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Improving skin cancer detection
by Raman spectroscopy using
convolutional neural networks
and data augmentation
Jianhua Zhao1,2, Harvey Lui1,2, Sunil Kalia1,3,4, Tim K. Lee1,2

and Haishan Zeng1,2*

1Photomedicine Institute, Department of Dermatology and Skin Science, University of British
Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada, 2BC Cancer
Research Institute, University of British Columbia, Vancouver, BC, Canada, 3BC Children’s Hospital
Research Institute, Vancouver, BC, Canada, 4Centre for Clinical Epidemiology and Evaluation,
Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
Background:Our previous studies have demonstrated that Raman spectroscopy

could be used for skin cancer detection with good sensitivity and specificity. The

objective of this study is to determine if skin cancer detection can be further

improved by combining deep neural networks and Raman spectroscopy.

Patients and methods: Raman spectra of 731 skin lesions were included in this

study, containing 340 cancerous and precancerous lesions (melanoma, basal cell

carcinoma, squamous cell carcinoma and actinic keratosis) and 391 benign

lesions (melanocytic nevus and seborrheic keratosis). One-dimensional

convolutional neural networks (1D-CNN) were developed for Raman spectral

classification. The stratified samples were divided randomly into training (70%),

validation (10%) and test set (20%), and were repeated 56 times using parallel

computing. Different data augmentation strategies were implemented for the

training dataset, including added random noise, spectral shift, spectral

combination and artificially synthesized Raman spectra using one-dimensional

generative adversarial networks (1D-GAN). The area under the receiver operating

characteristic curve (ROC AUC) was used as a measure of the diagnostic

performance. Conventional machine learning approaches, including partial

least squares for discriminant analysis (PLS-DA), principal component and

linear discriminant analysis (PC-LDA), support vector machine (SVM), and

logistic regression (LR) were evaluated for comparison with the same data

splitting scheme as the 1D-CNN.

Results: The ROC AUC of the test dataset based on the original training spectra

were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033 (PC-LDA),

0.864±0.027 (SVM), and 0.525±0.045 (LR), which were improved to 0.909

±0.021 (1D-CNN), 0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901

±0.020 (SVM), and 0.897±0.021 (LR) respectively after augmentation of the

training dataset (p<0.0001, Wilcoxon test). Paired analyses of 1D-CNN with

conventional machine learning approaches showed that 1D-CNN had a 1–3%

improvement (p<0.001, Wilcoxon test).
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Conclusions: Data augmentation not only improved the performance of both

deep neural networks and conventional machine learning techniques by 2–4%,

but also improved the performance of themodels on spectra with higher noise or

spectral shifting. Convolutional neural networks slightly outperformed

conventional machine learning approaches for skin cancer detection by

Raman spectroscopy.
KEYWORDS
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1 Introduction

Skin cancers including basal cell carcinoma (BCC), squamous

cell carcinoma (SCC) and malignant melanoma (MM) are the most

common of all types of cancers with an estimate of over 5.4 million

new skin cancer cases per year in the US (including 97,610 new

melanoma cases) affecting more than 3.3 million patients (1). The

incidence in Australia is even higher, with 2/3 of Australians

developing skin cancer in their life time (2). Clinical diagnosis of

skin cancer is typically based on visual inspection followed by an

invasive biopsy of the suspicious lesion. It is invasive, time

consuming and costly because the procedures of biopsy involve

tissue processing and histology. Biopsies also generate a large

number of false negatives and false positives. For example, in a

large scale retrospective study of 4741 pigmented skin lesions, it was

reported that for each confirmed melanoma, over 20 benign lesions

were biopsied (3). Therefore, new techniques to aid skin cancer

detection and reduce the misdiagnosis rate are being evaluated. A

number of techniques have been proposed and different levels of

performance have been demonstrated for skin cancer detection,

such as Raman spectroscopy (4–7), dermoscopy (8–10), spectral

imaging (11–13), confocal microscopy (14–16), electrical

impedance spectroscopy (17, 18), multiphoton microscopy (19–

22) and optical coherence tomography (OCT) (23).

Raman spectroscopy is an optical technique that measures the

vibrational modes of biomolecules within the tissue. It is very

sensitive to biochemical and biological changes associated with

pathology. Raman spectroscopy has been investigated extensively

for in vitro and in vivo skin cancer detection (4–7, 24–35). A

number of excellent review articles on cancer detection by Raman

spectroscopy have been published (36–40). Earlier work on skin

cancer detection by Raman spectroscopy was limited either by ex

vivo biopsied samples or by small number of in vivo cases due to

long measurement times. For example, Gniadecka et al. (33)

measured 223 punch biopsied skin samples by near infrared

Fourier transform Raman spectroscopy, in which each spectrum

was acquired over approximately 7 minutes. They found that the

sensitivity and specificity for diagnosis of melanoma by neural

network analysis were as high as 85% and 99%, respectively. Lieber
02
et al. (27) measured 21 lesions and their adjacent normal skin in

vivo with an integration time of 30 seconds, and reported 100%

sensitivity and 91% specificity for discriminating skin lesions from

normal skin. We have developed a rapid, real-time Raman

spectrometer system for in vivo skin measurements that

substantially reduced spectral acquisition times to less than a

second (41, 42). In a recent study of 518 in vivo cases by our

group, Lui et al. (4, 5) found that Raman spectroscopy could be used

for skin cancer detection with an area under the receiver operating

characteristic curve (ROC AUC) as high as 89.6% based on Raman

spectrum alone. With feature selection (wavenumber selection) and

by incorporating patient demographics into the algorithm, the

diagnostic ROC AUC was further improved (6, 7). Very recently,

Feng et al. quantified biophysical markers associated with different

skin pathologies (24, 25). Bratchenko et al. (30–32) found that by

combining Raman and autofluorescence spectra in the near-

infrared region using a portable low-cost spectrometer, a

reasonable diagnostic accuracy was achieved.

Recently Esteva et al. (43) reported that deep neural networks

could improve the performance of skin cancer diagnosis based on

color dermoscopic images. It stimulated further studies in artificial

intelligence for biomedical image and spectral analysis (44–48).

