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Malignant cells are known to evade immune surveillance by engaging immune

checkpoints which are negative regulators of the immune system. By restoring

the T-lymphocyte mediated anti-tumor effect, immune checkpoint inhibitors

(ICI) have revolutionized the treatment of solid tumors but have met rather

modest success in hematological malignancies. Currently, the only FDA

approved indications for ICI therapy are in classic hodgkin lymphoma and

primary mediastinal B cell lymphoma. Multiple clinical trials have assessed ICI

therapy alone and in combination with standard of care treatments in other

lymphomas, plasma cell neoplasms and myeloid neoplasms but were noted to

have limited efficacy. These trials mostly focused on PD-1/PDL-1 and CTLA-4

inhibitors. Recently, there has been an effort to target other T-lymphocyte

checkpoints like LAG-3, TIM-3, TIGIT along with improving strategies of PD-1/

PDL-1 and CTLA-4 inhibition. Drugs targeting the macrophage checkpoint,

CD47, are also being tested. Long term safety and efficacy data from these

ongoing studies are eagerly awaited. In this comprehensive review, we discuss

the mechanism of immune checkpoint inhibitors, the key takeaways from the

reported results of completed and ongoing studies of these therapies in the

context of hematological malignancies.
KEYWORDS
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1 Introduction

Advances in cancer immunotherapy has significantly changed the treatment landscape

for the treatment of hematological malignancies. The graft versus leukemia effect in the

setting of allogeneic transplantation was the earliest demonstration of the potency of the

immune system in targeting malignancy (1). A major area of research interest has focused

on harnessing the power of the immune system to more specifically target the malignant

clone, in an attempt to capitalize on the unique potency of immune mediating killing, while

minimizing toxicity. A critical milestone in the history of cancer immunology was the
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discovery of immune ‘checkpoints’, which act as negative regulators

of effector T cells. Biologically, these immune checkpoints serve the

important function of self-tolerance to avoid auto-immunity and

are expressed on immunosuppressive regulatory T cells. Activation

of these checkpoints result in decreased activation, proliferation,

cytokine production and ultimately an apoptotic fate of the effector

immune cells. Malignant cells hijack these negative regulators of the

immune system to evade immune mediated killing. Inhibiting these

immune check points with monoclonal antibodies has been shown

to be a successful therapeutic strategy leading to significant

improvement in the response and survival rates in certain

malignancies. Despite revolutionizing the treatment landscape of

multiple solid tumors including kidney cancer, melanoma and lung

cancer, immune checkpoint inhibitors (ICI) have met mixed success

in the treatment of hematological malignancies. Numerous PD-1

axis and CTLA-4 inhibitors are now commercially available and

multiple other immune checkpoint targeting therapies are in

development. This review will explore the various targetable

immune checkpoint pathways and the status of their clinical

application in the context of hematological malignancies.
2 Immune effector cells and
their checkpoints

Antigenic stimulation of the T cell receptor (TCR), a clone

specific cell surface complex, is a crucial step towards activation of

the T cells (2). However, an additional co-stimulation step is required

for T cell activation and proliferation. CD28 protein and its family

members were noted to be potent co-stimulatory molecules for T cell

activation (3, 4). CD28 ligands B7-1 (CD80) and B7-2 (CD86) are

found on antigen presenting cells and binding of CD28 with B7-1/2

leads to activation of the co-stimulatory domain CD28.

Cytotoxic T lymphocyte associated antigen 4 (CTLA-4) is

structurally similar but performs the opposite function to CD28.

On binding to the same ligands, B7-1/2, expressed on the antigen

presenting cells (APC). CTLA-4 causes inhibition of T cell

activation primarily by interfering with the CD28-B7-1/2

interaction. Along with directly competing with CD28 for binding

its ligands, it also internalizes the ligands leading to decreased

binding with CD28 thereby decreased secretion of stimulatory

cytokines like IL-2 and causes reduced T cell proliferation (5, 6).

CTLA-4 also activates SHP2 and PP2A phosphatases which prevent

phosphorylation of CD3z an important part of the TCR complex

(7). Presence of CTLA-4 on immunosuppressive regulatory T cells

further confirmed its role as a negative regulator of the immune

system. As such, inhibition of CTLA-4 to elicit a therapeutic

immune response against cancer cells was a highly attractive

proposition. This was successfully demonstrated by Allison et al.

in 1996 in a mouse model. They showed that neutralizing anti-

CTLA-4 antibodies lead to eradication of colon cancer and

fibrosarcoma as well as induced anti-tumoral immunity (8). After

demonstrating success in clinical studies, Ipilimumab was the first

CTLA-4 monoclonal antibody to get FDA approval in 2011 (9).

The programmed cell death protein (PD)-1 was identified to

play an analogous role to CTLA-4 and was noted to be expressed on
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the T cells after TCR stimulation. On binding to its ligands PDL-1

(also known as B7-H1) and PDL-2 (B7-DC), it induces inhibitory

intracellular signaling and inactivation of T cells (10). Similar to

CTLA-4, PD-1 activates the SHP1 and SHP2 phosphatases which

inactivate downstream signaling needed for T cell activation (11,

12). Contrary to regulation of early T cell activation in the lymphoid

tissues by CTLA-4, the PD-1 axis is thought to play an important

role in continued activation of T cells especially in the peripheral

tissues and on engagement with the ligands, PD-1 induces a

dysfunctional T cell state known as “T cell exhaustion” (13).

Tumor cells use this negative regulator of the effector T cells by

overexpressing PDL-1 or PDL-2. Subsequently this PD-1 axis was

explored to be a therapeutic target to restore immune cell

cytotoxicity against cancer cells. Monoclonal antibodies against

PD-1 and PDL-1 have shown remarkable anti-tumor activity and

have led to meaningful improvement in the clinical outcomes in

various cancers.

Lymphocyte activation gene-3 (LAG-3, also known as CD223),

another immune checkpoint, is a transmembrane protein expressed

on the surface of both effector and regulatory T lymphocytes after

antigen mediated stimulation (14). LAG-3 binds with stable

complexed of peptide and MHC-II on the antigen presenting

cells. Initial thought was that LAG-3 competitively inhibits CD4-

MHCII binding but recently it was shown that LAG-3 suppressed T

cells by transducing inhibitory signaling via in the intracellular

domain (15). It is unclear if MHC II is the sole functional ligand of

LAG-3. Fibrinogen-like protein 1 (FGL1) secreted by the liver is also

implicated to be an immune-inhibitory ligand of LAG-3

particularly affecting CD8+ T cells. High levels of FGL-1

expressed by cancer cells are associated with poor prognosis (16,

17). Given its role in immune tolerance for cancer cells, LAG-3

blockade is being explored as a therapeutic target.

