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Gastric cancer is one of the cancers with increasing incidence and ranks fourth

globally among the most frequent causes of cancer-related mortality. Early gastric

cancer is often asymptomatic or presents with atypical symptoms, and the majority

of patients present with advanced disease upon diagnosis. Brain metastases are

present in approximately 1% of gastric cancer patients at the time of diagnosis, which

significantly contributed to the overall mortality of the disease worldwide.

Conventional therapies for patients with brain metastases remain limited and the

median overall survival of patients is only 8 months in advanced cases. Recent

studies have improved our understanding of the molecular mechanisms underlying

gastric cancer brain metastases, and immunotherapy has become an important

treatment option in combinationwith radiotherapy, chemotherapy, targeted therapy

and surgery. This review aims to provide insight into the cellular processes involved

in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the

integration of immune checkpoint inhibitors into treatment and prognosis, and

explore the predictive value of biomarkers in immunotherapy.
KEYWORDS

gastric cancer, brain metastasis, molecular characteristics, immune checkpoint
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1 Introduction

Gastric cancer (GC) is among the top five cancers worldwide in terms of incidence and

mortality (1). According to the latest global cancer data from the World Health

Organization (WHO), the majority of newly diagnosed gastric cancer patients each year

are mainly from Southeast Asian countries. In China alone, approximately 500,000

individuals are initially diagnosed with gastric cancer (2). Advanced gastric cancer has

limited treatment options and efficacy, resulting in a median overall survival (mOS) of only

8 months (3). Furthermore, gastric cancer can metastasize to various sites in the body. The

liver, lungs, bones, brain, and kidneys are frequent metastatic targets in advanced gastric

cancer. Notably, the incidence of brain metastasis in patients with advanced gastric cancer
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represents a significant hazard, critically endangering both patient

health and survival (Figure 1) (4).

For patients with gastric carcinoma in situ, subendothelial

mucosal dissection and mucosal resection can effectively control

and partially cure the disease, with 5-year survival rate exceeding

90% (5). Additionally, both open surgery and laparoscopic surgery

can be beneficial for patients with GC. However, the probability of

developing brain metastases increases with timely diagnosis,

abundant treatment and longer patient survival (6). Therefore, it

is crucial to elucidate the molecular mechanisms of brain metastases

from gastric cancer in order to improve survival rates. While brain

metastases account for only 1% of distant metastases and may

present with common symptoms such as personality changes,

dizziness, headache, cerebral oedema and brain herniation, they

can be fatal to patients (7).

Gastric cancer is classified into two main subtypes based on the

site of occurrence: cardia-associated gastric cancer and non-cardia

gastric cancer (8). Additionally, depending on the age of diagnosis,

gastric cancer is divided into early-onset gastric cancer and

conventional gastric cancer, with a cut-off of 45 years.

Researchers have classified gastric adenocarcinoma into various

histological subtypes according to the 2019 World Health

Organization (WHO) Classification of Tumors of the Digestive

System (9). The most common histological subtype is tubular

adenocarcinoma, which often forms fungal-like masses in the

gastric lumen. Papillary adenocarcinoma is also frequently

encountered in clinical practice and often metastasizes to adjacent

organs such as the liver. Mural cell carcinomas are notable for

having a more abundant eosinophilic granular cytoplasm.

Mucinous adenocarcinoma is characterized by the the presence of

large amounts of extracellular mucus, and accounts for
Frontiers in Oncology 02
approximately 10% of gastric cancers. In addition, hypoadhesive

carcinomas are highly aggressive against lymphatic vessels and

often show diffuse growth of cancer cells, such as indolent cell

carcinoma. In addition to the above subtypes, there is also a mixed

type of adenocarcinoma of the stomach, which includes several

different histological components and has a poorer prognosis than

patients with only one component (10). This type is closely

associated with the development of brain metastases (11).

Gastric cancer patients with brain metastases have a lower

median overall survival (mOS) of only approximately 5.3 months

(2-9.6 months) in comparison to other cancers, such as lung, breast

and kidney cancers (12). The prognosis of gastric cancer with brain

metastases is also influenced by the presence of other metastatic sites,

such as liver and lung metastases, and the progression of systemic

disease (13). However, it is a complex and multi-stage process that

involves the epithelial mesenchymal transition (EMT) of cancer cells,

enabling them to spread to other organs via the bloodstream.

Ghojazadeh et al. (14) have shown that KRAS mutation is an

independent pathogenic factor for brain metastasis in GC. In

addition, the level of SERPINH1 in gastric tissues of GC patients is

higher than normal gastric mucosal tissues, and this factor is closely

related to the levels of MMP-2, MMP-9, E-calcineurin and N-

calcineurin. Of these factors, the association between SERPINH1

and EMT is closely related to brain metastasis (15–17).

With the ongoing evolution of treatments and protocols,

traditional treatment options such as surgery, chemotherapy and

targeted therapy have considerably improved the clinical outcomes

for patients diagnosed with GC. Chemotherapy is one of the

conventional treatments for advanced GC patients. Common

chemotherapeutic agents include paclitaxel (doxorubicin or

paclitaxel), capecitabine, fluorouracil (18). However, the clinical
FIGURE 1

Metastatic sites of gastric cancer (GC) and detailed routes underlying tumor metastasis to the brain. The common metastasis sites of GC include the
stomach, hepar, colorectum, kiddney, lung, brain, bladder, pancreas, and bone. Gastric cancer cells invade and penetrate tumor vasculature to enter
the bloodstream. Upon surviving within the circulatory system, they subsequently breach the blood-brain barrier and other protective barriers to
colonize and form metastatic foci in the brain.
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benefits are limited by the potential risk of injury from surgery, the

toxicity of chemotherapeutic agents, and resistance to targeted drugs.