Currently, deep neural networks has been proposed for spectral

analysis, such as spectral preprocessing (49–51), spectral

classification (31, 52–56), and spectral data highlighting (57).

Raman spectroscopy combining with deep neural networks have

been reported for detection of breast cancer (biopsied samples, 8

subjects) (54, 58), colon cancer (ex vivo samples, 45 subjects) (53),

prostate cancer (urine samples, 84 subjects) (55) and liver cancer

(serum samples, 66 subjects) (59). All these studies were limited by

the small number of cases, which might be over-trained for data-

hungry deep neural networks that required a large amount of data

to train. Bratchenko et al. (31) reported skin cancer detection using

Raman spectroscopy and found that convolutional neural networks

substantially improved the ROC AUC from 0.75 for PLS-DA to 0.96

for CNN based on the raw Raman spectra.

The objective of this study is to explore skin cancer detection by

analyzing Raman spectra using deep neural networks. Based on

clinical interest this study is focused on a dichotomous binary
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classification to determine whether a lesion is cancerous. We

implemented different data augmentation strategies to increase

the training dataset and compared the results of deep neural

networks and conventional machine learning techniques with and

without data augmentation. The paper is outlined as the following:

section 2 described the patient dataset; different data augmentation

strategies, in particular the details of one-dimensional generative

adversarial networks (1D-GAN) for data augmentation; and the

one-dimensional convolutional neural networks (1D-CNN) for

spectral classification. Section 3 presented the performance of

different data augmentation strategies and the results based on

the original training datasets with and without data augmentation.

Section 4 summarized the major findings and section 5 concluded

the study.
2 Patient and method

2.1 Patient dataset

The dataset used in this study has been reported in a previous

publication (7). In total, there were 731 valid lesions from 644

patients, including 326 males and 318 females with a median age of

62 years old (range: 18–94). Of the 731 lesions, 340 cases were

cancerous or precancerous lesions (melanomas, basal cell

carcinoma, squamous cell carcinoma and actinic keratosis), and

391 cases were benign lesions (atypical nevus, blue nevus,

compound nevus, intradermal nevus, junctional nevus and

seborrheic keratosis). All these lesions were clinically confirmed

by the experienced dermatologists. All of the skin cancer lesions

(100%), 29% of the precancer lesions and 34% of the benign lesions

were also confirmed by histopathology. This study was approved by

the Clinical Research Ethics Board of the University of British

Columbia (Vancouver, BC, Canada; protocol C96–0499).

Raman spectra of all the lesions were measured in vivo using a

custom-build real-time Raman spectrometer system (41, 42). The

system contained a 785 nm diode laser, a hand-held Raman probe

and a spectrograph equipped with liquid nitrogen cooled back-

illumination deep depletion charge coupled device (CCD) detector.

The laser was delivered to the Raman probe through a single

multimode fiber with core diameter of 100 mm and formed a

3.5 mm diameter spot on the skin target. The Raman signal was

collected by the Raman probe and delivered to the spectrograph

through a fiber bundle, which consisted of 58 multimode optical

fibers with core diameter of 100 mm. The distal end of the fiber bundle

was packed into a circular area, and the proximal end connected to

the spectrograph was aligned along a specially-designed parabolic line

to correct the aberration of the spectrograph. Full-chip vertical

hardware binning was achieved after image aberration correction,

which improved the signal-to-noise ratio by 16 times (41, 42). The

raw Raman signal was filtered by a 5-point box-car smoothing, and

the fluorescence background was removed using fifth-order

polynomial fitting of the Vancouver Raman Algorithm (60). Most

of the lesions (96%) were acquired of a single spectrum; large and

inhomogeneous lesions (4%) were acquired of multiple times from

different locations within the lesion, and the averaged Raman
Frontiers in Oncology 03
spectrum was used for analysis. In this study, each individual lesion

was considered as an experimental unit for analysis.

The averaged Raman spectra and standard deviation of skin

cancers and precancerous, and benign skin lesions were shown in

Figure 1. All the spectra were normalized to their respective area

under the curve between 500 and 1800 cm−1 before being averaged.

Major Raman peaks were located around 855, 936, 1,002, 1,271,

1,302, 1,445, 1,655, and 1,745 cm-1. It was noted that all the skin

lesions shared similar Raman peaks and bands with different

intensities. These differences in intensities provided the diagnostic

capability between skin cancers and benign skin lesions. It is

difficult if not impossible to identify the peaks that can provide

the best discrimination. Features extracted from machine learning

techniques (such as principal components) and deep neural

networks are used for classification (45), but generally difficult to

interpret. A gradient-weighted class activation mapping (Grad-

CAM) can be performed to highlight which regions contribute

the most to the classification (61).
2.2 Data augmentation strategies

Deep neural networks require a large number of cases for

training. Many data augmentation strategies were proposed for

image analysis such as flipping, color space, translation, rotation,

noise injection, image mixing, random cropping and generative

adversarial networks (62–64). Different from images, the intensity

of the Raman spectrum is highly dependent on the Raman shift

(wavenumbers). Therefore, different data augmentation strategies are

needed for one-dimensional spectral analysis. In previous studies, a

number of data augmentation strategies for spectral analysis was

proposed, including adding random noise (52, 53, 65), spectral shift

(52, 53, 65), spectral superimposition (spectral linear combination)

(52, 53, 65), offset (66), adding a slope (66), multiplication (66) and

generative adversarial networks (GAN) (67). However, not all the

data augmentation strategies were applicable for Raman
FIGURE 1

Averaged Raman spectra (and standard deviation) of malignant
(n=340, including melanoma, basal cell carcinoma, squamous cell
carcinoma and actinic keratosis) and benign skin lesions (n=391,
including benign nevi and seborrheic keratosis). All the spectra were
normalized to their respective areas under the curve between 500
and 1800 cm−1 before being averaged. For clarity, standard deviation
is shown top half for cancer and bottom half for benign lesions.
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spectroscopy. In this study, we proposed the following strategies for

data augmentation of Raman spectra, including adding random

noise, spectral shift, spectral linear combination, and artificially

synthesized spectrum through generative adversarial networks.

Note that data augmentation is conducted only for the

training dataset.