T cell immunoglobulin and mucin domain 3 (TIM-3) is an

inhibitory immune checkpoint receptor frequently co-expressed

with PD-1 on tumor infiltrating T cells as well as other innate

immune cells like monocyte/macrophages, NK cells and dendritic

cells. Galectin-9 (GAL-9) or carcinoembryonic antigen related cell

adhesion molecule (CEACAM1) are known ligands of TIM3 which

cause inhibitory signaling downstream causing T cell exhaustion or

apoptosis (18, 19). TIM-3 signaling has been proposed as a

resistance mechanism for PD-1 directed therapy due to the noted

co-expression and therefore has been explored as a therapeutic

target in many malignancies including hematological malignancies

(20, 21).

T cell immunoglobulin and ITIM domain (TIGIT, also known as

Vstm3, VSIG9, WUCAM) is another co-inhibitory transmembrane

molecule exclusively expressed on T cells including CD4+, CD8+,

regulatory T cells and NK cells. TIGIT activates a complex

immunoregulatory network on binding with its multiple ligands

including CD155, CD112, CD113 and Nectin-4 expressed by

antigen presenting cells as well as cancer cells. The primary high

affinity ligand for TIGIT is thought to be CD155 (22, 23).. Although

not completely understood, TIGIT causes T cell inhibition by

multiple mechanisms including TCR downregulation, competing

for ligands with an activating co-receptor CD226 as well as

enhancing the immunosuppressive effects of regulatory T cells.
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Given its role in T cell inhibition and immune escape mechanism,

TIGIT blockade has been explored as a therapeutic target in

hematological malignancies (24). LAG-3, TIM-3 and TIGIT

biology and its role for treatment of cancers has been reviewed in

detail elsewhere (25, 26).

Macrophages are phagocytic cells and an integral part of the

innate immune system. While these are traditionally thought to be

functioning against infectious pathogens/foreign bodies, tumor

associated macrophages were discovered to be involved in

multiple malignancy processes like angiogenesis, metastasis,

regulation of tumor microenvironment (27). CD47 is membrane

protein first discovered to be present on erythrocyte surface.

Senescent erythrocytes with diminished expression of CD47 are

removed from circulation by macrophages in the spleen and liver

(28). Normal erythroid cells are able to avoid this removal by

expression of CD47 on their membrane which bind with

macrophage inhibitory receptor signal regulatory protein alpha

(SIRPa). This leads to downstream activation of SHP-1 and SHP-

2 phosphatases causing phagocytic inhibition. Therefore, CD47 is

commonly referred to as ‘do not eat me’ signal. Subsequently, it was

discovered that CD47 is commonly over expressed on most tumor

cells like AML, MDS, NHL as a macrophage checkpoint (29).

Subsequently, CD47/SIRPa axis blockade was shown to effectively

promote tumor cell phagocytosis as well as enhanced antigen

presentation leading to a strong T cell mediated tumor response

(30, 31). CD47 inhibition has progressed significantly in clinical

investigation however a strong efficacy signal is yet to be noted.
3 Immune checkpoint blockade
in lymphomas

3.1 Hodgkin lymphoma

Classic hodgkin lymphoma (cHL) has a unique biology. It is

characterized by the malignant Hodgkin and Reed Sternberg (HRS)

cells which comprise ~2% of tumor cells. The remaining tumor bed is

primarily comprised of reactive T cells and immune cells. Studies

have shown that these reactive immune cells have an exhausted

phenotype leading to loss of effector function. This is due to

overexpression of over-expression of PDL-1 and PDL-2 on the

malignant HRS cells caused by amplification of the 9p24.1 locus

(32). Treatment of cHL has evolved significantly over the years with

combination chemotherapy as the backbone. Recently BV-AVD

(Brentuximab vedotin, doxorubicin, vinblastine, dacarbazine)

replaced ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine)

based on the improved survival with BV-AVD showed in the

ECHELON-1 trial (33). Despite a large proportion of patients will

achieve a complete response with frontline therapy, patients who

have primary refractory or relapsed disease have poor outcomes.

Salvage chemotherapy and high dose chemotherapy with autologous

hematopoietic cell transplantation (auto-HCT) are used in this

setting with significant treatment associated complications. Given

the immunosuppressive biology of the HRS cells by overexpression of

PDL-1/2, immune checkpoint blockade was first investigated in

relapsed/refractory cHL. Checkmate-205 was a phase II trial that
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studied nivolumab a monoclonal PD-1 antibody in 243 patients with

relapsed/refractory cHL after failure of autoHCT. The overall

response rate (ORR) was 69% with complete response (CR) in 16%

patients. Median time to response was ~2 months and patients

achieved response for a median duration of 16.6 months (34).

Pembrolizumab another monoclonal PD-1 antibody was also

studied in Keynote-087. In this study, 210 patients with relapsed

refractory cHL who had previously received at least 2 lines of therapy

including autoHCT and/or brentuximab vedotin were treated with

pembrolizumab monotherapy until disease progression or

unacceptable toxicity. The ORR was 72% with a CR rate of 28%.

Similar to checkmate-205, median duration of response was 16.6

months. Another noteworthy finding from Keynote-087 was that

among patients in CR who had discontinued pembrolizumab and

subsequently had disease progression, 74% had an objective response

lasting for a median of ~15 months (35). In both trials with

nivolumab and pembrolizumab, patients who were BV naïve, had

improved responses. Subsequently, a phase III randomized controlled

trial (RCT), Keynote-204, comparing pembrolizumab and BV in the

relapsed/refractory setting showed improved median progression free

survival (PFS) with pembrolizumab (13.2 months) as compared to

BV (8.3 months) (p 0.0027) Tolerance to pembrolizumab was better

as compared to BV (36). Pembrolizumab in combination with

chemotherapy regimen GVD and nivolumab with ICE have both

shown impressive responses (ORR 100%, CR ~90%) as first salvage

therapy for R/R cHL (37, 38). Based on these data, both

pembrolizumab and nivolumab have been approved for the

treatment of relapsed/refractory cHL. PD-1 blockade has also been

studied as post autoHCT consolidation in high-risk patients with

relapsed cHL with improved PFS although mature data is awaited at

this time (39, 40). PDL-1 monoclonal antibody, Avelumab was

studied in a phase 1 trial (JAVELIN Hodgkin) in patients with

relapsed/refractory cHL which showed an ORR of ~42% with CR

in 19.4% patients (41). Along with combination of chemotherapy and

PD-1 blockade, studies have also evaluated the efficacy of a

chemotherapy sparing salvage regimen of BV+PD-1 blockade in

relapsed cHL. The ORR was 85% with a CR rate of 67%; these

were durable responses with 3 year PFS ~77% (42). Given the

resounding success of PD-1 blockade in the relapsed/refractory

setting, there is excitement about the role of PD-1 blockade in

combination with chemotherapy in the frontline setting. Results

from the southwest oncology group (SWOG) 1826, a phase III trial

comparing nivolumab-AVD Nivolumab (N)-AVD vs BV-AVD were

presented at the 2023 ASCO meeting. With approximately 480

patients in both arms, the 1-year PFS rate was superior with N-

AVD as compared to BV-AVD (94% vs 86%; HR 0.48; p=0.0005)

with lower rates of adverse effects in the N-AVD arm (43). Full

publication from this trial is eagerly awaited and has the potential to

change standard frontline therapy for cHL. See Table 1 for key trials

in hodgkin lymphoma.

