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Machine learning model based
on enhanced CT radiomics for
the preoperative prediction of
lymphovascular invasion in
esophageal squamous
cell carcinoma
Yating Wang, Genji Bai, Min Huang and Wei Chen*

Department of Radiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University,
Huaian, Jiangsu, China
Objective: To evaluate the value of a machine learning model using enhanced

CT radiomics features in the prediction of lymphovascular invasion (LVI) of

esophageal squamous cell carcinoma (ESCC) before treatment.

Methods: We reviewed and analyzed the enhanced CT images of 258 ESCC

patients from June 2017 to December 2019. We randomly assigned the patients

in a ratio of 7:3 to a training set (182 cases) and a validation (76 cases) set. Clinical

risk factors and CT image characteristics were recorded, and multifactor logistic

regression was used to screen independent risk factors of LVI of ESCC patients.

We extracted the CT radiomics features using the FAE software and screened

radiomics features using maximum relevance andminimum redundancy (MRMR)

and least absolute shrinkage and selection operator (LASSO) algorithms, and

finally, the radiomics labels of each patient were established. Five machine

learning algorithms, namely, support vector machine (SVM), K-nearest

neighbor (KNN), logistic regression (LR), Gauss naive Bayes (GNB), and

multilayer perceptron (MLP), were used to construct the model of radiomics

labels, and its clinical features were screened. The predictive efficacy of the

machine learning model for LVI of ESCC was evaluated using the receiver

operating characteristic (ROC) curve.

Results: Tumor thickness [OR = 1.189, 95% confidence interval (CI) 1.060–1.351,

P = 0.005], tumor-to-normal wall enhancement ratio (TNR) (OR = 2.966, 95% CI

1.174–7.894, P = 0.024), and clinical N stage (OR = 5.828, 95% CI 1.752–20.811,

P = 0.005) were determined as independent risk factors of LVI. We extracted

1,316 features from preoperative enhanced CT images and selected 14 radiomics

features using MRMR and LASSO to construct the radiomics labels. In the test set,

SVM, KNN, LR, and GNB showed high predictive performance, while the MLP

model had poor performance. In the training set, the area under the curve (AUC)

values were 0.945 and 0.905 in the KNN and SVMmodels, but these decreased to

0.866 and 0.867 in the validation set, indicating significant overfitting. The GNB

and LR models had AUC values of 0.905 and 0.911 in the training set and 0.900

and 0.893 in the validation set, with stable performance and good fitting and

predictive ability. The MLP model had AUC values of 0.658 and 0.674 in the
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training and validation sets, indicating poor performance. A multiscale combined

model constructed using multivariate logistic regression has an AUC of 0.911

(0.870–0.951) and 0.893 (0.840–0.962), accuracy of 84.4% and 79.7%, sensitivity

of 90.8% and 87.1%, and specificity of 80.5% and 79.0% in the training and

validation sets, respectively.

Conclusion: Machine learning models can preoperatively predict the condition

of LVI effectively in patients with ESCC based on enhanced CT radiomics

features. The GNB and LR models exhibit good stability and may bring a new

way for the non-invasive prediction of LVI condition in ESCC patients

before treatment.
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1 Introduction

Esophageal cancer, a prevalent tumor of the digestive tract,

exhibits significant variation in incidence and mortality rates across

different countries (1). Esophageal adenocarcinoma (EA) has a high

incidence in Western countries, while esophageal squamous cell

carcinoma (ESCC) is more common in China (2). Radical

esophagectomy is the main method for the treatment of esophageal

cancer (3). However, the incidence of local recurrence or distant

metastasis is more than 50% in patients who underwent radical

esophagectomy within 3 years (4). The main routes of recurrence and

metastasis of esophageal cancer are through blood vessels and

lymphatic vessels. Lymphovascular invasion (LVI) performs a vital

role in tumor cell dissemination and lymphatic metastasis and is

associated with an increased risk of micrometastasis (5, 6). LVI is an

important risk factor for poor prognosis of esophageal cancer

patients, with poor overall survival and progression-free survival (7,

8). Since LVI-positive patients have a higher recurrence rate, LVI-

positive patients need adjuvant therapy and close monitoring before

operation. Early recognition of high-risk recurrence patients is

essential for the development of personalized ESCC treatment.