2.2.1 Data augmentation by addition of
random noise

The training dataset can be augmented by adding random noise

of different noise levels (Figure 2A), which can be written as

S0(vi) =  S(vi) +  N(vi) (1)

Where S0(vi) is the augmented spectrum, S(vi) is the original

spectrum, and N(vi) is the random noise. The random noise level is

defined as the amplitude of the noise over the maximum peak

intensity (Imax) of the full training dataset. For example, a k percent

of random noise is defined as k percent of the peak intensity, written

as N(vi) = 2�   (rand(   ) − 0:5)  �   k   =   100� Imax , where rand( )

is a random generator that produces uniformly distributed random

numbers within the interval of (0,1).

2.2.2 Data augmentation by spectral shift
The training dataset can be augmented by shifting the spectrum

a few pixels (or wavenumbers) (Figure 2B), which can be written as

S0(vi) =  S(vi ± m)  + N(vi) (2)

Where S0(vi) the augmented spectrum at wavenumber vi, S(vi  ±  m)

is the original spectra at wavenumber vi  ±  m,m=1, 2, 3,… and N(vi) is
Frontiers in Oncology 04
the random noise at wavenumber vi, generated by the same formula as

shown in section 2.2.1.

2.2.3 Data augmentation by spectral
linear combination

The training dataset can also be augmented by linearly

combining two or more sets of spectra. In this study, we

implemented data augmentation by linearly combining two sets

of spectra (Figure 2C), which can be written as

S0(vi) =  rS1(vi) +  (1 − r)S2(vi) + N(vi) (3)

Where S0(vi) is the augmented spectrum at wavenumber vi, S1
(vi) and S2(vi) are the two sets of randomly selected original spectra

from the training dataset. r is a randomly generated number that is

uniformly distributed between 0 and 1, representing the ratio of the

two sets of the original spectra. Note that S1(vi) and S2(vi) are

randomly chosen from either the cancer group or the benign group.

No attempt is tried to combine the spectra of one from the cancer

and the other from the benign groups.
2.2.4 Data augmentation by generative
adversarial networks

Another way for data augmentation is using generative adversarial

networks, which is far more complicated than the above simple data

augmentation techniques. We designed a one-dimensional

conditional generative adversarial network (1D-GAN) for Raman

spectral generation as shown in Figure 3. It takes the general

architecture of a conditional generative adversarial network, which

contains two separate networks: a generator and a discriminator. The
B

C D

A

FIGURE 2

Examples of data augmentation for the training dataset of Raman spectra. (A) adding random noise of different noise levels, (B) spectral shifting,
(C) spectral linear combination, and (D) data augmentation by one dimensional generative adversarial networks (1D-GAN) (averaged spectra
are shown).
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generator takes random noise and the label (cancer or benign) as

input, and generates a synthetic spectrum. The discriminator takes the

synthetic spectrum and label, and the real Raman spectra and labels as

input, and tries to discriminate the synthetic spectrum from the real

spectra. If the discriminator can separate the synthetic spectrum from

the real spectra, it will provide a feedback to the generator to modify

the parameters in such a way that the synthetic spectrum looks more

like a real spectrum (decreasing the loss function). This process is

iterative and eventually the generated spectrum looks so close to the

real spectrum that the discriminator could not separate the synthetic

spectrum from the real spectra. Once the 1D-GAN is trained, the

generator can be used to generate arbitrary number of synthetic

Raman spectra based on random input (67). The discriminator

could sometimes be used directly for image and spectral

discrimination purpose as well (68, 69).

The architectures of the generator and discriminator are shown

in Figure 3 and the parameters are listed in Table 1. The generator

contains 5 transposed convolutional layers (TransConvolution).

Each of the first 4 transposed convolutional layers is followed by

a batch normalization layer and a regularization layer (ReLu). The

output size of each layer is governed by o = (i-1) s – 2p + k, where o

is the output size, i is the input size, s is the stride, p is the padding

size, and k is the kernel size (70). Assuming the input size is 4, the

output size of the generator is 619, which is the length of the

spectrum in this study within the range of 500 – 1800 cm-1.

The discriminator also contains 5 convolutional layers. Each of

the first 4 convolutional layers was followed by a regularization

layer (LeakyReLu). The output size of each layer is governed by o =

(i + 2p – k)/s + 1, where o is the output size, i is the input size, s is the

stride, p is the padding size, and k is the kernel size (70). The output

size of the discriminator is 1, indicating the input spectrum is either

real or synthesized after the discriminator.

The mini batch size was 256. The initial learning rate was

0.0002. The gradient decay factor and the squared gradient decay

factor was 0.5 and 0.999 respectively. The total number of epochs

was 25,000. With such parameters for the above 1D-GAN

architecture, it took about 4.5 hours to complete the training

using a mainframe GPU (Advanced Research Computing,

University of British Columbia, Sockeye high-performance
Frontiers in Oncology 05
computing platform). After the 1D-GAN was trained, 5,000

spectra were generated for skin cancers and 5,000 spectra were

generated for benign lesions. The average of the 1D-GAN generated

spectra and the average of real spectra were shown in Figure 2D.
2.3 One dimensional convolutional neural
networks for spectral classification

We developed and tested a number of 1D-CNN architectures for

Raman spectral classification, including different number of

convolutional layers (1–5); number of kernels (16, 32, 64, 128) for

each convolutional layer; kernel sizes (3, 5, 7, 9); mini-batch sizes (16,

32, 64, 128, 256); pooling methods (max pooling and average pooling);

and sizes of the fully connected layers (128, 256, 512) (Supplementary

Tables S1–S4). The final architecture of the designed 1D-CNN for

Raman spectral classification that provided the best performance

contained an input layer, 4 convolutional layers, 2 fully connected

layers, a softmax layer and an output layer (Figure 4). Each of the four

convolutional layers was followed by a batch normalization layer, a

regularization layer (ReLu) and an average pooling layer. In total, the

1D-CNN had 21 layers. Note that each layer represents a specific data

manipulation. The four convolutional layers had the same kernel

(filter) size, padding and stride (kernel size = [3, 1], padding =

‘same’, and stride = 1), but with different number of kernels (16, 32,

64, and 128 respectively). Zero padding was added to each

convolutional layer (padding =‘same’) so that the output of each

convolutional layer had the same size as the input. The size of batch

normalization layer was 256 for the original training dataset and 1024

for the augmented training dataset. The four average pooling layers had

the same parameters (size = [2,1], stride= [2,1]) so that after each

pooling layer the size was reduced by half. The training process was

optimized by adaptive moment estimation (adam) (71). The initial

learning rate was 0.001, which was dropped by a factor of 0.9 for every

2 period. The training process was monitored through the accuracy

and the loss function (cross entropy) of the training and

validation datasets.