Given the synergy that the combination of PD-1/CTLA-4

blockade has demonstrated in some solid tumors, including

melanoma and renal cell carcinoma, this combination is being

studied in cHL. In a phase 1/2 trial, patients with relapsed/refractory

cHL were treated with either combination of BV and nivolumab or

ipilimumab (CTLA-4 antibody) or both. This study demonstrated
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improved responses with BV+ nivolumab over BV+ ipilimumab or

BV+ both groups. Unfortunately, about 43% patients in the BV

+ipilimumab group suffered grade 3-4 adverse events. The phase 2

study comparing BV+ nivolumab with or without ipilimumab is

ongoing (NCT01896999) (44).

One approach to overcome resistance to treatment with PD-1

inhibition is to combine PD-1 blockade with inhibitors of other

checkpoints co-expressed on exhausted T cells, such as LAG-3.

Favezelimab (MK-4280), a humanized IgG4 LAG-3 inhibitor, was

studied in combination with pembrolizumab in patients with

relapsed/refractory cHL. The combination demonstrated an ORR

of 73% with an impressive CR rate of 30%. Median PFS was 19.4

months. Common adverse reactions included infusion reaction and

hypothyroidism (immune related adverse event). 23% patients had

grade 3-4 adverse reactions (45).
3.2 Non-Hodgkin lymphoma

Non-Hodgkin lymphoma (NHL) is a heterogenous group of

malignant lymphoproliferative disorders classified according to the

cell of origin into B cell NHL (>85%) and the less common T/NK

cell NHL. Pre-clinical studies have shown that intratumoral CD4

+CD25+ regulatory T cells suppress the infiltration of effector T

cells in B cell NHL leading to immunosuppressive tumor

microenvironment (46). These cells are enriched in negative

immune regulators like CTLA-4 and therefore CTLA-4 blockade

with ipilimumab was studied in a phase 1 trial for patients with

relapsed/refractory B cell NHL. Unfortunately, of the 18 patients

treated only 2 patients had clinical responses (11%) (47).

Subsequently, ipilimumab in combination with rituximab in
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patients with R/R B cell NHL showed a modest ORR of 24% with

median PFS of 2.6 months (48). Combination of CTLA-4/PD-1

blockade with Ipilimumab/nivolumab showed ORR was 19% with

median PFS of only 1 month (49).

PDL-1 expression on large B cell lymphoma cells was shown to

have inferior outcomes mediated by suppression of anti-lymphoma

immune response. As such, intercepting the PD-1/PDL-1 axis has

been evaluated for clinical efficacy against R/R B cell NHL (50, 51).

Multiple early phase studies showed safety but low efficacy of PD-1/

PDL-1 blockade in R/R B cell NHL. In a multi-center phase 2 study

of nivolumab in 121 patients with R/R DLBCL ineligible or

refractory to autoHCT, the ORR was <10% (52). Similarly, in

patients with R/R FL, the ORR of single agent nivolumab was a

meager 4% (53). Another study in patients with FL (rituximab

sensitive disease relapsed after >1 line of treatment), combination of

pembrolizumab and rituximab had impressive ORR 67% with CR

rate of 50%, however these were rituximab sensitive patients and it

remains unclear if pembrolizumab had added benefit (54). A triplet

combination of obinituzumab, lenalidomide and atezolizumab for

patients with R/R FL showed an impressive CR rate of 72% with

about 67% patients being refractory to rituximab and alkylator

combination (55). However, durvalumab (anti PDL-1 antibody) in

combination with Bruton Kinase inhibitor (BTKi) ibrutinib showed

efficacy similar to single agent ibrutinib (ORR ~25%) in patients

with R/R FL and DLBCL with added immune related toxicities (56).

Addition of durvalumab to frontline R-CHOP in high risk DLBCL

patients did not provide additional benefit (57). In patients with

relapsed CLL or with Richter transformation (RT), pembrolizumab

had a preferential efficacy in patients with RT (ORR 44%) while

none in patients with CLL (58). Pembrolizumab in combination

with dinaciclib (cyclin dependent kinase 9, CDK9 inhibitor) in
TABLE 1 Key trials with Immune checkpoint inhibitors in Hodgkin lymphoma.

Trial Phase Intervention Checkpoint
target

Population Efficacy Adverse events
(grade3-4) of check-

point inhibitors

SWOG 1826
(NCT03907488)

III Nivolumab-AVD vs
Brentuximab vedotin
(BV)-AVD

PD-1 Newly diagnosed
advanced stage
cHL (n=994)

1-year PFS: 94% vs
86% (HR
0.48; p=0.0005)

CHECKMATE
205
(NCT02181738)

II Nivolumab PD-1 R/R cHL (n=243) ORR 71%
mPFS 15 months
5y OS 71%

Increased lipase (5%)
Neutropenia (3%)
Increased ALT (3%)

NCT02572167 I/II Nivolumab+ BV PD-1 R/R cHL (n=91) ORR 85%
3-year PFS 77%
3-year OS 93%

Pneumonitis (3%)
Rash (1%)

KEYNOTE 204 III Pembrolizumab vs
Brentuximab vedotin

PD-1 R/R cHL
(n=304)

mPFS 13.2 vs 8.3
months
(HR 0.65; p=0.0027

Pneumonitis (4%)
Neutropenia (2%)

KEYNOTE 087
(NCT02453594)

II Pembrolizumab PD-1 R/R cHL (n=210) ORR 71%
mPFS 13.7 months

Total 13%
Neutropenia (2.4%)
Pericarditis (1%)
Diarrhea (1%)

JAVELIN
Hodgkins
(NCT02603419)

I Avelumab PDL-1 R/R cHL (n=31) ORR 42%
mDOR 6.9%

Rash (7%)
Increased lipase (7%)
Penumonitis (3%)
Immune thrombocytopenia (3%)
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patients with R/R CLL, DLBCL and multiple myeloma (MM)

showed a ORR of 20-30% in patients with CLL and DLBCL

whereas 0% in patients with myeloma (59). Post autoHCT

consolidation with pembrolizumab in DLBCL did not show

improvement in PFS (60). Pembrolizumab has also been studied

in the context of post CD19 CAR-T relapse. The response rate

noted was 25%. Correlative studies showed that there was increased

in the CAR-T cells by mass cytometry by time of flight and increase

in CAR19 transgene levels in patients those responded to

pembrolizumab (61).