Some studies (9, 10) have used the image features of CT to predict
ophageal squamous cell
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the condition of LVI of esophageal cancer before surgery, but the

accuracy of these morphological characteristics in predicting LVI is

still not ideal, and it is hard to accurately reveal the tumor structural

heterogeneity. Recently, radiomics and machine learning algorithms

have been rapidly developed and widely used, which is an important

development direction of tumor translational medicine in the future.

Previous studies have shown that radiomics features in

predicting the condition of LVI in many solid tumors (11–13)

have potential clinical value. At present, there are few studies on

whether we can use radiomics features to predict the condition and

prognosis of LVI in esophageal cancer patients, which is of vital

importance for clinical medicine strategy making. Therefore, this

study aims to explore the value of a machine learning model based

on enhanced CT radiomics features in the prediction of LVI

condition in ESCC patients preoperatively, so as to guide the

development of clinical personalized treatment strategy and

improve patient prognosis.
2 Materials and methods

2.1 Data acquisition

Data from 258 ESCC patients who were confirmed by pathology

with radical esophagectomy from June 2017 to December 2019 were

retrospectively collected. The selection criteria included the

following: a) tumor was resected with radical resection and

postoperative pathology confirmed it to be ESCC, b) clinical and

imaging data were complete, and c) immunohistochemistry (IHC)

and staining with hematoxylin–eosin (HE) were performed with

complete pathological results. The exclusion criteria included the

following: a) no basic clinical data or CT-enhanced images before

surgery, b) other pathological subtypes of esophageal cancer, c)

esophageal lesions were small and could not accurately delineate the

area of interest, and d) any other treatment was performed before
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surgery. Finally, 258 patients were enrolled in this study, consisting

of 161 men and 97 women ages 47 to 81 with a median age of 64.5

years, and 146 were LVI-positive and 112 were LVI-negative. All

patients were divided into a training set (182 cases) and a validation

(76 cases) set at a ratio of 7:3 ratio. Clinical baseline data were

collected, including gender, age, and smoking and drinking history.
2.2 CT image acquisition and analysis

All 258 patients were scanned using the Siemens Somatom

Definition CT scanner (Munich, Germany). The scanned area covers

the entire esophagus from the thoracic entrance to the floor of the

diaphragm, and the patient lies on his back and holds his breath once to

complete the scan. The scanning parameters were as follows: slice

thickness, 5 mm; slice spacing, 5 mm; pitch, 1.5:1; rotation time, 0.5 s;

scanning field, 350 × 350mm;matrix, 512 × 512; tube voltage, 120 kVp;

and tube current, 130 mAS. A high-pressure syringe was used to inject

1.5 ml/kg of contrast agent, and an enhanced CT scan for 25–30 s

(arterial stage) was carried out after injecting the contrast agent. We

send all images to the picture archiving and communication system

(PACS) workstation. Two radiologists performed image analysis

without knowing clinical data, pathology, or LVI status. Normal

dilated esophageal walls are approximately 3 mm thick, whereas in

esophageal cancer, the wall is significantly thickened or mass-like, and a

thickened wall of more than 5 mm is considered abnormal (14). The

following CT features were then observed and recorded: a) tumor

location: the tumor location is defined by the location of the tumor

center in the esophagus; b) tumor size: the tumor thickness is measured

based on enhanced CT (if the lumen is completely occluded,

measurement of the tumor’s maximum diameter is done at one-half

of its maximum transverse section; when there is a gap between the

tumor and esophageal cavity, the tumor’s maximum diameter is

measured by the margin of the thickened wall to its cavity at the

maximum transverse section); c) the enhancement ratio of tumors to

normal walls (TNR): TNR is figured out through dividing the average

tumor CT value by the average CT value of a normal esophageal wall to

measure the contrast enhancement difference between the tumor and

the normal esophageal wall. We placed the region of interest (ROI) in

an area with the greatest cross-section of arterial phase enhancement,

avoiding vascular structure, ulceration, and necrosis; d) clinical T

staging refers to the clinical T staging standard put forward by Griffin

et al. (15). Clinical N staging was determined according to different

regions’ metastatic lymph node counts, and metastatic lymph nodes

were determined according to the ratio between the shortest diameter

and the axis of enlarged lymph nodes (16, 17). Clinical AJCC staging

refers to the AJCC/UICC 8th edition cancer staging criteria (14).
2.3 ROI delineation and radiomics
features extraction