An example of the training process, including the accuracy and

the loss function of the training and validation processes are shown in
FIGURE 3

One-dimensional generative adversarial networks (1D-GAN) for data augmentation. 8*64, 4*64, 2*64, 1*64 and 1 are the number of kernels of each
convolutional layer (and transposed convolutional layer for the generator).
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Figure 5. Here the original training dataset was used, which contained

512 cases. The mini-batch size was 256, and the maximum number of

epochs was 100. Therefore, there were 2 iterations per epoch and a

maximum of 200 iterations per training process in this example. The

accuracy for the training dataset was defined as the ratio of the

correctly classified cases to the total cases of the training dataset in the

mini-batch (n=256). The accuracy for the validation dataset was

defined as the ratio of the correctly classified cases to the total cases of

the full validation dataset (n=73). It was noted that the accuracy of the

model was improving at the beginning after the network training

process started. However, the model may be over-trained if the

training process could not be terminated at appropriate training

stage. To prevent over-training, we implemented a strategy to stop

the training process if the accuracy of the validation dataset was not

improving for specific iterations. Usually the number of iterations for

terminating the training process could be set between 10 and 50. If

the number was too small, the trained model might be premature;

while if the number was too large, the model might be over-trained.

Figure 5A shows that the model was terminated at 76 iterations (as
Frontiers in Oncology 06
shown by the arrow) because the accuracy of validation dataset was

not improving for 50 iterations. The parameters of last training

process were used as the parameters for the final model. Figure 5B

shows the cross entropy loss of the training and validation process.

Similarly to the accuracy, the cross entropy loss was calculated on

mini-batch for the training process and on the full validation dataset

for the validation process. It could be seen that the loss was initially

decreased and then was leveled off if the model kept training. The

arrow indicated a possible stopping stage based on the strategy for the

training process to prevent over-training. In our experiment, we

terminated the training process if the accuracy for the validation

dataset was not improving for 50 iterations.
2.4 Conventional machine
learning approaches

Conventional machine learning approaches are sometimes

called chemometrics or multivariate statistical analyses (48, 72).
FIGURE 4

Architecture and parameters of one-dimensional convolutional neural networks (1D-CNN) for Raman spectral classification. The number of kernels
for each convolutional layer was 16, 32, 64 and 128 with kernel size = [3,1] for all the convolutional layers. The mini-batch size was 256 for the
training dataset without augmentation and 1024 for the training dataset with augmentation. The pooling size was [2,1] with stride [2,1] for each
average pooling layer. The size for the first fully connected layer was 256 and for the second fully connected layer was 2.
TABLE 1 Parameters for the generator and discriminator of the one-dimensional generative adversarial networks (1D-GAN) for data augmentation.

Network Input size
Layer
number

Kernel size
Number
of kernels

Stride Cropping Output size

Generator

4 1 [3,1] 8 * 64 [1,1] [0,0] 6

6 2 [7,1] 4 * 64 [4,1] [1,0] 25

25 3 [7,1] 2 * 64 [3,1] [1,0] 77

77 4 [7,1] 1 * 64 [4,1] [1,0] 309

309 5 [5,1] 1 [2,1] [1,0] 619

Discriminator

619 1 [5,1] 8 * 64 [2,1] [1,0] 309

309 2 [7,1] 4 * 64 [4,1] [1,0] 77

77 3 [7,1] 2 * 64 [3,1] [1,0] 25

25 4 [7,1] 1 * 64 [4,1] [1,0] 6

6 5 [6,1] 1 [1,1] [0,0] 1
The input size of the generator is designed as 4 and the output size of the generator is 619.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1320220
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2024.1320220
For comparison purpose, conventional machine learning

techniques, including partial least squares for discriminant

analysis (PLS-DA), principal component and linear discriminant

analysis (PC-LDA), support vector machine (SVM), and logistic

regression (LR) were implemented.
2.5 Dataset split and data augmentation

The dataset split and data augmentation procedures were

illustratively shown in Figure 6. For analyses without data

augmentation, the stratified original dataset (n=731) was randomly

divided into training (70%, i.e. 70% of cancerous and 70% of benign

cases), validation (10%) and test set (20%). For analyses with data
Frontiers in Oncology 07
augmentation, only the training set was augmented. Data

augmentation of the training set was implemented after random

split of the original dataset. Therefore, the cases in the training,

validation and test datasets were the same as the analyses without

data augmentation. The same data split scheme and augmentation

were used for the 1D-CNN and all the conventional machine learning

analyses. All the above models including 1D-CNN, PLS-DA, PC-

LDA, SVM and LR were implemented using parallel computing on

UBC ARC (Advanced Research Computing, University of British

Columbia) Sockeye high-performance computing platform. The

random split was repeated in parallel 56 times and the mean was

reported (parallel computing requires multiple of 8). All the

programs were implemented using Matlab (Version 2021a,

Mathworks, Natick, MA, USA).
B

A

FIGURE 5

Example of the training process of the 1D-CNN for Raman spectral classification. Arrows showed the performance of the validation process no
longer improving over at least 50 iterations, a possible stopping stage to prevent over-training. (A) Accuracy of the training and validation process.
(B) Cross entropy loss of the training and validation process.
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2.6 Extended test dataset

In order to evaluate the models for situations that are slightly

out of the original scope, such as lower spectral quality, we

introduced random noise and spectral shift to the test dataset,

hereafter referred as extended test dataset, in addition to the original

test dataset. Similar to sections 2.2.1 and 2.2.2, up to 12.5% of

random noise and 6-pixel shift were applied to the original test

dataset to generate the extended test dataset.
2.7 Statistical analysis

Paired analysis (Wilcoxon test) of the test set between 1D-CNN

and PLS-DA, PC-LDA, SVM and LR, and the test of the above

models between using original and augmented training set were

performed (GraphPad, Boston, MA, USA). A p-value of less than

0.05 (p<0.05) was regarded as statistically significant.
3 Results

3.1 Evaluation of augmentation parameters

We first evaluated the optimal parameters for data

augmentation, such as the level of random noise, the range of the

spectral shift, the number of linearly combined spectra, and the

number of synthesized spectra generated by the generative

adversarial networks.

