–35%, and 50%–70% of patients experience

recurrence (2). The most common type of recurrence for eCCA is

local recurrence. Distant metastasis of cholangiocarcinoma is

relatively common in hilar cholangiocarcinoma. A study showed

that 41% of patients with hilar cholangiocarcinoma experienced

initial recurrence involving distant areas (108). Other studies have

reported that 60% of patients experienced distant metastasis after

complete (R0) resection of the hilar cholangiocarcinoma under a

microscope (109). On the other hand, the types of iCCA recurrence

are intrahepatic recurrence, lymph node recurrence, and distant

extrahepatic recurrence (usually in the peritoneum) (110).

Consequently, identifying patients who may experience

recurrence is important. Alaimo et al. (111) used 14 clinical

features to conduct three ML algorithms. The RF algorithm

shows better achievement than SVM and LR, with an AUC of

0.904 in the training set. Ji et al. (112) analyzed age, TMN stage,

histological type, and surgery strategy to yield the GBM model to

predict the prognosis of the ICC after liver resection. The model had

improved prognostic discrimination (C-statistic, 0.723) compared

with the AJCC staging system andMEGNA prognostic score system

developed by Raoof et al. (86). Moreover, Jolissaint et al. (113)

constructed the predictive model based on RF classification by the

four tumor features and future liver remnant in CT, with an AUC of

0.84. Combining 15 radiomic features with 3 clinical features, Song

et al. (18) constructed the LightGBM model with an AUC of 0.974.

Radiology also provides a methodological approach to predict

the recurrence of cholangiocarcinoma. Qin et al. (114) combined

clinical and molecular features with radiomic features from the CE-

CT to make a model with good discrimination and sensitivity (AUC

of 0.883 and accuracy of 0.826), which was superior to the 8th
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AJCC, MSKCC, and Gazzaniga staging systems in predicting the

early recurrence of patients after curative resection in PHC (115–

117). This model provided a comprehensive analysis of recurrence

although some features may not be a high risk. To predict the early

recurrence of ICC, Bo et al. (118) developed ML radiomics models

with seven algorithms, with a mean AUC of 0.87 ± 0.02, and RF,

NN, and SVM achieved the best performance, with an AUC of 0.89.

With the same purpose, the arterial-phase image features of

contrast-enhanced MRI, extracted by the LASSO algorithm, were

used to establish a nomogram, with an AUC of 0.90, as shown by

the study of Liang et al. (119).
Metastasis

Several tumor cells in the bloodstream are considered early

metastatic biomarkers for malignant tumors. To more efficiently

detect circulating tumor cells, Piansaddhayanon et al. (120)

established a large-scale microscopic imaging dataset of tumor

and normal cells from organoid-derived cells of CCA. The model

based on the deep NN algorithm provided a foundation for

circulating tumor cell detection, with an AUC of 0.78, and may

need further investigation.

Lymph node metastasis is an important factor for CCA

prognosis. The 8th AJCC guideline demonstrated the stage of

metastatic lymph nodes as a factor of poor prognosis. Recently,

the radiomic models have gained great accuracy in predicting the

lymph node status of CCA. Wang et al. (121) developed a model

integrating SVM with clinical features to predict the lymph node

stage of CCA patients, with an AUC of 0.870. To predict ICC lymph

node metastasis preoperatively, serum CEA, CA 19-9, and

lymphadenopathy on CT/MR image were enrolled in the RF

training model. Compared with the nomogram based on logistic

regression, the RF model has better sensitivity and accuracy (122).

Xu et al. (123) investigated the image features from T1WI contrast-

enhanced MRI. After extracting related features by the mRMR

algorithm, the SVM model was built. Combined with clinical

features, the nomogram was established with an AUC of 0.870.

Tang et al. (124) focused on the differentiation degree and

lymphatic node metastasis of ECC predicted by MRI radiomics.

Four MRI sequence features and six clinical features were selected

by five methods, including JMI, mRMR, SKB, and Wilcoxon. Then,

10 machine learning algorithms were conducted. The bagging

classifier gained the best performance for differentiation degree,

and XGB gained the best performance for lymphatic node

metastasis, both significantly different from the other eight

models (ADB, DT, Gaussian naive Bayesian, etc.). To

preoperatively predict the microvascular invasion in ICC, several

parametric MRI images were fused by the CNN algorithms.