The median survival time of patients with advanced GC treated with

conventional therapy is less than 1 year (19). However, the field of

tumor immunotherapy has made remarkable breakthroughs in both

research and clinical practice, offering new hope to GC patients.

Several immunotherapy regimens have achieved good efficacy in

treating GC. In this article, we will review the latest clinically relevant

advances in GC treatment, with a particular emphasis on the recent

progress in immunotherapy.
2 Mechanism of GC brain metastasis

The complexity of mechanism in GC brain metastasis lies in the

multi-stage process (Figure 2). The study of brain metastasis not

only takes into account the interaction between immune cells such

as cancer cells, pericytes, glial cells and macrophages, but also

microenvironmental factors such as hypoxia (20).
2.1 EMT and local invasion

Upon achieving a certain size and undergoing angiogenesis,

tumor foci in situ enter the critical stage of metastasis, during which

tumor cells acquire advanced mutational capabilities for local

invasion (21). GC cancer cells leave the primary cancer sites and

attack the surrounding tissues, a hallmark of this stage being their
Frontiers in Oncology 03
breach of the basement membrane, ultimately leading to the

progression of malignant tumors.

The local invasion of GC tumor cells is closely related to the

process of epithelial to mesenchymal transition (EMT) and neuron

specific enolase (NSE). During EMT, epithelial-like cancer cells

transform to migratory and invasive mesenchymal-like cancer cells,

acquiring a variety of characteristics such as self-renewal, self

replication, differentiation and invasion of stroma (22).

Neuroendocrine differentiation characterizes GC, and NSE, an

enzyme specific to neuroendocrine cells, is a predictive and

sensitive biomarker in GC (23). Studies have shown that down-

regulating the expression of NSE gene can increase the expression of

NM23 and E-cadherin, thereby inhibiting the proliferation and

invasion of GC. Additionally, activation of Wnt/b-catenin signaling

pathway has been shown to promote the EMT process of GC cells

also, thereby influencing their invasiveness (15). Numerous studies

have revealed that the induction of EMT in GC involves several

signaling pathways, such as transforming growth factor-b (TGF-b),
Ras, Notch, Wnt, RTK, ETAR, hedgehog and matrix

metalloproteinases (MMPs) (24–26) (Figure 3).
2.2 Molecular signalling cascades
and circulation

Both GC patients and GC mouse models commonly experience

distant metastasis through blood or lymphatic pathways, which are

crucial for the development of brain metastases in GC.
FIGURE 2

General steps of the metastasis of gastric cancer (GC). (By Figdraw). The process of tumor metastasis involves four steps, namely invasion, entry into
the circulatory system, breaking through the BBB, and colonization. The EMT process is regulated by various factors, such as RAS, Hedgehog, and
others. When tumor cells metastasize to the brain, the tumor cells need to cross the tight junction and other structures. Microglia activate astrocytes
to upregulate TNF through the action of TNF-a, IL-1b, IL-1a, and other proinflammatory factors. Factors that can disrupt tight junctions include IL-1,
IL-17, IL-1b, IFN, TNF, among others.
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The cascade of molecular signals generated between the primary

tumor and brain metastases facilitates the specific spread of

metastatic tumor cells through the lymphatic or hematogenous

circulation. Bassey-Archibong et al. (27) analyzed the transcription

profiles of different stages of the transfer cascade and found that

brain metastasis initiating cells (BMICs) of cancer cells are captured

before visible brain metastases are formed. These cells exhibit stem

cell-like characteristics and can easily survive in the brain. RNA

sequencing indicated that increased expression of HLA-G in BMICs

prior to metastasis could promote the formation of brain metastases

through the HLA-G/SPAG9/STAT3 axis. In addition, Cheng et al.

(28) showed that SNHG1 downregulation inhibited metastasis of

GC cells through the miR-195-5p/YAP1 axis, thereby suppressing

the development of brain metastases. In addition, TGF-b also plays

an important role in tumor metastasis and acquisition of immune

escape. Han et al. (29) suggested that loss of the original

characteristics of the TGF-b-smad signalling pathway due to

Smad3 deficiency can promote tumor metastasis. Intracranial

metastasis of GC can occur through the above molecular

mechanisms with lymphatic origin, often metastasizing to the

meninges and presenting as soft meningeal carcinoma (30).

Tumor cells can metastasize through both the lymphatic and

haematological pathways, but often at an advanced stage (31). In

addition, BMICs must undergo transendothelial migration (TEM)

to cross the brain endothelium and endothelial junctions (32).

Sakurai et al. (33) suggested that primary lesion cancer cells

invade the blood vessels and return to the right heart via the

portal system, eventually colonizing brain tissue. The specific

metastasis of gastric cancer cells to the brain depends on the

bidirectional selection of the vasculature and is related to the

anatomical system. Garcıá-Gómez et al. suggested that cancer

cells and cerebrovascular endothelial cells can be mediated by

integrins, L1CAM, FGF receptors, and ErbB receptors (34, 35).

However, the mechanisms for the survival of cancer cells in the

circulatory system are relatively more clear for breast cancer and

melanoma than for GC. The key factors that mediate the interaction

between the GC cells and the plasma coagulation system in brain
Frontiers in Oncology 04
metastasis remain elusive. Unravelling the detailed molecular

mechanisms involved in this process is essential for successful

prevention of GC brain metastasis.
2.3 Destruction of barriers

The brain barrier acts as a crucial gatekeeper for the central

nervous system, safeguarding the brain from inflammatory

mediators. It is formed by a highly selective, semipermeable

border of endothelial cells in the brain, which effectively prevents

the entry of biological agents and other potential risk factors that

may cause damage.