We uploaded all CT images to the open-source software ITK-

SNAP (www.itksnap.org). Two experienced radiologists manually
Frontiers in Oncology 03
delineate the ROI along the margin of the tumor layer by layer for

tumor segmentation. All lesion areas should be included in the

three-dimensional ROI but should avoid fatty tissue, lymph nodes,

blood vessels, luminal gas, and fluid around the lesion. Image

preprocessing and radiomics feature extraction use the open-

source software FAE based on PyRadiomics (version 0.5.2; https//

github.com/salan668/FAE) (18). Esophageal peristalsis and large

vessel pulsation are two interference factors that may be

encountered in the process of radiomics feature extraction of

esophageal cancer, which may have an impact on the stability of

feature extraction. Esophageal peristalsis may cause motion blur

and deformation of the images, which may interfere with the

extracted radiomics features. Therefore, it may be necessary to

adopt appropriate motion correction algorithms or image

reconstruction techniques when extracting features in order to

reduce the influence of esophageal peristalsis. Large vessel

pulsations often cause vibration or pulsation artifacts of the

images, which may interfere with feature extraction. This problem

can be addressed by using filtering algorithms or motion correction

techniques to reduce or eliminate interference from large vessel

pulsations. Two hundred sixteen first-order features, 1,086 texture

features, and 14 shape features were extracted. Texture features

include the gray-level dependence matrix (GLDM), gray-level co-

occurrence matrix (GLCM), gray-level run length matrix (GLRLM),

gray-level size zone matrix (GLSZM), and neighboring gray tone

difference matrix (NGTDM). Based on the training set data, all

feature parameters were normalized with Z-score. To ensure

intraobserver stability of radiomics features, radiologist 1

randomly selected 30 patients with CT images for segmenting

ROI independently and extracting features in 1 week. In order to

ensure the interobserver stability of the radiomics feature,

radiologist 2 segmented ROI independently and extracted features

on CT images of 30 randomly selected patients. The repeatability of

feature extraction was assessed by intraobserver and interobserver

correlation coefficients (ICCs).
2.4 Radiomics features selection and
model construction

A variety of algorithms were used to reduce the dimensionality

of high-dimensional data: 1) selected features were those with high

stability in both intraobserver and interobserver consistency tests

for analysis (ICCs > 0.90); 2) in the combination of MRMR, the first

20 image omics feature parameters with feature score or importance

ranking were selected; and 3) the label of the dataset was

constructed by the LASSO regression model, and finally, the

radiomics score of each case was obtained.

In machine learning model construction, five machine learning

algorithms—1) SVM, 2) KNN, 3) LR, 4) GNB, and 5)MLP—were used

to model the optimal feature subset and statistically significant clinical

features. We used ROC curves to evaluate the predictive power of the

machine learning model for ESCC with LVI, and the AUC, accuracy,

sensitivity, specificity, F1 score, and Kappa value were calculated.
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2.5 Statistical analysis

SPSS 22.0 and R statistical software version 3.6.3 were used for

all statistical analysis. Quantitative data consistent with normal

distribution were represented by x ± s. Qualitative data were

represented by frequency. In the clinical data analysis, the

independent sample t-test was used for quantitative data with

normal distribution, non-conforming quantitative data were

analyzed by the Mann–Whitney U test, and categorical variables

were analyzed by the c2 test. Radiomics features were screened by

LASSO regression 10-fold cross-validation in the “glmnet” package

of R software. The software packages (including “class,” “kernlab,”