Gradient-weighted class activation mapping is used for visualizing

the network and highlighting the important factors in estimation,

with a sensitivity of 85.7% and accuracy of 86.8% (125).

Consequently, lymph node metastasis nowadays can be predicted

with great sensitivity and accuracy, while other characteristics

including microvascular invasion are less studied.
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Gene and protein expression profiling acts as a potential

approach to malignant diagnosis and prognosis, but not in the

metastasis prediction due to the batch effects. Therefore, genome-

wide integrative proteome and transcriptome analysis was

necessary. Ruan et al. (99) assembled models by using their own

proteome and transcriptome datasets, validated by the TCGA

dataset and the Ahn dataset. Developed from the k-TSP method,

the authors employed a weighted voting procedure for the gene

pairs to finally predict the metastasis possibilities. The EMLI

algorithm achieved an AUC of 0.958 and an accuracy of 97.1% in

ICC patients. However, detection of the proteome and

transcriptome still involves a high cost and may not be widely

accepted in medical practice.
AI and other aspects

Fibroblast growth factor receptors bind fibroblast growth factor

and mediate cellular functions. With a dataset of 2,356 chemical

compounds, Charan et al. utilized four ML algorithms (SVM, RF, k-

NN, and ANN) to screen potential FGFR1 inhibitors for various

cancers, including CCA (126). Furthermore, to predict the efficacy

of anticancer drugs in individual patients, Gerdes et al. (127) used

the proteomics and phosphoproteomics data from various cell lines

to train and verify drug ranking using the ML algorithm, which was

based on the DL, NNET, BGLM, RF, PLS, PCR, SVM, and cubist

ML models. This algorithm has achieved quite a low error, with a

mean-squared error <0.1. In CCA patients, inhibitors of histone

deacetylase and the PI3K pathway were selected as high-ranking

therapies (128). The TensorFlow deep learning algorithm was used

to investigate the adjuvant treatment risk for ICC patients. A total of

8 features including tumor burden, CA 19-9, and CEA were selected

as significant prognostic factors with the TensorFlow deep learning

algorithm, reaching an AUC of 0.78, which was higher than the

AJCC stage prediction (129).

The latent Dirichlet allocation algorithm, a machine learning

method to identify research topics, was used to summarize scientific

publications in the field of CCA. The results demonstrated that

survival and differential diagnosis were the highly concerned

research topics of CCA, which were in accordance with the

conclusion of this review. Although several studies are concerned

about microRNA expression, high-quality clinical trials and basic

studies are still urgently needed (130).
Discussion

Several studies have investigated the application of AI on

malignancy in several aspects of diagnosis, prognosis, recurrence,

and metastasis with some extent of automation. Moreover, it is

obvious that AI is already better than people in some areas as a

consequence of technological development. However, not a single

algorithm can solve all problems as different algorithms are suitable

for different scenarios. Artificial intelligence algorithms are difficult

to completely replace human decision-making and judgment.
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Although AI algorithms have many involvements and gain

great results in the daily medical work of CCA, many challenges

still remain (30, 40, 131, 132). AI requires a large amount of data for

training and optimization, but some data are difficult to obtain

because the equipment needed may be quite expensive so they may

not be available in a single center trial. Moreover, many medical

slides may contain millions of pixels and are too large to be fed into

the algorithms. Once the whole image is split into small slides to

input, some potential trends may be ignored by the algorithms. On

the other hand, some medical data lack labels necessary for

supervised learning, and the quality of input data may be varied

due to the different experiences of the experts. This may

significantly affect the accuracy of the model, and handling large

datasets becomes difficult.

The interpretability of the algorithms, the degree to which

machine learning algorithms can be understood by humans, is

still the biggest challenge for their wide usage in the field of

medicine. There are several ethical challenges related to AI in the

medical field. The most obvious part is distrusting the accuracy of

AI prediction as the replicability of specific AI is hard to achieve

without publicly released data. Furthermore, the continual learning

capability of AI also raises challenges in its regulation. In 2019, the

FDA proposed a framework to evaluate AI products from

premarket performance to postmarket performance (https://www.

fda.gov/medical-device). In addition, it is unclear whether

developers or doctors are to be blamed when AI models make

mistakes (133).