2.3.1 BBB
The blood brain barrier (BBB) is a tight barrier structure that

separates blood from brain tissue. It is composed of various cell

types, including endothelial cells, astrocytes, podocytes, pericytes,

microglia, oligodendrocytes and neurons (36, 37). The blood-brain

barrier, with its stringent architecture and selective permeability,

serves as a protective shield for both children and adults,

safeguarding the brain’s microenvironment and the central

nervous system’s stability (38).

The integrity of the BBB is often compromised by metastasized

cancer cells, which are able to break through the tight junction

structure, damage the capillary basement membrane, tight

junctions, and increase pore size, distance between blood vessels,

and permeability (39). To breach the BBB, cancer cells employ a

complex network of molecular mechanisms that are closely linked

to astrocytes, the most abundant cell type in the central nervous

system (40, 41). Upon contact with circulating tumor cells in the

brain, astrocytes transform into reactive astrocytes that influence

cancer cell activity by secreting matrix metalloproteinases

(MMPs) (42), which are important proteases that regulate the

microenvironment of brain metastasis. Study has demonstrated

that zinc can upregulate the expression of claudin-5 in neuronal

cells, which in turn influences the permeability of the blood-brain
FIGURE 3

Gastric cancer cell related immune cells and targets. Gastric cancer cell concludes immune cells, Her2+ tumor cells and so on. There are many
targets for gastric cancer: EGFR, PD-L1, MET, and so on.
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barrier (43). Among the MMPs, MMP-2 and MMP-9 show the

strongest correlation with patient survival, followed by MMP-1

(44). Studies indicate that astrocytes play a critical role in

modulating the protein and matrix composition of tumor cells by

releasing MMP-2 and MMP-9, thereby promoting the invasion and

metastasis of tumor cells in the brain. In the MDA-MB-435 brain

metastasis mouse model, researchers observed increased MMP-9

expression during the invasion of cancer cells (45). MMP inhibitors

have been shown to decrease tumor invasion and metastasis.

Meanwhile, astrocytes have been found to affect cell morphology

and cell cycle by secreting heat-sensitive lipid epoxyeicosatrienoic

acids (EETs) during the process (46).

2.3.2 BCSFB
The blood cerebral spinal fluid barrier (BCSFB) is formed by the

choroid plexus and acts as a barrier between plasma and

cerebrospinal fluid. This barrier is also crucial in maintaining the

stability of the brain microenvironment.

Recent studies have demonstrated that the BCSFB prevents the

entry of tumor cells into the cerebrospinal fluid or arachnoid (47).

The maintenance of the inner environment of the brain and spinal

cord by the BCSFB is primarily dependent on the tight junction

structure, which is mediated by tight junction proteins such as

occludin, claudin-1, junction adhesion molecule (JAMs), and

placental growth factor (PLGF) (48, 49). The presence of PLGF in

the serum of patients alters the permeability of the BCSFB by

affecting the distribution of tight junction proteins through the

VEGFR1-Rho-erk1/2 pathway (50). Studies on the BBB in vitro

have indicated that inhibition of PLGF in serum can prevent the

degradation of tight junctions in endothelial cells, thereby inhibiting

the occurrence of brain metastases in GC patients (50, 51). Cancer

cells rely on the abundant surrounding blood vessels to proliferate

rapidly in the brain, forming the blood tumor barrier (BTB) (52).

However, the lack of an in vitro BTB model poses a significant

challenge to brain tumor research. The recurrence of brain

metastasis of GC is a major cause of mortality, likely caused by

differences in osmotic concentrations and barriers that hinder drug

penetration into the brain, thereby affecting the local availability of

tumor drugs in the niche. A number of studies using brain

metastasis mouse models have shown that the heterogeneity of

the BTB significantly affects the concentration and distribution of

drugs in the tumor (53). Currently, clinical treatment methods and

strategies are actively being developed to promote the bypass of

drugs through the brain barrier and improve drug penetration and

increase blood concentration in the brain (54).

In the future, a deeper understanding of the molecular

mechanisms and related pathways involved in the process of

tumor cells bypassing the BCSFB will pave the way for the

development of drugs to treat brain metastasis in GC patients.
2.4 Colonization

The colonization of cancer cells and subsequent formation of

visible tumors are closely associated with the process of
Frontiers in Oncology 05
neovascularization, which is critical for the unlimited

proliferation of cancer cells. Recent studies have identified several

neovascular factors, including vascular endothelial growth factor,

transforming growth factor, basic fibroblast growth factor and

platelet-derived growth factor, among others (55).

The vascular endothelial growth factor (VEGF) family is a

highly specific and critical regulator of colonization. It directly

promotes the mitogenic activity of vascular endothelial cells, the

growth of vascular endothelium, and vascular permeability. There

are six members identified in the VEGF family, including VEGF-A,

VEGF-B, VEGF-C, VEGF-D, PLGF and endocrine gland-derived

vascular endothelial growth factor (56). Research indicates that

VEGF-A is the predominant factor that induces tumor angiogenesis

and formation. It is expressed in a wide range of cancers, including

GC brain metastasis. The tyrosine kinase receptors (RTKs),

VEGFR-2 (KDR), and (fer-like iron deficiency-induced

transcription factor) Fit-1 receptors are the three receptors with

high affinity to VEGF-A. These receptors are mainly expressed in

endothelial cells, with only a small amount expressed in monocytes

and hematopoietic cells (57). Bevacizumab, a VEGF inhibitor, has

shown significant efficacy in treating GC brain metastasis. Clinical

trials have confirmed that adding bevacizumab as a first-line drug

with chemotherapy can significantly prolong the median

progression-free survival (mPFS) of patients with advanced-GC

compared to chemotherapy alone, with tolerable adverse

reactions (58).
3 Immune checkpoint inhibitors

In recent years, scientists have discovered that the immune

system has the potential to eliminate cancers. Currently, ICIs are

widely used in experimental research and clinical treatments for

various malignancies due to their high specificity, long-lasting

immune responses, and long-term survival benefits (59). Among

these, ICIs-mediated pathways, such as programmed death protein-

1 (PD-1)/programmed death ligand-1 (PD-L1), cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), and lymphocyte