3.1.1 Level of random noise
The hypothesis for data augmentation by adding random noise is

that the augmented spectra are measured by systems of different signal

to noise ratios. We evaluated data augmentation by adding different

levels of random noise from 1% to 12.5% following Equation 1
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(Figure 7A). As expected, the performances of 1D-CNN, PLS-DA

and PC-LDA were immune to noise levels. Surprisingly, the

performances of SVM and LR were all improved. The performance

of SVM after augmentation with high level of noise (i.e. >7.5%) was

even better than any other techniques. Because the number of cases

was less than the number of variables for the original training set, data

augmentation by adding random noise improved the performance of

LR. However, data augmentation by solely adding random noise could

not solve the number of case versus variable issues (full rank issues). Its

performance was still the lowest compared with other techniques.

3.1.2 Range of spectral shifting
The hypothesis for data augmentation by spectral shifting is

that the augmented spectra are measured from different systems of

variable qualities. We evaluated data augmentation by spectral

shifting of 1 to 6 pixels following Equation 2 without addition of

random noise (Figure 7B). It was found that the performance of 1D-

CNN, PLS-DA and PC-LDA were independent of spectral shifting,

while the performance of SVM was decreased monotonically.

Surprisingly, it was found that data augmentation by spectral

shifting was particularly useful for LR. Its performance was

equivalent to 1D-CNN, PLS-DA and PC-LDA, and even better

than SVM after data augmentation with large spectral shifting.

3.1.3 Number of cases by spectral
linear combination

The hypothesis for data augmentation by spectral linear

combination is that the augmented spectrum is measured from a

lesion that mimics two measured lesions. We evaluated data

augmentation by spectral linear combination in multiples of the

training dataset following Equation 3 (Figure 7C). It was found that

the performance of spectral linear combination was the worst

compared to data augmentation by adding random noise or

spectral shifting, indicating that it was very unlikely that a lesion

would have the properties of two measured lesions. Data

augmentation by solely spectral linear combination did not

improve the performance of 1D-CNN, PLS-DA, PC-LDA, SVM

or LR.

3.1.4 Number of synthesized spectra by 1D-GAN
The hypothesis of data augmentation by 1D-GAN is that the

properties of a lesion that is not in the original dataset can be

synthesized. The beauty of 1D-GAN is that once it is trained, it can

be used to generate any number of synthesized spectra. To determine

the optimal number of synthesized spectra by 1D-GAN, models with

the original spectra and synthesized spectra of n=500, 1,000, 2,000,

5,000, 10,000, 20,000 and 30,000 were evaluated (Figure 7D). It was

found that the performance of 1D-CNN, PLS-DA, PC-LDA, SVM

and LR were all improved with augmentation by 1D-GAN generated

spectra. However, PLS-DA, PC-LDA and SVM were not dependent

on the number of synthesized cases. 1D-CNN was slightly improved

with the number of synthesized spectra until it reached plateau at

around n=10,000, while for LR no matter how many cases were

synthesized, it was not sufficient.
FIGURE 6

Random split of original dataset into training (70%), validation (10%)
and testing (20%) datasets with and without data agumentation
(dashed frame). Note that for analyses with augmentation, it was
implemented only to the training dataset, not the validation and
testing datasets. 1D-CNN, one-dimensional convolutional neural
networks; PLS-DA, partial least squares for discriminant analysis; PC-
LDA, pricipal component and linear discriminant analysis; SVM,
support vector machine; LR, logistic regression.
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3.1.5 Optimal parameters for data augmentation
Based on the above evaluation, the following parameters were

selected for data augmentation of the training set in this study: random

noise level of 5% (n=512), spectral shift of 1–3 pixels (n=512x6),

spectral linear combination (n=512) and 1D-GAN synthesized spectra

(n=10,000). To prevent collinearity, a 5% random noise was applied to

the spectrally shifted and linearly combined spectra.
3.2 Diagnosis based on original training
dataset without data augmentation

The ROC curves for the training, validation and test dataset

based on 1D-CNN, PLS-DA, PC-LDA, SVM and LR for one of the

56 random splits are shown in Figure 8 (top row). It could be seen

that the performance of the training set were always better than the

validation and the test sets, indicating that the models were slightly

over-trained, particularly for SVM. LR failed based on the original

training set in this example, because the number of variables (619)

was more than the number of cases (512).

The ROC AUCs of the 56 calculations for the original test

datasets based on the original training datasets without

augmentation were shown in Figure 9. The training set had

higher ROC AUCs than the validation and test datasets on
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average (Table 2). The averaged ROC AUCs of the original test

dataset based on the original training spectra without augmentation

were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033

(PC-LDA), 0.864±0.027 (SVM), and 0.525±0.045 (LR), respectively.

Paired analyses showed that 1D-CNN outperformed conventional

machine learning approaches by 1–3% including PLS-DA, PC-LDA

and SVM based on the original spectra (Wilcoxon, p<0.001). 1D-

CNN also had the smallest standard deviation of the ROC AUCs.
3.3 Diagnosis based on original training
dataset with augmentation

There were 14,608 cases in the training dataset after

augmentation, consisting of the original spectra (n=512) plus

spectra that were augmented by adding random noise (5% noise,

n=512), spectral shifting (1–3 pixel shifting, n = 512 x 6), combining

spectra linearly (n=512), and 1D-GAN (n=10,000). The ROC

curves based on same random split of the original dataset after

augmentation for 1D-CNN, PLS-DA, PC-LDA, SVM and LR are

shown in Figure 8 (bottom row). It showed that all the models for

the training dataset were also over-trained, particularly for SVM.