In contrast to other B cell NHL, PD-1/PDL-1 blockade in

primary mediastinal B cell lymphoma (PMBCL) has shown

robust activity and is FDA approved. PMBCL is common in

adolescents and young adults. Although it is morphologically

similar to large B cell lymphoma, genomically, PMBCL is closer

to cHL frequently involving alterations of 9p24.1 resulting in over-

expression of PDL-1/2. Unsurprisingly, early studies with

pembrolizumab in R/R PMBCL showed ORR of 41% with

durable responses (62). The final analysis of Keynote 170 again

showed ORR of 41% with CR rate of ~21%. 4-year PFS in all

patients was 33%. Impressively, all patients achieving CR had

durable responses without relapses after 4 years of follow up (63).

In combination with brentuximab vedotin, nivolumab showed an

impressive ORR of 70% with CR rate of 43% in patients with CD30

+ R/R PMBCL with median duration of response not reached after

about 11 months of follow up (64). Please see Table 2 for key trials

in non hodgkin lymphoma.

The mechanism of resistance to PD-1 axis blockade in NHL is

unclear. Proposed mechanisms include low lymphocyte infiltration

of the tumor, low MHC expression on tumor cells, presence of

immunosuppressive cells and up-regulation of other immune

checkpoint proteins (65, 66). Other T cell checkpoints (LAG-3,

TIM-3, TIGIT) have been associated with lymphoma progression

but clinical data on therapeutic targeting of these checkpoints are

not available yet. LAG-3 inhibition in combination with PD-1 axis

blockade is being studied in R/R lymphomas in an effort to

overcome resistance to PD-1 directed monotherapy and results

are awaited (NCT02061761). TIM-3 has been noted to be

overexpressed via IL-12 which results in T cell exhaustion in FL,

however clinical data regarding safety and efficacy is not available

yet (67). Similarly, a pre-clinical model showing combination of

PD-1 and TIGIT blockade having synergistic effect in eliminating

lymphoma cells has been reported (68).

It has been demonstrated that CD47 expressing lymphomas

have poor outcomes and frequently leads to extra nodal

dissemination of the malignant lymphoma cells. Therefore,

targeting of CD47 or the anti-phagocytic ‘do not eat me’ signal

presents an exciting therapeutic opportunity to evoke macrophage

mediated immune response augmented by rituximab (69–71).

Magrolimab (Hu5F9-G4) is a first in class, humanized IgG4

monoclonal antibody targeting CD47. In a phase 1 study in 22

patients with R/R NHL, magrolimab in combination with

rituximab, 50% patients had an ORR while 36% having a CR. At

last follow up, 91% of the responses were ongoing (72). Another

CD47 inhibitor, TTI-622, is being evaluated in combination with

rituximab for treatment of R/R NHL with ORR of 20-30% (73, 74).
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3.3 T/NK cell NHL

T/NK cell NHL, a rare subtype of NHL, is often associated with

poorer prognosis compared to it’s B cell counterpart. Cutaneous T

cell lymphomas (CTCL) (eg. Sezary syndrome, mycoises fungoides)

are considered indolent whereas peripheral mature T cell

lymphoma (PTCL) an all-inclusive term for the rest of T cell

lymphomas usually are aggressive. These are typically treated with

combination chemotherapy. However, these therapies are not

curative, and most patients will relapse. Immune checkpoint

therapies targeting CTLA-4, PD-1 axis cause activation of the T

cells, therefore there is a theoretical concern for stimulating growth

of T cell lymphomas leading to hyper-progression. Accordingly, in a

study with nivolumab in R/R PTCL, 4 of the 12 patients treated had

hyper-progressive disease and the responses achieved were short

lived. The study was discontinued (75). However, in a multicenter

phase 2 study of pembrolizumab in 24 patients with R/R CTCL, the

ORR was 38% with durable responses (>50 weeks). A transient

worsening of erythroderma and pruritis occurred in ~50% patients

followed by improvement; however hyper progression was not

noted (76). Another study with avelumab (anti PDL-1 antibody)

in R/R extra-nodal NK/T cell lymphoma (ENKTL) showed ORR of

38% with CR in 24% patients. Although the non-responders showed

early progression, responders continued to receive treatment and

maintained response. High expression of tumor PDL-1 was

associated with improved responses (77). These studies showed

that the phenomenon of hyper-progression may not be directly

associated with PD-1/PDL-1 blockade in T cell lymphomas.

Intralesional injection of TTI-621, a macrophage checkpoint

inhibitor (anti CD47 antibody), in patients with CTCL showed

34% responses (78). Systemic administration study of this agent is

underway (73).
4 Immune checkpoint blockade in
multiple myeloma

Multiple myeloma (MM) is a plasma cell neoplasm accounting

for approximately 10% of all hematological malignancies. Significant

advances in the field include development and implementation of

immunomodulatory drugs (IMIDs), proteosome inhibitors (PIs),

anti-CD38 monoclonal antibodies and anti-BCMA therapies

including chimeric receptor antigen T cells (CAR-T) and T cell

engaging bispecific antibodies (BsAb). However, despite these

significant advances, patients ultimately develop a progressively

resistant disease. Immune checkpoint blockade was evaluated in

this setting supported by pre-clinical studies which showed

overexpression of PDL-1 in myeloma cells and CTLA4+ regulatory

T cells in the tumor microenvironment.PDL-1 expression has also

been shown to increase the risk of progression from monoclonal

gammopathy to multiple myeloma (79–81). Despite the strong pre-

clinical rationale, most studies of immune checkpoint blockade in

myeloma have been disappointing.