activation gene-3 (LAG-3), have been extensively studied for the

treatment of GC (Table 1).
3.1 PD-1/PD-L1 inhibitors

PD-1 is expressed as a monomer on the surface of activated T

cells, B cells, and monocytes, and functions as an immune molecule

that negatively regulates the immune system. During tumor

development, the highly expressed PD-L1 molecules on tumor

cells bind to the PD-1 and B7.1 receptors on the surface of

activated T cells, leading to the differentiation of T cells into

depleted T cells or regulatory T cells.

PD-1 antibodies, such as Pembrolizumab, Nivolumab,

Toripalimab, Tislelizumab, Camrelizumab, and others, have been

studied for treating patients with advanced gastric cancer, including

brain metastases. In the 2016 KEYNOTE-012 study, Pembrolizumab
frontiersin.org
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TABLE 1 Therapies for the treatment of gastric cancers with brain metastasis.

PFS, months
(95% CI)

mOS,months
(95% CI)

Ref.

2.0 (2.0-2.1) 5.6 (4.3-6.9) (60)

6.6 (5.9-10.6)
13.8 (8.6-NR)
CPS≥ 1: 11.1 (5.4-22.3)

3.3 (2.0-6.0) 20.7 (9.2-20.7)

1.5 (1.4-2.0)
CPS≥ 1: 1.5 (1.4-2.0)

9.1 (6.2-10.7)
CPS≥ 10: 10.4 (5.9-11.3)

(61)

4.1 (3.1-4.2)
CPS≥1: 4.1 (3.1-4.2)

8.3 (7.6-9.0)
CPS≥ 10: 8.0 (5.1-9.9)

7.7 (7.1-8.5)
CPS ≥ 1: 7.5 (7.0–8.4)
CPS ≥ 5: 7.7 (7.0–9.2)

13.8 (12.6-14.6)
CPS ≥ 1: 14.0 (12.6–15.0)
CPS ≥ 5: 14.4 (13.1–16.2)

(62)

3.2 (2.8-4.1)
CPS≥ 1:4.3 (2.9-6.8)

10.4 (9.1-12.0)
CPS≥1:14.9 (8.7-17.3)

(63)

4.4 (4.0-5.5)
CPS≥ 1:5.1 (4.2-7.0)

10.9 (9.6-12.4)
CPS≥1:11.6 (8.4-12.6)

10.45 (8.44-14.75) 17.45 (15.67-20.83) (64)

8.34 (6.97-9.4) 17.15 (15.18-19.65)

12.5 (10.3-15.2) (65)

8.9 (6.4-10.4)

(66)

1.4 (1.2–1.5) 6.2 (3.4–12.4) (67)

1.4 (1.2–3.8) 6.9 (3.7–11.5)
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Trial Phase Patients
(n)

Drugs ORR,%
(95% CI)

KEYNOTE-059 II 259 Pembrolizumab
11.6 (8.0-16.1)
CPS≥ 1: 15.5
(10.1-22.4)

25 Pembrolizumab plus cisplatin, 5-Fu and capecitabine
60 (38.7-78.9)
CPS≥ 1: 68.8
(41.3-89.0)

31 Pembrolizumab 25.8 (11.9-44.6)

KEYNOTE-061 III 196 Pembrolizumab

199 Paclitaxel

CheckMate-649 III 789 Nivolumab + chemotherapy CPS ≥ 5: 60 (55–65)

JAVELIN
Gastric 100

Avelumab 13.3 (9.3-18.1)

Oxaliplatin + fluoropyrimidine 14.4 (10.3-19.4)

ATTRACTION-4 III 362 Nivolumab + chemotherapy 57.5 (52.2-62.6)

362 Chemotherapy 47.8 (42.5-53.1)

DESTINY-
Gastric01

II 125 T-DXd 51.3 (41.9-60.5)

62 PC 14.3 (6.6-26.2)

KEYN0TE-811 III 133
KEYTRUDA + Trastuzumab + Fluoropyrimidine and
Platinum Chemotherapy

74.4 (66.2–81.6)

131
Placebo + Trastuzumab + Fluoropyrimidine and
Platinum Chemotherapy

51.9 (43.0–60.7)

CheckMate-032 I/II 160
Nivolumab
3 mg/kg

12 (5–23)

Nivolumab
1 mg/kg +ipilimumab
3 mg/kg

24 (13–39)
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TABLE 1 Continued

S, months
% CI)

mOS,months
(95% CI)

Ref.