Surprisingly, it was found that after data augmentation, LR

performed very well since the number of cases was now larger
B

C D

A

FIGURE 7

ROC AUC of the test dataset of 56 random repetitions based on the original training dataset and different augmentation parameters, (A) adding
random noise, (B) spectral shifting, (C) spectral linear combination, and (D) synthesized spectra by 1D-GAN. 1D-CNN, one-dimensional convolutional
neural networks; PLS-DA, partial least squares for discriminant analysis; PC-LDA, principal component and linear discriminant analysis; SVM, support
vector machine; LR, logistic regression.
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than the number of variables. As expected data augmentation also

resulted in smoother training ROCs.

The ROC AUCs of the 56 calculations for the original test

datasets based on the original training datasets with augmentation

are shown in Figure 9. The ROC AUCs of the training dataset were

much higher than the validation and test datasets (Table 2).The

ROC AUCs of the original test dataset based on the original training

dataset with augmentation were 0.909±0.021 (1D-CNN),

0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901±0.020

(SVM), and 0.897±0.021 (LR). It showed that after data

augmentation, 1D-CNN slightly out-performed all the

conventional machine learning techniques by 1–2%, including

PLS-DA, PC-LDA, SVM and LR (p<0.001, Wilcoxon test).

Because only the training datasets were augmented, the test

datasets were the same for 1D-CNN and conventional machine

learning approaches. Paired analyses demonstrated that models

based on the original training datasets with augmentation

(n=14,608) significantly improved the diagnostic ROC AUCs of

the original test datasets by 2–4% compared with models based on

the original training datasets without augmentation (n=512) for

both 1D-CNN and conventional machine learning methods (PLS-

DA, PC-LDA, and SVM) (p<0.0001, Wilcoxon test). Augmentation

was particularly useful for LR when the number of cases was smaller

than the number of variables, which was improved by 71%.
3.4 Diagnosis based on different
augmentation strategies

We also calculated the performance of models based on

different augmentation strategies to the training datasets. The
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split scheme of the original spectra was the same as section 3.2

and section 3.3. Validation and test datasets were not augmented.

All the models were repeated 56 times.

3.4.1 Augmented spectra without original
When 1D-CNN and the conventional machine learning

approaches were trained on the augmented spectra without the

original training datasets, here data augmentation included adding

random noise (n=512), spectral shifting (n = 512 x 6), combining

spectra linearly (n=512), and 1D-GAN (n=10,000), the ROC AUCs

of the original test datasets were found to be 0.908±0.021 (1D-

CNN), 0.899±0.022 (PLS-DA), 0.893±0.023 (PC-LDA),

0.906±0.021 (SVM), and 0.897±0.022 (LR) (Table 2), almost

identical to the results based on the original training datasets

with augmentation (section 3.3), indicating that the contribution

of the original training datasets may be negligible after

data augmentation.

3.4.2 Augmented spectra by 1D-GAN only
When 1D-CNN and the conventional machine learning

approaches were trained on the augmented spectra synthesized by

1D-GAN only (n=10,000), the ROCAUCs of the original test datasets

were found to be 0.907±0.021 (1D-CNN), 0.893±0.023 (PLS-DA),

0.886±0.025 (PC-LDA), 0.905±0.021 (SVM), and 0.813±0.033 (LR)

(Table 2). The results were inferior to the models based on the

original training datasets with augmentation (section 3.3) and

augmented spectra without original (section 3.4.1), but still better

than the models based on the original training datasets without

augmentation (section 3.2). However, the performance based on

augmented spectra by 1D-GAN only was not sufficient for LR,

indicating that other augmentation strategies were still needed.
FIGURE 8

Example of the ROC curves of the training, validation (n=73) and test (n=146) datasets. Top row is based on the original training spectra (n=512), and
bottom row is based on the augmented spectra (n=14,608). 1D-CNN, one-dimensional convolutional neural networks; PLS-DA, partial least squares
for discriminant analysis; PC-LDA, principal component and linear discriminant analysis; SVM, support vector machine; LR, logistic regression.
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3.4.3 Original and augmentation without 1D-GAN
When the models were trained on the original training datasets

with augmentation by adding random noise, spectral shifting

and linear combination without 1D-GAN (n=4,608), the ROC

AUCs of the original test datasets were found to be 0.879±0.022

(1D-CNN), 0.884±0.023 (PLS-DA), 0.880±0.026 (PC-LDA), 0.877

±0.024 (SVM), and 0.875±0.022 (LR) (Table 2). The results

indicated that data augmentation by adding random noise, spectral

shifting and linear combination without 1D-GAN worked well for
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conventional machine learning techniques, particularly LR, but not

1D-CNN.

3.4.4 Augmentation without 1D-GAN
When the models were trained on the augmented datasets (by

adding random noise, spectral shifting and linear combination

without 1D-GAN) without the original training datasets

(n=4,096), the ROC AUCs of the original test datasets were found

to be 0.876±0.022 (1D-CNN), 0.884±0.023 (PLS-DA), 0.880±0.026
FIGURE 9

ROC AUC of the test dataset of 56 random repetitions based on the original training dataset without augmentation and the original training dataset
with augmentation. Bar shows the mean and standard deviation.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1320220
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2024.1320220
(PC-LDA), 0.880±0.023 (SVM), and 0.876±0.022 (LR) (Table 2).

These results were quite similar to the models trained on the

original and augmentation without 1D-GAN (section 3.4.3),

indicating that data augmentation by adding random noise,

spectral shifting and linear combination without 1D-GAN covers

the original training datasets. It is interesting to note that data

augmentation without 1D-GAN worked better for LR than

augmented spectra by 1D-GAN only (p<0.0001, Wilcoxon); while

it was the opposite for 1D-CNN, PLS-DA, PC-LDA and SVMwhere

augmented spectra by 1D-GAN only worked better (p<0.0001,

Wilcoxon) (section 3.4.2).
3.5 Diagnosis on extended test dataset

3.5.1 Models based on the original training
dataset without augmentation

When applying the models based on the original training

dataset without augmentation (models in section 3.2) to the

extended test dataset, the ROC AUCs of the extended test

datasets are shown in Figure 10 (top row). It is found that all the

models including 1D-CNN, PLS-DA, PC-LDA and SVM perform

the best on the original test dataset. They all can tolerate 2.5% of
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random noise or ±1 pixel shift; and the performance starts to

deteriorate with further added noise or spectral shift. In terms of

random noise, PC-LDA and PLS-DA perform better than 1D-CNN

and SVM at high noise levels; while in terms of spectral shifting, 1D-

CNN performs better than PC-LDA, PLS-DA and SVM across all

the situations. It is also noticed that the effect for spectral shifting is

not symmetric. The performance drops faster when the spectrum is

shifted to lower wavenumbers.