Nowadays, three approaches have attempted to explain the

interpretability of AI models: 1) surrogate models, which use a

simple and interpretable model to approximate the original model.

When the accuracy is close enough, a surrogate model can be used

to explain the original “black-box” model; 2) intrinsic

interpretability, which shows the workflow of the algorithms and

compares with the mind of humans; and 3) data visualization,

which helps us to quickly and comprehensively understand the

characteristics of data distribution, thereby assisting us in choosing

the most reasonable model to approximate the optimal solution

that the problem can achieve. These three methods may

provide us with the way to test the safety and efficacy of the AI

algorithms before application in the medical field and avoid

patient harm (134, 135).

With further development of large databases and improvement

of computing power, AI will be trained with clinical features based

on multicenter and multiomics data to achieve better clinical

decision-making capability. Despite the challenges of AI, it will

eventually be integrated into the diagnosis and treatment of

cholangiocarcinoma due to its great advantage in clinical practice.

Apart from radiology and serum biomarkers, cell-free tumor DNA

in whole genome sequencing can be studied by AI to identify early

cholangiocarcinoma and predict patient outcomes (136). It can be

assumed that early detection of cholangiocarcinoma may be

achieved with the corporative training of physicians and the use

of AI. AI also creates the need for new capabilities in data

processing and machine learning.
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Conclusions

We concluded the applications of AI on CCA. Early detection

can be achieved by the combination of medical data and AI.

Moreover, AI assists physicians in making accurate diagnoses and

proper treatment options. Several studies focused on the diagnosis

of and survival from cholangiocarcinoma, and high-quality clinical

trials are still urgently needed for cholangiocarcinoma patients.

Despite some limitations of current AI applications, AI will still

significantly improve many aspects of cholangiocarcinoma in the

medical field.
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ERCP endoscopic retrograde cholangiopancreatography

CE-CT contrast-enhanced computed tomography

MRI magnetic resonance imaging

T1WI T1-weighted imaging

T2WI T2-weighted imaging

DWI diffusion-weighted imaging

CEUS contrast-enhanced ultrasonography

ADC apparent diffusion coefficient

VEGF vascular endothelial growth factor

MVD microvessel density

AP arterial phase

PVP portal venous phase

18F-FDG
PET/CT

18F-fluorodeoxyglucose positron emission tomography/
computed tomography

CA 19-9 carbohydrate antigen 19-9

NLR neutrophil-to-lymphocyte ratio

SBRT stereotactic body radiotherapy

qRT-PCR quantitative real-time PCR

DL deep learning

LASSO least absolute shrinkage and selection operator

RF random forest

SVM support vector machine

ANN artificial neural network

MFF multilayer feature fusion module

SRB stationary residual block

CRAM convolutional block attention module

LR logistic regression

SGD stochastic gradient descent

NN neural network

t-SNE t-distributed stochastic neighbor embedding

ADB AdaBoost

SGB stochastic gradient boosting

KNN K-nearest neighbors

CNN convolutional neural network

MLP multilayer perception

DT decision tree

LSTM long short-term model

GRUs gated recurrent units

SNN shared nearest neighbor

(Continued)
F
rontiers in Onco
logy 18
Continued

UMAP uniform manifold approximation and projection

XGBoost extreme gradient boosting

mRMR maximum relevance minimum redundancy

GBM gradient boosting machine

CART classification and regression tree

LDA linear discriminant analysis

QDA quadratic discriminant analysis

PCA principal component analysis

SVD singular value decomposition

RNN recurrent neural network

JMI joint mutual information

SKB select K best-using analysis of variance

PCR principal components regression

BGLM Bayesian estimation in generalized linear model

ICC intrahepatic cholangiocarcinoma

ECC extrahepatic cholangiocarcinoma

HCC hepatocellular carcinoma

PHC perihilar cholangiocarcinoma

cHCC-CCA combined hepatocellular cholangiocarcinoma

AURPC area under the receiver operating characteristics curve

AUC area under the curve

NPV negative predictive value

PPV positive predictive value.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1324222
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Application of AI on cholangiocarcinoma
	Introduction
	Machine learning
	Supervised learning
	Unsupervised learning
	Semisupervised learning
	Reinforcement learning
	Deep learning
	AI and diagnosis
	AI and prognosis
	Recurrence
	Metastasis
	AI and other aspects
	Discussion
	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