(1.4–2.6) 4.8 (3.0–8.4)

(2.0-6.5) (68)

(6.6-13.1)

(1.0-1.8) 3.2 (1.7-4.4) (69)

(0.8-5.3) 7.7 (2.1-13.7)

(1.6-3.3) 1.8 (1.6-3.3)

(1.6-3.5) 1.8 (1.6-1.9)

(1.6-5.2)
(3.5-6.5)

12.7 (10.5-18.9)
12.1 (9.3-NR)

(70)

NR (71)

(72)

(8.59-NR) 27.17 (18.85-NR) (73)

(5.22-6.97) 21.6 (18.86-24.05) (74)

(4.14-5.45) 19.8 (17.54-22.28)

(75)

(1.8-4.2) 5.9 (76)

(1.61-4.34) 12.48 (9.07-14.09) (77)

(5.4-13.7) (78)

(Continued)
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Trial Phase Patients
(n)

Drugs ORR,%
(95% CI)

PF
(9

Nivolumab
3 mg/kg + ipilimumab
1 mg/kg

8 (2–19) 1.6

NCT03409848 II Nivolumab+trastuzumab +Ipilimumab 3.3

Nivolumab+trastuzumab +FOLFOX 10

NCT02340975 Ib/II 135 Durvalumab,2L 0 (0-14.2) 1.6

Tremelimumab,2L 8.3 (0.2-38.5) 1.7

Durvalumab+
tremelimumab,
2L

7.4 (0.9-24.3) 1.8

Durvalumab+
tremelimumab,
3L

4.0 (0.1-20.4) 1.8

NCT01585987 II 18 Ipilimumab
1.8
7.0

2.9
4.9

NCT03472365 II 48 SHR-1210+CAPOX 65 NR

19 SHR-1210+ apatinib

CS1001–101 I 29 CS1001 + XELOX 62

NCT02954536 II 37
Pembrolizumab,
trastuzumab plus

91 (78-97) 13

SOPHIA III 266
Margetuximab+
chemotherapy

25 5.7

270
Trastuzumab+
pembrolizumab

14 4.4

CheckMate-577 III 532 Nivolumab

262 placebo

LEAP-005 II 31
Lenvatinib+
pembrolizumab

10 (2-26) 2.5

CP-MGAH22-05 Ib/II 95
Margetuximab+
chemotherapy

18.48 (11.15-27.93) 2.7

EPOC1706 II 29
Lenvatinib+
pembrolizumab

69 (49-85) 7.1
5

.7

.0

3
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showed potential activity, with about 20% of patients experiencing

disease remission (87). In the 2017 KEYNOTE-059 study,

Pembrolizumab monotherapy demonstrated an OS of 5.6 months, a

PFS of 2 months, and an objective remission rate (ORR) of 11.6% (60).

In the same year, the ATTRACTION-2 study evaluated Nivolumab,

which showed significant survival benefits in patients with advanced

gastric cancer and brain metastases, with a mOS of 5.26 months (95%

CI, 4.60-6.37) in the monotherapy arm (88). However, the overall

effectiveness of PD-1/PD-L1 therapy in GC patients was only 12%, and

follow-up showed that the disease may develop brain metastases and

progress to highly aggressive forms (64, 89).
3.2 CTLA-4 inhibitors

CTLA-4 is a protein receptor found on regulatory T cells that,

when bound to the B7 molecule, is capable of forming a negative

regulatory immune system for T cells. Additionally, it acts as a

switch when it binds to CD86 and CD80 on the surface of antigen-

presenting cells (69).

The main anti-CTLA-4 antibodies available are tremelimumab

and ipilimumab, which inhibit T-cell activity by targeting CTLA-4.

Tremelimumab in combination with durvalumab is commonly

used as a second-line treatment for patients with gastric cancer

with distant metastases. In a phase Ib/II trial, patients with gastric

cancer who received this monoclonal antibody after completing

chemotherapy had an mOS of 7.7 months and a PFS of 1.7 months.

The ORRs for third-line and second-line combination therapy were

4.0% and 7.4%, respectively. However, the one-year OS rates were

only 38.8% and 37%, respectively (90). In CheckMate-032, a phase

I/II clinical study, ipilimumab administered as monotherapy (3 mg/

kg) in patients with advanced gastric cancer who had progressed on

chemotherapy including brain metastases showed an ORR of less

than 15% (83). In a subsequent phase II clinical trial

(NCT01585987), ipilimumab failed to demonstrate any significant

benefits in patients with advanced GC after first-line chemotherapy.

Specifically, patients did not experience any survival benefits with

this monotherapy as maintenance therapy (91).
3.3 LAG-3 inhibitors

Besides PD-1 and CTLA4, various other novel immune

checkpoints have been utilized in patients with GC with

brain metastases.

In 2022, the FDA approved relatlimab as the third immune

checkpoint inhibitor, following PD-1 and CTLA4, for treating

melanoma with other metastases (92). Trials NCT03610711,

NCT03704077 and NCT03662659 have been conducted to

evaluate the efficacy of relatlimab combined with nivolumab

for treating GC, with relevant results still pending (93, 94).

Researchers have also conducted the SGNTGT-001 study

(NCTO4254107) and the HLX301 study (NCT05102214), both

targeting TIGIT and PD-L1, to treat patients with advanced GC,

including those with brain metastases. These clinical trials are

currently awaiting results (95). Additionally, advanced GC patients
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are expected to benefit from targeting T cell immunoglobulin and

mucin-domain containing-3 (TIM-3) and T cell immunoglobulin

and ITIM domain (TIGIT) (83).
4 Treatment of GC brain metastasis

4.1 Surgery

Since 1990, surgical treatment has been recognized as a means

to achieve local control of brain tumors and extend survival. Today,

surgical treatment remains a critical option for patients with limited

brain metastasis.

Operable brain tumors are characterized by the following:

gastric cancer patients with brain metastases must have a physical

condition that can tolerate surgery; isolated tumors larger than 3cm

or tumors requiring pathological diagnosis; tumors with cystic or

necrotic edema; and metastatic sites that are easy to remove (96, 97).