3.5.2 Models based on the original training
dataset with augmentation

When applying the models based on the original training dataset

with augmentation (models in section 3.3) to the extended test dataset,

the ROC AUCs of the extended test datasets are shown in Figure 10

(bottom row). Again, it is found that all the models including 1D-

CNN, PLS-DA, PC-LDA and SVM perform the best on the original

test dataset. The performance for models trained on the augmented

training dataset was much better than the models trained on the

original training dataset (Supplementary Figures S1, S2). In terms of

random noise, PC-LDA and PLS-DA still perform better than 1D-

CNN and SVM at high noise levels; while in terms of spectral shifting,

1D-CNN and SVM perform better than PC-LDA and PLS-DA. 1D-

CNN still performs the best across all the situations.
TABLE 2 ROC AUCs (mean ± standard deviation) of the training, validation (n=73) and test dataset (n=146) of 56 random split schemes based on
models of different training datasets.

Training Dataset Dataset 1D-CNN PLS-DA PC-LDA SVM LR

Original without augmentation Training 0.941±0.005 0.911±0.030 0.910±0.025 0.980±0.006 0.999±0.001

Validation 0.882±0.041 0.889±0.039 0.900±0.036 0.853±0.043 0.541±0.058

Test 0.886±0.022 0.870±0.028 0.875±0.033 0.864±0.027 0.525±0.045

Original with augmentation Training 0.989±0.005 0.961±0.002 0.949±0.011 0.999±0.000 0.980±0.002

Validation 0.903±0.042 0.895±0.036 0.909±0.035 0.893±0.039 0.889±0.037

Test 0.909±0.021 0.899±0.022 0.895±0.022 0.901±0.020 0.897±0.021

Augmented spectra without original Training 0.989±0.005 0.963±0.002 0.949±0.015 0.999±0.000 0.981±0.002

Validation 0.902±0.040 0.895±0.037 0.909±0.035 0.897±0.039 0.889±0.037

Test 0.908±0.021 0.899±0.022 0.893±0.023 0.906±0.021 0.897±0.022

Augmented spectra by 1D-GAN only Training 1.000±0.001 0.993±0.000 0.980±0.021 1.000±0.000 1.000±0.000

Validation 0.902±0.038 0.890±0.040 0.912±0.033 0.903±0.034 0.810±0.047

Test 0.907±0.021 0.893±0.023 0.886±0.025 0.905±0.021 0.813±0.033

Original and augmentation without
1D-GAN

Training 0.946±0.010 0.931±0.007 0.905±0.016 0.995±0.001 0.955±0.006

Validation 0.876±0.043 0.881±0.039 0.895±0.037 0.866±0.043 0.870±0.041

Test 0.879±0.022 0.884±0.023 0.880±0.026 0.877±0.024 0.875±0.022

Augmentation without 1D-GAN Training 0.947±0.011 0.931±0.007 0.905±0.017 0.992±0.002 0.956±0.006

Validation 0.873±0.043 0.881±0.039 0.894±0.038 0.872±0.043 0.871±0.041

Test 0.876±0.022 0.884±0.023 0.880±0.026 0.880±0.023 0.876±0.022
Original without augmentation: original training spectra without augmentation (n=512); Original with augmentation: original training spectra with augmentation including adding random
noise, spectral shifting, spectral linear combination and 1D-GAN (n=14,608); Augmented spectra without original: augmentation including adding random noise, spectral shifting, spectral linear
combination and 1D-GAN but without original spectra (n=14,096); Augmented spectra by 1D-GAN only: augmented training spectra by 1D-GAN only (n=10,000); Original and augmentation
without 1D-GAN (n=4608): Original training spectra with augmentation including adding random noise, spectral shifting, spectral linear combination but without 1D-GAN; Augmentation
without 1D-GAN (n=4096): augmented spectra including adding random noise, spectral shifting, spectral linear combination but without 1D-GAN. Boldface highlights the results of the
test dataset.
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4 Discussions

4.1 Data augmentation improved
diagnostic performance of 1D-CNN and
conventional machine learning techniques

Adding random noise, spectral shifting, linear combination of

the spectra (65), and generative adversarial networks (67) were

proposed in previous studies of deep neural networks, and none of

them implemented all data augmentation strategies presented in

this study. We applied all the data augmentation strategies to both

deep neural networks and conventional machine learning

techniques, and found that data augmentation not only improved

the performance of deep neural networks, but also the conventional

machine learning techniques. Particularly, data augmentation

improved the performance of LR when the number of cases was

less than the number of variables.
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None of the previous studies provided details of how the data

augmentation was implemented or evaluated the effect of different

data augmentation strategies. In this study, we systematically

investigated the effect of different data augmentation strategies and

found that different augmentation strategies have variable

contribution to the improvement of deep neural networks and

conventional machine learning techniques. For example,

augmentation by adding random noise improved SVM and LR, but

not PLS-DA, PC-LDA and 1D-CNN; augmentation by spectral

shifting improved LR but not PLS-DA, PC-LDA, SVM and1D-

CNN; augmentation by spectral linear combination has almost no

contribution to all the techniques (Figure 7); and augmentation by 1D-

GAN improved the performance of 1D-CNN, PLS-DA, PC-LDA and

SVM more than LR (Table 2). The best performance was achieved

when all these strategies were combined (Figure 9).When all the

augmentation strategies were combined, it improved the performance

of 1D-CNN, PLS-DA, PC-LDA and SVM by 2–4%, and LR by 71%.
FIGURE 10

ROC AUC of the extended test dataset by adding random noise or spectral shift to the original test dataset for models based on the original training
dataset without augmentation (top row) and models based on the original training dataset with augmentation (bottom row). Data shown are the
mean of 56 random repetitions using parallel computing. 1D-CNN, one-dimensional convolutional neural networks; PLS-DA, partial least squares for
discriminant analysis; PC-LDA, principal component and linear discriminant analysis; SVM, support vector machine.
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4.2 1D-CNN outperforms conventional
machine learning approaches