Pembrolizumab was studied in intermediate/high risk smoldering

multiple myeloma (SMM). Of the 13 patients treated, only one patient
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achieved a stringent CR with measurable residual disease (MRD)

negativity while majority (85%) had stable disease. 3 patients

discontinued treatment due to IRAEs (82). In a phase 1 study of

pembrolizumab monotherapy for R/R MM, none of the 30 patients

treated achieved an objective response. The best response achieved was

stable disease with median duration of stable disease being 3.7 months

(83). Nivolumab monotherapy in R/R MM patients lead to 4%

objective response with majority (63%) achieving only stable disease

(84). Safety profile of these agents in myeloma was congruent with
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other cancers. After failure of PD-1 blockade monotherapy to

demonstrate efficacy, combinatorial approaches were also evaluated.

Combination of nivolumab with ipilimumab in a small subset of

RRMM patients did not show any objective responses (85).

Lenalidomide was shown to enhance efficacy of PD-1/PDL-1

blockade by inhibition of myeloid derived suppressor cells (MDSC)

mediated immune suppression in addition to direct downregulation of

PD-1 expression on T and NK cells providing a framework for clinical

evaluation of this combination (86, 87). Keynote-023 was a phase 1
TABLE 2 Key trials with Immune checkpoint inhibitors in Non-Hodgkin lymphoma.

Trial Phase Intervention Checkpoint
target

Population Efficacy Adverse events (grade3-4) of
checkpoint inhibitors

NCT02038933 II Nivolumab PD-1 R/R DLBCL (n=121) ORR 10%
mPFS 1.9
months
mOS
12.2 months

Neutropenia (4%)
Thrombocytopenia (3%)
Increased lipase (3%)

CHECKMATE-
140
NCT02038946

II Nivolumab PD-1 R/R FL (n=92) ORR 4%
mPFS
2.2 months

Diarrhea (2%)
Neutropenia (2%)
Pneumonitis (1%)

NCT03003520 II Durvalumab with R-
CHOP or R2CHOP

PDL-1 Untreated high-risk
DLBCL (n=46)

CR 54%
PR 19%

NCT02401048 I/II Durvalumab
with ibrutinib

PDL-1 R/R FL or
DLBCL (n=61)

ORR 25%
mPFS 4.6
months
mOS18.1
months

Neutropenia (21%)
Rash (7%)
Pneumonitis (3%)

NCT02332980 II Pembrolizumab PD-1 CLL with RT (n=9) or
R/R CLL (n=16)

ORR 44% for
CLL with RT
ORR 0% for R/
R CLL

Hematological toxicity (20%)
Rash (4%)

KEYNOTE-170
NCT02576990

II Pembrolizumab PD-1 R/R PMBCL (n=53) ORR 41.5%
mPFS 4.3
months
4-year PFS 33%
mOS 22.3
months
4-year
OS 45.3%

Neutropenia (13%)
Increased AST (2%)

CHECKMATE-
436
NCT02581631

II Nivolumab with
brentuximab vedotin

PD-1 R/R PMBCL (n=30) ORR 73%
mPFS NR
mOS NR

Neutropenia (7%)
Rash (3%)
Colitis (3%)
Immune mediated hepatitis (3%)

CITN-10
NCT02243579

II Pembrolizumab PD-1 R/R CTCL (n=24) ORR 38% Rash (17%)
Arthritis (4%)
Pneumonitis (4%)
Colitis (4%)
Immune mediated hepatitis (4%)

NCT03075553 II Nivolumab PD-1 R/R PTCL (n=12) ORR 33%
mPFS 2.7
months
mOS
6.7 months

Hyperprogression (33%)

NCT02953509 I Hu5F9-G4 CD47 R/R NHL (n=22) ORR 50%
CR 36%

Infections (18%)
Anemia (4.5%)
Infusion reaction (4.5%)

NCT03530683 I TTI-662 CD47 R/R
lymphomas (n=42)

ORR 9/27 Thrombocytopenia (5%)
Neutropenia (9%)
Anemia (2%)
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study which showed that combination of pembrolizumab and

lenalidomide and dexamethasone had ORR of 76% in heavily pre-

treated R/R MM patients including lenalidomide refractory cases (88).

Pembrolizumab in combination with pomalidomide and

dexamethasone had an ORR of 60% with median duration of

response being 14.7 months (89). Keynote-183 was a phase 3 RCT

evaluating pomalidomide and dexamethasone with or without

pembrolizumab in a predominantly lenalidomide refractory

population (86%). This study was stopped given the risk of triple

combination outweighed the benefit. Median PFS was 5.6 months with

the triple combination as compared to 8.4months in the other arm and

there were increased serious treatment related adverse events (69% vs

46%) with pembrolizumab. 3% treatment related deaths were reported

in the pembrolizumab arm (90). Keynote-185 looked at lenalidomide

and dexamethasone with or without pembrolizumab in transplant

ineligible newly diagnosed multiple myeloma (NDMM).

Unfortunately, this study was also halted due to a higher mortality

signal in the pembrolizumab arm attributed to myocarditis, large

intestinal perforation, pneumonia, pulmonary embolism etc. Serious

adverse events were increased in the pembrolizumab arm as well (54%

vs 39%) (91). Nivolumab in combination with pomalidomide and

dexamethasone was planned to be studied in RR MM however, it was

discontinued after interim analysis showed HR > 1 for PFS and OS in

the nivolumab arm (92). Combination of PD-1/PDL-1 monoclonal

antibodies with other active myeloma drugs including carfilzomib

(proteasome inhibitor), daratumumab (anti CD38 mab) and

elotuzumab (anti SLAMF7 mab) are also being tested. Atezolizumab

in combination with daratumumab and lenalidomide/pomalidomide

showed very good partial response or better in 50% patients (3/6) (93).

Early results from nivolumab-daratumumab study showed an ORR of

50% for the combination in RRMM (94). PD-1 blockade has also been

shown to enhance ex-vivo T cell response to autologous dendritic cell/

myeloma fusion vaccine and is being studied clinically in clinical

context (95). The biological rationale for the increased adverse effects

and mortality with PD-1 axis inhibitors is not completely understood.

Unfortunately, this has led to discontinuation of several clinical trials of

PD-1/PDL-1 inhibitors in MM. Some of the major challenges of PD-1/

PDL-1 inhibitors in MM relate to dysfunctional T cell phenotype

having decreased effector capacity and immunosuppressive micro-
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environment created by myeloid derived suppressor cells (MDSCs)

and regulatory T cells. Despite the disappointing efficacy, patients

achieving a response had a prolonged duration of response.

Understanding the predictors of such responses would be key in

optimizing patient selection for immune checkpoint therapy (96, 97).

Please see Table 3 for key trials in multiple myeloma.

LAG-3 has been shown to be an important immune checkpoint

in the pathogenesis and progression of myeloma. PD-1/LAG-3+ T

cells are significantly enriched in patients with RRMM compared to

NDMM (98, 99). Targeting the LAG-3/GAL-3 pathway has been

shown to result in proliferation of MM specific T cells in

combination with immunotherapy (100).