Surgical resection of brain metastases can significantly reduce the

incidence of cancer spread and prolong survival. It is recommended

to combine surgery and radiotherapy or chemotherapy for tumor

types that are sensitive to these treatments, even in cases where the

patient has a single metastatic tumor in the brain (97). Surgery is

only recommended for patients with multiple brain metastases if it

is necessary to relieve life-threatening compression symptoms.
4.2 Whole brain radiotherapy

When patients have severe symptoms such as increased

intracranial pressure, meningeal irritation, poor physical activity,

and epilepsy and the location of brain metastasis is difficult to

determine, WBRT is often the first treatment option for gastric

cancer with brain metastasis (98).

In 2020, the National Comprehensive Cancer Network (NCCN)

guidelines recommend WBRT after initial chemotherapy for

patients with brain metastases without brain symptoms (99). The

classic approach to WBRT is to irradiate the whole brain at both

field levels in pairs, with radiotherapy doses ranging from 20-40Gy

in 5-20 fractions. The standard radiotherapy regimen consists of

30Gy/10 fractions. A higher biological dose of WBRT is 37.5Gy/15

fractions, is available, but this dose can lead to serious complications

such as radiation-induced brain damage (100). For patients with a

good prognosis for brain metastases (evaluated using the graded

prognostic assessment (GPA) index) and for whom stereotactic

radiosurgery is not recommended, WBRT is recommended as the

primary treatment option, with a total of 30 Gy delivered in 10

fractions. For patients with a poor prognosis for brain metastases,

reasonable options include palliative or hospice care, and short-

term WBRT (e.g. 20 Gy/5 fractions) for patients with symptomatic

brain metastases (100). In contrast to the treatment regimen

described above, patients with a single brain metastasis may

undergo re-localized field reduction with the additions of 15-20

Gy delivered over 1.5-2 weeks (99).

WBRT has been shown to benefit patients with brain metastases

but can also cause complications, with neurocognitive dysfunction
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being the most common impairment. In a large phase III trial,

Brown et al. (101) reported that hippocampal avoidance-WBRT

(HA-WBRT) can better protect cognitive function than traditional

WBRT. Similarly, avoiding the hippocampus during WBRT has

been shown to be closely related to improved neurocognitive

function, avoidance of personality changes, and improved quality

of life, as mentioned by V. Pareek (102). In addition, the results of

phase III trial (NCT02360215) showed that the combined use of

memantine after HA-WBRT resulted in a 23.3% deterioration of

executive function after 4 months, with declines of 11.5% and 16.4%

in learning and memory after 6 months (103). Patients treated with

WBRT combined with memantine decreased by 40.4%, 24.7% and

33.3%, respectively. Unfortunately, the RTOG trial showed no

significant benefit in terms of mOS and intracranial mPFS from

increasing the dose of radiotherapy or changing the segmentation

method for patients with brain metastases (104). In addition,

researchers have not reached a clinical consensus on WBRT

combined with local push radiotherapy, and further clinical

exploration is needed.
4.3 Stereotactic radiosurgery

The primary treatment of brain metastases was mainly WBRT.

However, with the widespread use of CT, SRS has become

increasingly popular as it can deliver high-dose radiation to the

lesion while sparing the surrounding normal brain tissue. SRS has

been shown to have a good therapeutic effect on larger tumors while

minimizing radiation complications (105, 106). In recent years, SRS

has gradually become the mainstream treatment for metastases due

to its advantages over WBRT (107). Researchers have compared the

effects and risks of SRS alone versus SRS combined with WBRT in

the treatment of multiple brain metastases. The experimental results

of NCCTGN0574 indicated that for patients with 2-4 metastatic

lesions, SRS alone was associated with less cognitive impairment

than SRS combined with WBRT, which significantly reduced

immediate recall, delayed recall, and language fluency (108).

While the addition of WBRT resulted in little difference in

survival rates between patients receiving SRS + WBRT and SRS

treatment, it notably improved cognitive function and quality of life

in those who received it. In 2014, Yamamoto et al. (109) conducted

the JLGK0901 experiment on patients with 2-4 and 5-10 brain

metastases, showing no significant difference in adverse reactions

and overall survival time between the two groups. Therefore, SRS

alone can be considered as a treatment option for multiple brain

metastases, regardless of the number of lesions, although its

effectiveness may vary depending on the location, size, and

number of metastases. According to the guidelines by the

American Society for the Treatment of Radiation Oncology

(ASTRO) (100), SRS alone is a better choice for patients with

fewer than 15 brain metastases from gastric cancer. It should be

noted that most studies have been limited to patients with less than

15 brain metastases, and further prospective studies are needed to

determine the efficacy of SRS treatment for patients with a larger

number of brain metastases.
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4.4 Chemotherapy

Chemotherapy is the most common treatment for gastric

cancer, as it can alleviate systemic symptoms and improve the

quality of life. It is a safe and promising treatment for patients with

brain metastasis of gastric cancer (38).

At present, the combination of platinum and fluorouracil is the

first-line treatment, with oxaliplatin favored over cisplatin due to

toxic factors. In a 2022 phase III clinical trials called EXELOX,

researchers compared the dual regimen (XELOX: oxaliplatin plus

capecitabine) and triple regime (EOX: epirubicin, oxaliplatin plus

capecitabine) in treating brain metastasis of gastric cancer. Patients

were randomly assigned to receive either regimen at a 1:1 ratio. The

PFS of the XELOX regimen group and the EOX regimen group were

5.0 months and 5.5 months, respectively. The median OS time was

12.0 months for both groups. The incidence of grade 3-4 adverse

events was 42.2% for XELOX and 72.5% for EOX (110), indicating

that the XELOX regimen is superior in PFS and has lower toxicity.