Convolutional neural networks contain multiple hierarchical

layers with each layer representing a specific data manipulation. It

contains many parameters to train and thus very versatile. The

versatility of convolutional neural networks brings both advantage

and disadvantage, in that an optimal model can always be found by

tuning the parameters, while in the meantime there is no standard

architecture that can fit all situations. For example, in this study we

tried 1D-CNN architectures of multiple convolutional layers with

different number of kernels, kernel sizes, pooling methods, mini-

batch sizes and sizes of the fully connected layer (section 2.3,

Supplementary Tables S1-S4), and eventually found that 1D-CNN

with 4 convolutional layers, with each convolutional layer having

16, 32, 64 and 128 kernels, kernel size = [3,1], mini-batch size = 256,

and average pooling had the best performance (Figure 4). With the

optimal 1D-CNN architecture and parameters, we found that 1D-

CNN out-performed other machine learning techniques by 1–3%

based on the original Raman spectra. After data augmentation, 1D-

CNN outperformed other machine learning techniques by 1–

2% (Figure 9).

Different from deep neural networks, conventional machine

learning techniques were not as versatile as 1D-CNN, and thus

there were less parameters to train. Therefore, in designing CNN,

the performance of conventional machine learning techniques

could be used as baseline for benchmarking convolutional neural

networks. 1D-CNN outperforms conventional machine learning

techniques, with the cost of longer training and more effort to find

the optimal network architectures and parameters.
4.3 Parallel computing provides
advantages for both 1D-CNN and
conventional machine learning techniques

Cross validation is commonly used in conventional machine

learning techniques (PLS-DA, PC-LDA, SVM and LR). The most

commonly used cross validation techniques are leave-one-out

cross-validation (LOO-CV) and K-fold cross-validation. For

LOO-CV, usually a case or patient is left out for testing and the

remaining n-1 cases or patients are used for training. The procedure

is repeated n times so that every case or patient is tested once. The

results are the average of the n models. Similar to LOO-CV, K-fold

cross-validation is to divide the stratified cases or patients into K

groups; one group of the cases or patients is left out for testing and

the remaining K-1 groups are used for training. The procedure is

repeated K times so that every case or patient is tested once. The

results are the average of the K models. LOO-CV can be regarded as

a special case of K-fold cross-validation where K=n.

Deep neural networks often require the dataset being split into

training, validation and test datasets. The model is generated from

the training dataset; the hyperparameters are fine-tuned from the

validation dataset; and the test set provides unbiased evaluation of

the final model. Sometimes the validation dataset can serve as the

test dataset when the original dataset is divided into two subsets. If
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early stopping is needed for model training, an independent

validation dataset is usually needed. LOO-CV and K-fold cross-

validation have been used in deep neural networks for Raman

spectrum classification (52, 54, 65). Some authors implemented K-

fold cross-validation on the training dataset and tested on a holdout

test set. When the test set is large enough and representative to the

distribution of the dataset, it provides an unbiased evaluation of the

model (31, 59, 73). However, as Khristoforova et al (74) pointed out,

the major drawbacks of previous publications on Raman

spectroscopy and chemometrics were insufficient sample size, lack

of cross-validation, and/or incorrect division of the data into

subsets. In this study, the original dataset was randomly split into

training, validation and test datasets, and early stopping criteria

were used during the model training process. This process was

repeated 56 times, taking the advantage of parallel computing, and

thus prevented over-fitting and bias.
4.4 Data augmentation improves model
performance on extended test dataset

Although there are standard protocols for measurement and data

processing of Raman spectra, including wavelength calibration,

intensity calibration, fluorescence background removal, and/or

normalization, it is still difficult to evaluate the performance of

models across multiple systems (72, 75, 76). In this paper we

proposed a simple method to evaluate the models on different

conditions by adding random noise or spectral shift to the original

test dataset to generate the extended test dataset, mimicking the

situation of multiple systems. We evaluated the models trained on

the original training dataset (section 3.2) and models trained on the

augmented training dataset (section 3.3) to the original test dataset

(Figure 9) and the extended test dataset (Figure 10). It was found that

the models based on the original training dataset without

augmentation performed well only on situations with similar spectral

quality (i.e. original test dataset), and the performance became

deteriorated when the spectral quality was compromised (i.e. the

extended test dataset with increased random noise or spectral

shifting) (Figure 10). However, the models based on the augmented

training dataset not only improved the performance on the original test

dataset (Figures 9, 10), but also had higher tolerance on low spectral

quality, i.e. the situations with increased random noise or spectral

shifting (Figure 10). The models based on the augmented training

dataset could perform even better on the extended test dataset (with up

to 5% increase of random noise or 3-pixel spectral shifting) than the

models based on the original training dataset applied to the original test

dataset (Supplementary Figures S1, S2), indicating that data

augmentation could improve the applicability of the models trained

on high quality data to situations of low spectral quality.
5 Conclusion

In summary, we designed a one-dimensional convolutional

neural networks (1D-CNN) for skin cancer detection by Raman

spectroscopy and compared with conventional machine learning
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techniques (PLS-DA, PC-LDA, SVM and LR). We proposed and

evaluated different data augmentation strategies including adding

random noise, spectral shifting, spectral linear combination and

synthetic spectra by 1D-GAN. Each augmentation strategy had

different performance, but when all the augmentation strategies

were combined, it substantially improved the performance of 1D-

CNN and all the conventional machine learning analyses by 2–4%

(p<0.0001, Wilcoxon). We also found that a well-designed 1D-CNN

outperformed conventional machine learning techniques by 1–3%

using original dataset and by 1–2% after data augmentation. Data

augmentation is a simple but an effective way to improve the

performance of deep neural networks and machine learning

techniques. Models trained on augmented training dataset not

only perform better, but also have higher tolerance on spectral

quality of the test dataset.
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