TIGIT has also been implicated in loss of myeloma specific

immunity leading to disease progression. TIGIT blockade in

combination with immunomodulators has been proposed as an

exciting treatment modality to restore myeloma immunity (100).

Exciting data from the MyCheckpoint study was recently presented

at the AACR annual meeting. Anti TIGIT mab (BMS-986207) and

anti LAG-3 mab (BMS-980616) were demonstrated to be safe alone

and in combination with pomalidomide/dexamethasone. Objective

response was noted in 2/6 patients treated with anti LAG-3 mab and

in 3/6 patients treated with anti TIGIT mab (101). Longer follow up

data is eagerly awaited.

TIM-3 is another checkpoint inhibitor proposed to play a role

in T cell dysfunction and myeloma progression (102). TIM-3

pathway inhibition with anti-ligand antibodies led significantly

higher NK cell cytolytic activity against myeloma cells and led to

improved survival in a myeloma animal model (103). Clinical

evaluation of TIM-3 inhibition in myeloma is warranted.

Myeloma cells have been shown to overexpress CD47 in a

significantly larger amount compared to MGUS and SMM

indicating a potential therapeutic target. Preclinical data has

reported that CD47 blockade leads to induction of phagocytosis

and killing of MM cells (104). Another correlative study of RRMM

patients from the CoMMpass trial showed higher CD47 expression

along with low CD38 expression correlated with worse overall

survival and that dual inhibition of CD38 and CD47 had anti-

tumor efficacy over single target inhibition (105). Clinical trials with

CD47 inhibitors in myeloma area awaited.
TABLE 3 Key trials with Immune checkpoint inhibitors in plasma cell neoplasms.

Trial Phase Intervention Checkpoint
target

Population Efficacy Adverse
events

CHECKMATE-
039
(NCT01592370)

I Nivolumab with ipilimumab PD-1 and
CTLA-4

R/R MM (n=5) ORR 0% 29% grade 3-4
adverse events

KEYNOTE-013
(NCT01953692)

I Pembrolizumab PD-1 R/R
MM (n=30)

ORR 0% Myalgia (3%)

KEYNOTE-183
(NCT02576977)

III Pembrolizumab with pomalidomide,
dexamethasone vs pomalidomide, dexamethasone

PD-1 R/R
MM (n=249)

mPFS 5.6 months
vs 8.4 months

Serious adverse
events 63% vs 46%
Treatment related
death 3% vs 0%

KEYNOTE-185 III Pembrolizumab with lenalidomide,
dexamethasone vs lenalidomide, dexamethasone

PD-1 NDMM
(n=301)

6 month PFS 82%
vs 85%

Serious adverse
events 54% vs 39%
Treatment related
deaths 4% vs 1%
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5 Immune checkpoint blockade in
myeloid malignancies

Immunotherapy in the form of allogeneic hematopoietic stem

cell transplant (allo-HSCT) has been a pillar in the management of

myeloid malignancies. For the treatment of most types of acute

myeloid leukemia (AML) and myelodysplastic syndrome (MDS),

allo-HSCT is the only known curative option. Because of the

remarkable success of allo-HSCT in myeloid malignancies, there

has been great interest in evaluating the therapeutic potential of

other immunotherapies such as checkpoint inhibitors. Several trials

have evaluated the efficacy of targeting pathways involving CTLA-4,

PD-1, TIM-3 and CD47 in both AML and MDS.

Initial studies explored the use of ipilimumab in relapsed/

refractory (r/r) AML and MDS in context of relapse post allo-

HSCT (106–109). In a phase I/Ib trial, responses were observed in

5 out of 12 patients with relapsed AML after allo-HCT (108).

Interestingly, of the 5 patients achieving CR, 4 had extramedullary

disease and 3 responses lasted more than one year. Treatment was

well tolerated with no major irAEs and no evidence of >grade 3

GVHD. Responses were related to bone marrow infiltration of

cytotoxic CD8+ T cells and decreased systemic Treg activation

(108, 109). In another phase 1b trial, non-transplanted patients

with MDS who had failed hypomethylating agent therapy were

treated with single-agent ipilimumab (110). Clinical activity of

ipilimumab in this cohort of patients was very limited with only 1

out of the 29 patients achieving a CR. Of note, patients in this study

only tolerated ipilimumab at a dose of 3mg/kg in contrast to the

patients in the post-transplant trial (108) who tolerated a dose of

10mg/kg. This difference in dosing could account for the lack of

response in the MDS trial. Most recently, a trial evaluating the

combination of ipilimumab with decitabine in patients with AML

and MDS (before and after allo-HSCT) reported encouraging results

(111). The trial included 54 patients and demonstrated an overall

response of 52% in patients who had not undergone transplant and

20% in patients post allo-HSCT. Similar to previous trials, most

responses occurred at an ipilimumab dose of 10mg/kg. Despite

meaningful response rates in this population, responses were short-

lived with a median duration of response of 4.46 months and 6.14 in

transplant-naïve and post-transplant patients respectively. From a

safety standpoint, 11/25 patients in the post-transplant cohort had

irAEs with 2 severe GVHD cases. In the transplant-naïve cohort, 11/

23 patients reported irAEs. From a mechanistic standpoint, a parallel

study concluded that decitabine acts on leukemic cells while

ipilimimab acts on infiltrating lymphocytes and responses are

determined by tumor cell burden and by the frequency and

phenotype of infiltrating lymphocytes (111, 112).

Several studies have explored the use of pembrolizumab or

nivolumab in myeloid malignancies. Given the known immune

effects of hypomethylating agents (HMAs), most of these trials

explored the efficacy of combination therapy using HMAs with

pembrolizumab or nivolumab.

In a multi-center phase 2 trial, pembrolizumab was combined

with azacytidine in patients with newly diagnosed and R/R AML

(113). For the entire cohort (29 evaluable patients out of 37) the

objective response rate (ORR) was found to be 55%. Significantly,
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for unfit patients with newly-diagnosed AML, the ORR was 94%

with 47% of patients achieving a CR/CRi. In another study, patients

with r/r AML were treated with pembrolizumab and decitabine

(114). Although the number of patients was smaller (10 patients),

the ORR was similar to the pembrolizumab/azacytidine study (113)

at 60%. In general, initial studies indicate that the combination of

pembrolizumab with HMAs is a safe option with meaningful

clinical responses in patients with AML.