Therefore, XELOX regimen is expected to improve the quality of life

of patients with brain metastasis of gastric cancer. In addition, the

presence of the blood-brain barrier (BBB) plays a pivotal role in

maintaining suboptimal concentrations of chemotherapeutic agents

within the central nervous system, and more chemotherapeutic

drugs are expected to benefit patients in the future.
4.5 Immunotherapy

Immune checkpoint inhibitors (ICIs) have made a significant

breakthrough in clinical research of advanced gastric cancer and are

now considered an important treatment option for patients with

brain metastasis of gastric cancer. ICIs can be adminstered as a

single drug, or in combination with chemotherapy, radiotherapy, or

multiple immune drugs.

4.5.1 Immunotherapy combined
with radiotherapy

Combining brain radiotherapy with anti-PD-1 therapy presents a

new treatment option for brain metastasis of gastric cancer. In recent

years, several patients with advanced solid tumor brain metastases

have achieved survival benefits from radiotherapy combined with

ICIs (111–113). Compared with radiotherapy alone, patients with

brain metastasis of gastric cancer treated with nivolumab and

radiotherapy showed a more marked tumor response. The tumor

volume of the nivolumab combined with radiotherapy group was

reduced by more than 70% compared to the radiotherapy group

(114). In a phase I trial, 60 patients with advanced GC who presented

with 1-4 brain metastases showed moderate anti-tumor activity after

receiving radiotherapy combined with immunotherapy (115). Thus,

for patients with brain metastases from gastric cancer, ICIs treatment

can increase the tumor sensitivity to radiotherapy (114). However,

some researchers believe that after local radiotherapy combined with

immunotherapy, brain metastases will regress, i.e., the distant effect

(116), which provides great help for subsequent researchers. At

present, for patients with brain metastasis of gastric cancer, the
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optimal timing, treatment sequence and radiotherapy dose of

radiotherapy combined with ICIs for patients with brain metastasis

of gastric cancer need further investigations in the future (117, 118).

4.5.2 ICIs combined with chemotherapy
Chemotherapy drugs can be toxic to metastatic tumor cells, but

their combination with ICIs can have a synergistic effect.

CheckMate-649, and ATTRACTION-4 studies have discussed the

first-line treatment of gastric cancer brain metastasis with ICIs

combined with chemotherapy. These studies have promoted clinical

practice in the treatment of gastric cancer brain metastasis.

In the CheckMate-649 study, patients were randomly assigned

to the combined group, treated with nivolumab combined with

CapeOX, and the control group, treated with FOLFOX

chemotherapy alone. The results showed that nivolumab

combined with chemotherapy significantly improved mOS (14.4

months vs. 11.1 months, HR=0.71, P<0.0001) and mPFS (7.7

months vs. 6.0 months, HR=0.68, P<0.0001) in patients with a

PD-LI combined positive score (CPS)≥5 (62). Another phase III

study, ATTRACTION-4, showed the efficacy and safety of

chemotherapy alone as a first-line treatment for brain metastases

from gastric cancer by comparing the nivolumab combined with

SOX or CapeOX regimen. The mPFS and mOS were 10.45 months

vs. 8.34 months and 17.45 months vs. 17.15 months, respectively

(64). The above two studies have shown that the immune

checkpoint inhibitor nivolumab combined with chemotherapy

may become a new standard in the first-line treatment of HER2-

negative gastric cancer brain metastasis. In the future, the

combination of ICIs and anti-targeted therapy needs to be further

explored in the treatment of HER2-positive gastric cancer

brain metastases.

4.5.3 ICIs combined with targeted therapy
At present, there are numerous drugs for studying gastric

cancer targets. Including Her-2 (also known as ERBB2), vascular

Endothelial Growth Factor Receptor2, Claudin18.2, Mesenchymal-

epithelial transition factor, and so on (119–121). Approximately

20% of patients with brain metastases from gastric cancer develop

amplification or overexpression of the Her-2. Currently, the main

drugs used to treat HER2-positive gastric cancer include

trastuzumab, lapatinib and neratinib (122).

The combination of trastuzumab and chemotherapy is

currently considered standard first-line treatment for patients

with this tumor (123). In 2022, the American Society of Clinical

Oncology Gastrointestinal Cancer Symposium (ASCO GI) reported

the results of the DESTINY-Gastric01 study, which showed that the

T-DXd group improved the ORR of patients (51.3% vs 14.3%) and

prolonged OS (12.5 and 8.9 months) compared to the PC group

(65). With the development of the theory of adding pembrolizumab

to HER2-positive patients, several phase I/II studies have been

conducted. The EPOC1706 study explored the efficacy and safety of

pembrolizumab combined with lenvatinib as first-line or second-

line treatment for brain metastasis of GC. The results showed that

the ORR of all patients was 69%, the ORR of 14 patients with first-

line treatment was 71%, and the median PFS was 7.1 months.
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Moreover, the trial showed no occurence of grade 4-5 irAEs, and the

safety of the scheme is controllable (78). Recent studies have shown

that the ORR of PD-1 monoclonal antibody combined with

standard first-line regimen can reach 56%-91%, the median PFS

is 8.6-13.0 months, and the OS is 19.3-27.2 months (124, 125). The

results of KEYN0TE-811 further confirmed the advantages of the

combined treatment model. The ORR of patients with first-line

pembrol izumab+trastuzumab chemotherapy (cisplat in

+fluorouracil or oxaliplatin+capecitabine) was 74.4%, compared

to 22.5% in the traditional trastuzumab+ chemotherapy group

(P<0.001) (66). Among them, 11.3% of patients in the combined

treatment group achieved complete remission, while only 3.1% in

the control group. The DOR of the two groups was 10.6 months and

9.5 months, respectively. Based on the results of this study, in 2021,

the US Food and Drug Administration (FDA) approved

pembrolizumab for the first-line treatment of patients with HER-

2-positive G/GEJ adenocarcinoma brain metastasis.However, its OS

and PFS results have not been published, and the final survival

benefit remains to be clarified.

4.5.4 Double ICIs combination
Combining anti-CTLA-4 and anti-PD-1/PD-L1 therapies has

also been explored in gastric cancer patients with brain metastasis.

In a multicenter phase I/II clinical trial called CheckMate-032, the

efficacy and safety of nivolumab alone or in combination with

ipilimumab were evaluated in the treatment of advanced gastric

cancer (67). A total of 160 patients were randomly treated with

nivolumab 3mg/kg q2w, nivolumab 1mg/kg combined with

ipilimumab 3mg/kg q21d, or nivolumab 3mg/kg combined with

ipilimumab 1mg/kg q21d. The results showed that the ORR of the

three groups were 12%, 24% and 8%, respectively, as the primary

endpoint, and the 1-year OS rates were 39%, 35% and 24%,

respectively. A phase I study of advanced gastric cancer

(NCT03409848) showed promising efficacy when trastuzumab

was combined with ICIs, leading to improved patient survival

time (68). However, the mPFS of ipilimumab was lower

compared to the FOLFOXZ group (3.3 months vs. 10.7 months),

and the exact efficacy needs further confirmation. In addition,

clinical studies of other dual ICIs such as HERIZON-GEA-01, are

currently ongoing.
5 Tumor vaccine therapy

Tumor vaccines are an emerging direction in immunotherapy,

providing exogenous tumor antigens and activating the body’s

immune response (126). Major types of tumor vaccines include

peptide vaccines, DC vaccines, viral vaccines, and mRNA

vaccines (127).

Several tumor vaccines against gastric cancer have been

developed, including HER-2-targeted peptide vaccine IMU-131

(HER-Vaxx) (NCT02795988), OTSGC-A24 peptide vaccine

(NCT03784040) and MG7-DC vaccine (NCT04567069) (128–

130). While there is currently no FDA-approved tumor vaccine

for brain metastasis of gastric cancer, this field shows a broad
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prospect and is a current research hotspot. Oncolytic virus vaccines

represent a new approach to immunotherapy that has emerged in

recent years. Research has shown that oncolytic viruses can be

engineered to express PD-L1 inhibitors, which can continuously

activate the anti-tumor effect of T cells (131). In addition, mRNA

vaccines are another type of tumor vaccine. In theory, mRNA

vaccines can specifically target brain metastatic tumor cells,

reflecting the concept of precision medicine (132). The efficacy of

a novel mRNA vaccine (NEO-PV-01) has been evaluated in

melanoma and bladder cancer and has shown promising results,

with efficacy comparable to or even exceeding that of existing ICI

monotherapy (NCT02897765) (133). Currently, clinical trials are

investigating the efficacy of mRNA vaccines in treating brain

metastasis of gastric cancer (NCT03468244), and the results are

highly anticipated (134). In summary, cellular immunotherapy and

tumor vaccines are essential strategies for achieving individualized

precision immunotherapy of tumors in addition to ICIs.
6 Immune-related adverse events

Immunotherapy has shown promise in providing long-lasting

remission in certain cancer patients. However, it can also leads to

specific toxicities known as irAEs. These events can occur in any

system and are caused by the upregulation of the inflammatory

response resulting from the release of immune cells by ICIs.

PD-1/PD-L1 inhibitors are associated with common irAEs,

including interstitial pneumonia, hyperthyroidism, hypothyroidism,

hypopituitarism, hepatitis, pancreatitis, myositis, colitis, nephritis,

and severe skin reactions (135, 136). irAEs are also observed in

patients receiving advanced gastric cancer treatment with ICIs, as

seen in other cancers. irAEs were slightly higher when chemotherapy

was combined with ICIs compared to other regimens. For instance,

in the DESTINY-Gastric01 study, 85.6% of patients in the T-DXd

group had grade 3 and above adverse events, while 56.5% of patients

in the PC group had controllable safety (65). In the KEYNOTE-062

study, for example, the incidence of grade 3-5 irAEs was 14% and

35%. In the study, the incidence of irAEs at grade 3 or higher was 6%

in both the combination therapy and pembrolizumab groups, with

24% of patients in the former group and 21% in the latter

experiencing irAEs (83). To mitigate toxicity from irAEs, cytokines

such as IL-6 and GM-CSF have been proposed as potential targets

for decoupling the immune response (137, 138). It is worth noting

that some studies suggest an uncertain correlation between irAEs

and the clinical effectiveness of immunotherapy, which requires

further investigation (139).
7 Conclusion

Brain metastases are a significant cause of mortality and

morbidity in patients with gastric cancer and other malignancies,
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substantially affecting their survival and quality of life. However, the

molecular mechanisms and functions underlying brain metastases

are not well understood. Brain metastases do not arise solely from a

population of cancer cells; rather, they result from a complex

interplay of cellular interactions and molecular signaling

pathways. The underlying processes are multi-faceted and

intricate, and unique features of the brain, including the blood-

brain barrier, the intracerebral microenvironment, and the blood

supply, may respond differently to associated pathways and

neuroendocrine changes. Currently, in vitro cellular assays and

mouse models of brain metastasis provide a theoretical

foundation, but clinical studies in humans are necessary to

further explore these findings. There is ongoing development of

screening tools and techniques that can facilitate the timely and

precise detection of brain metastases. With the emergence of

immune checkpoint inhibitors and other novel therapies, they are

expected to play a crucial role in the combined treatment of brain

metastases, enhancing quality of life and prolonging survival for

high-risk patients.
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