In another phase 2 study, Zeidner et al. evaluated the

combination of pembrolizumab with high-dose cytarabine

(HiDAC) (115). The hypothesis was that pembrolizumab would

augment anti-leukemia T-cell responses and work synergistically

with HiDAC. The study enrolled 37 patients and the ORR was 46%

with a CR/CRi rate of 38%. Significantly, 50% of CR/CRi patients

achieved MRD negativity. Grade ≥ 3 irAEs were not significant. Of

note, the authors concluded that this combination of agents was

most effective in patients who received this treatment as their first

salvage regimen (106, 115).

The KEYNOTE-013 study assessed the single-agent activity of

pembrolizumab in patients with MDS after HMA failure (116).

Unfortunately, this study did not meet its primary endpoint since

none of the patients achieved a CR or PR. Another phase 2 study

evaluated the combination of azacytidine and pembrolizumab in

MDS patients (117). This study included MDS patients that were

either HMA-naïve or HMA failures. The ORR was 76% (CR rate of

18%) in HMA-naïve patients and 25% (CR rate of 5%) in HMA-

failure patients. Consistent with previous data, pembrolizumab does

not have meaningful clinical activity in MDS patients who have

failed HMA therapy, but it is a promising option in patient who are

HMA-naïve.

A phase 2 study evaluated the combination of nivolumab with

azacytidine (118). The trial enrolled 70 patients and 45 had prior

exposure to HMAs. The ORR was 33% with only 4 patients

achieving a CR. irAEs were similar to other studies of CPIs in

AML patients with 11% of patients reporting incidence of irAEs.

Interestingly, correlative studies determined that CTLA-4 was

upregulated in non-responders. As a result, another cohort was

included in this trial which enrolled 31 AML patients treated with

the triplet of nivolumab, ipilimumab and azacitidine (119). The

ORR was 46% with a CR/CRi rate of 36%. The overall survival (OS)

was 10.5 months compared to 4.6 months in the nivolumab/

azacitidine cohort. Not surprisingly, the incidence of irAEs was

increased in the triplet cohort with 25% of patients reporting irAEs.

Nivolumab has also been evaluated in the front-line setting in a

phase 2 trial combining it with cytarabine and idarubicin in patients

with newly-diagnosed AML and high-risk MDS (120). The CR rate

was 78% with 79% of those patients achieving MRD negativity.

Additionally, 19 patients were taken to allo-HCT. Grade 3-4 GVHD

was noted in 5 patients. Interestingly, the OS was not significantly

different between responders who were bridged to allo-HSCT and

those that continued therapy with nivolumab. Authors postulated

that this could indicate that the nivolumab was the potential ability

to restore anti-leukemic immune surveillance and eradicate MRD.

Immune dysregulation in myeloid malignancies is complex and a

poorly understood subject (121). Blockade of PD-1 axis alone has

poor efficacy which improves modestly in combination with
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hypomethylating agents or chemotherapy (122). Decreased MHC

expression and negative regulation of T cells by way of increased

alternative checkpoint expression, low T cell to MDS/AML cell ratio

is thought to contribute to resistance to treatment, therefore

effective therapies for tumor debulking and combination

checkpoint blockade need further evaluation (112).

TIM-3 has been found to be upregulated on the surface of

leukemia stem cells (LSCs) and leukemic blasts (123, 124). In

addition, its expression is upregulated in malignant cells and it

has been corelated with a poor clinical prognosis (125). All these

findings make TIM-3 an attractive target in AML. Sabatolimab is a

monoclonal anti-TIM-3 monoclonal antibody that is currently

under investigation for the treatment of AML and MDS. Initial

studies evaluated the combination of sabatolimab with HMAs in

unfit patients with high-risk MDS and newly diagnosed AML (126,

127). In the MDS cohort, ORR was 57% with a CR rate of 43%. In

the AML cohort, ORR was 40% with a CR/CRi rate of 30%.

Responses were more durable in the MDS cohort with a median

DOR of 16.1 months and 1-year PFS of 51.9% compared to a

median DOR of 12.6 months and a 1-year PFS of 27.9% in the AML

cohort. Meaningfully, subgroup analysis in this trial revealed that

the response rates were preserved in patient with adverse risk

mutations such as TP53, RUNX1 and ASXL1. In the AML

cohort, in patients with at least one adverse risk mutation, the

ORR was 53.8% with a median DOR of 12.6 months. In the MDS

cohort, the ORR in patients with a TP53 mutation was 71.4% with a

median DOR of 21.5 (127). Based on these data, there is a clear

potential therapeutic effect in the use of sabatolimab in the

treatment of AML and MDS and as a result the STIMULUS

clinical trial program has been developed to study sabatolimab-

based regimens in AML and MDS. Results from these studies will

hopefully provide significant evidence showing a meaningful

clinical effect of TIM-3 inhibition in AML and MDS.

In AML and MDS cells, it has been shown that CD47 is

upregulated, and its upregulation is correlated with a poor clinical

prognosis (128). Magrolimab is a humanized anti-CD47

monoclonal antibody that has been shown to induce

macrophage-mediated phagocytosis of AML cells in preclinical

studies (129). In clinical studies, it has been investigated as a

single agent and in combination with HMAs for the treatment of

AML. As a single agent, the responses were modest at best. In a

phase I trial of single agent magrolimab in 15 r/r AML patients no

CRs were achieved (130). Trials of the combination of magrolimab

with azacytidine in AML and MDS showed more promising results

(131, 132). In newly diagnosed, unfit AML patients, the ORR was

65% with a CR/CRi rate of 56%. In AML patients with a TP53

mutation, the ORR rate was 71% with a CR/CRi rate of 67%. In

patients with untreated intermediate to very high risk MDS the

ORR was 91% with a CR rate of 42%. These initial observations

generated significant excitement in the field and several subsequent

trials evaluating magrolimab in combinations with HMAs and/or

venetoclax in patients with AML and MDS were initiated.

Unfortunately, as of this writing the programs evaluating

magrolimab in MDS have been halted due to futility and the

programs evaluating magrolimab in AML are under a clinical
Frontiers in Oncology 09
hold by the FDA. Please see Table 4 for key trials in

myeloid neoplasms.

Another anti-CD47 antibody, evorpacept, is currently under

development. Evorpacept is reported to have significantly lower rate

of on-target, off-tumor toxicity when compared to magrolimab as it

has an inactive Fc domain (133). Evorpacept is being investigated in

MDS and AML in the ASPEN clinical trial program. Results from

these trials are eagerly awaited to provide further clarity regarding

the therapeutic potential of CD47 blockade in AML and MDS.
6 Immune checkpoint blockade in the
context of allogeneic HSCT

An important question in the field is whether the use of immune

checkpoint inhibitors before or after an allogeneic transplantation

improves outcomes, or whether this would result in an increase in

toxicity due to GVHD. In initial studies, it was reported that

Hodgkin lymphoma patients treated with an immune checkpoint

inhibitor who subsequently underwent and allo-HSCT had an

increased risk of complications including hyper-acute GVHD

(134–136). Most recently, several studies have evaluated the use

of immune checkpoint inhibitors before and after allo-HSCT in

AML and MDS patients. Significantly, these studies have found no

evidence of increased severe immune-related toxicities in AML/

MDS patients treated with immune checkpoint inhibitors before or

after allo-HSCT especially with the use of post-transplant

cyclophosphamide as GVHD prophylaxis (120, 126, 137–140).
7 Toxicities of immune
checkpoint blockade

Immune related adverse event (IrAE) are a unique group of

toxicities associated with immune checkpoint inhibitors. Different

from toxicities of conventional cytotoxic chemotherapy,

pathophysiology of these IrAEs is not completely understood.

Given the mechanism of action of checkpoint inhibitors, IrAEs

are thought to be mediated by increased T cell over activation and

cytokine release (141, 142). These can be systemic adverse events

presenting as fatigue or in severe forms cytokine release syndrome

but more commonly are organ limited toxicities. IrAEs commonly

involve the skin, GI tract, thyroid, liver, and the lungs but can

essentially involve any organ. The majority of the IrAEs noted in

clinical trials for hematological malignancies were mild to moderate

and were able to be managed symptomatically or with

corticosteroids. However, there are severe cases of IrAEs

presenting as pneumonitis, myocarditis, encephalitis, nephritis,

Steven-Johnson syndrome etc. reported which led to death or

significant comorbidity. Most of the data for IrAEs specifically in

hematological malignancies come from the early phase clinical trials

as discussed previously. The two phase 3 studies including PD-1

inhibitor pembrolizumab in combination with immunomodulatory

drugs in patients with multiple myeloma were Keynote-183 and
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Keynote-185. Both these studies were halted due to increased

treatment related deaths in the pembrolizumab+IMID arms

related to severe IrAEs (myocarditis, pneumonitis, Steven

Johnson Syndrome etc) (90, 91). Whether the toxicity was

exacerbated in combination with an IMID is a debatable question.

In case of cHL, in the SWOG 1826 trial comparing Nivolumab-

AVD to BV-AVD, Nivolumab-AVD was tolerated well and had a

better safety profile compared to the control arm apart from hypo/

hyperthyroidism which was manageable. There are multiple reviews

discussing mechanisms and managements of checkpoint inhibition

associated IrAEs in detail (142–144).

CD47 is critical to red blood cell homeostasis and targeting

CD47 can potentially cause an ‘on-target off-tumor’ adverse effect of

anemia. Therefore, an initial ‘priming’ dose of magrolimab (anti-

CD47 mAb) has been proposed to assess anemia before proceeding

to higher doses (145). Regardless of this strategy the most common

magrolimab related adverse event is anemia (50-70%) (72,

145, 146).
8 Conclusion

Harnessing the potency of the immune system to target

hematological malignancies has resulted in dramatic improvement in

outcomes for patients with hematological malignancies. The discovery
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of negative checkpoint pathways and their role in muting immune

mediating targeting of tumor has been instrumental, and the

development of immune checkpoint inhibitors has resulted in major

therapeutic advances. While checkpoint blockers have shown efficacy

in cHL and PMBCL, only limited efficacy was seen in non-Hodgkin

lymphoma, plasma cell disorders and myeloid malignancies. There is

significant room for improvement in development of immune

checkpoint blockers in hematological malignancies. Efforts are

underway to develop bispecific antibodies targeting two checkpoint

molecules, checkpoint molecule and costimulatory molecule,

checkpoint molecule and tumor target antigen etc. (147–151)

Combination of checkpoint blockers with novel antibody drug

conjugates are also a major area of research (152, 153). Most of these

therapies are in the preclinical phase of development and data in the

context of hematological malignancies is not available. Future

directions will focus on understanding biomarkers predictive of

response and resistance, on understanding the optimal timing for

incorporating immune checkpoint blockade in the course of disease,

and on developing novel combinatorial strategies.
Author contributions

PP: Writing – original draft. JV: Writing – original draft,

Writing – review & editing. JR: Writing – review & editing.
TABLE 4 Key trials with immune checkpoint inhibitors in myeloid neoplasms.

Trial Phase Intervention Checkpoint
target

Population Efficacy Adverse
events

(grade3-4)

NCT01822509 I Ipilimumab CTLA-4 Post AlloHCT relapse
AML (n=12)
MDS (n=2)

ORR 42% IrAE 21%
14% GVHD

NCT02768792 I Pembrolizumab PD-1 R/R AML (n=37) ORR 46%
CRc 38%
mOS 11.1 months

IrAE 14%

NCT03094637 II Pembrolizumab PD-1 HR MDS
HMA naïve n=17 (Cohort
A)
HMA exposed n=20
(Cohort B)

Cohort A: ORR 76%, CR
18%. mOS NR
Cohort B: ORR 25%, CR
5%. mOS 5.8 months

IrAE 43%

NCT02397720 II Azacytidine with nivolumab
with or without Ipilimumab

PD-1/CTLA-4 R/R AML
Cohort 1: Aza+Nivo
(n=70)
Cohort 2: Aza+Nivo
+ipi (n=31)

Cohort 1: ORR 33%
Cohort 2:
ORR 44%
1 year OS 45%

IrAE 25%

NCT02464657 II Nivolumab with
idarubicin+cytarabine

PD-1 Newly diagnosed AML/HR
MDS (n=44)

ORR 77%
mEFS not reached
mOS 18.5 months

IrAE 14%

STIMULUS
NCT03066648

I Sabatolimab+HMA TIM-3 Newly diagnosed HR MDS
(n=53), AML (n=48)

MDS: ORR 57% mDOR
16 months
AML: ORR 40% mDOR
12.6 months

IrAE 10%

ENHANCE
NCT04313881

I Magrolimab+HMA CD47 R/R HR MDS (n=95) ORR 75%
CR 33%
mDOR 9.8 months
mOS NR
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multicenter phase II study. J Clin Oncol (2020) 38(1):20–8. doi: 10.1200/JCO.19.01056

77. Kim SJ, Lim JQ, Laurensia Y, Cho J, Yoon SE, Lee JY, et al. Avelumab for the
treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label
phase 2 study. Blood (2020) 136(24):2754–63. doi: 10.1182/blood.2020007247

78. Querfeld C, Thompson JA, Taylor MH, DeSimone JA, Zain JM, Shustov AR,
et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint
CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a
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