“e1071,” “stats,” and “nnet”) were used to implement machine

learning algorithms such as KNN, SVM, GNB, LR, and MLP. The

ROC curves of all machine learning models were analyzed, and

AUC, accuracy, sensitivity, specificity, and F1 scores were

calculated. We drew calibration curves for different combination

models based on their goodness of fit. Calibration curve reliability

was assessed by Hosmer–Lemeshow. The clinical effectiveness of

the three models was quantified using decision curve analysis

(DCA) under different threshold probabilities. The statistical

significance levels were all bilateral, and statistical significance was

indicated by P <0.05.
3 Results

3.1 Clinical data

Statistically significant differences were found in tumor

thickness, TNR, and clinical N stage among 258 ESCC patients

(P < 0.05), but there were no significant differences in age, gender,

smoking history, drinking history, tumor location, clinical T stage,

and clinical AJCC stage (P > 0.05). Multivariate logistic regression

analysis revealed that tumor thickness (OR = 1.189, 95% CI 1.060–

1.351, P = 0.005), TNR (OR = 2.966, 95% CI 1.174–7.894,

P = 0.024), and clinical N stage (OR =5.828, 95%CI 1.752-20.811,

P = 0.005) were the independent predictors of the occurrence of

LVI (Table 1).
3.2 Radiomics feature selection and
signature construction

We extracted 1,316 features from the preoperative enhanced CT

images of 258 ESCC patients. First, we selected the features with

high stability in both intraobserver and interobserver consistency

tests for analysis (ICCs >0.90). Then, by integrating the radiomics

features of the top 20 MRMR scores, LASSO was used for further

dimensionality reduction. A feature subset with the greatest

predictive ability was selected, and the associated coefficients were

calculated. Finally, 14 important radiomics features were selected,

and in order to calculate the Rad-score, the weighted coefficients of

the selected features were summed. In both training and validation

sets, the Rad-score of the LVI-positive group was significantly

greater than that of the LVI-negative group, with a statistical
Frontiers in Oncology 04
difference (P < 0.05). The diagnostic efficacy of the Rad-score for

predicting LVI condition was 0.858 (95% CI 0.798–0.905) in the

training set and 0.876 (95% CI 0.780–0.940) in the validation set.
3.3 Diagnostic efficacy of different machine
learning models for predicting the LVI
condition of ESCC

A machine learning model was constructed by the combination

of radiomics label constructed from the 14 best radiomics features

based on enhanced CT images and 3 independent risk factors for

LVI in ESCC patients of clinical characteristics. The diagnostic

efficiency and the ROC curves of five machine learning models in

the prediction of LVI condition of ESCC are shown in Table 2;

Figure 1. Among all the models, SVM, KNN, LR, and GNB have

better AUC values with high sensitivity, specificity, and accuracy in

the test set, showing that these four machine learning models have

higher prediction efficiency, while the MLP model has poor

performance. The AUC values of the KNN and SVM models

were 0.945 and 0.905 in the training set but decreased to 0.866

and 0.867 in the validation set, which showed an obvious overfitting

phenomenon. In the training and test sets, the AUC values of the

GNB and LR models were 0.905, 0.900, 0.911, and 0.893,

respectively. The model performance was relatively stable, and

there was no overfitting, but with good fitting and prediction

ability (Figure 2). Based on the above machine learning model

results, a multiscale combination model (nomogram) was

constructed by multivariate logistic regression, including

tumor thickness, TNR, clinical N stage, and radiomics score

(Figure 3). As the actual curve approaches the reference line,

there was a good agreement between the model predictions and

the pathological findings.

In the training and validation sets, the nomogram model

predicted that the AUC of LVI was 0.911 (0.870–0.951) and 0.893

(0.840–0.962), the accuracy was 84.4% and 79.7%, the sensitivity

was 90.8% and 87.1%, and the specificity was 80.5% and 79.0%,

respectively. Decision curve analysis showed that in the training set

and validation set, the nomogram model integrating clinical factors,

CT image features, and radiomics features had the greatest benefit

and had a higher overall benefit than the single clinical model and

radiomics model. The use of the nomogram model to predict LVI

would be more beneficial than the “treatment-all” or “treatment-

none” scheme (Figure 4).
4 Discussion

LVI is an independent prognostic factor for patients with ESCC

(6, 19). Currently, although LVI was not included in the AJCC/

UICC guidelines of the TNM staging system, as a prognostic

indicator for esophageal carcinoma, the prediction of LVI

condition preoperatively is of vital importance for implementing

an aggressive treatment program in ESCC patients. Clinically, for

esophageal cancer patients with suspected LVI-positive, more active

therapy is needed, including a broader scope of surgery or adjuvant
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TABLE 2 Diagnostic efficacy of different machine learning models to predict the ESCC with LVI.

Model Training set Validation set

AUC
(95% CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(95% CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

SVM 0.905
(0.862–0.94)

81.7 86.7 78.6 0.867
(0.788–0.945)

75.1 88.8 72.2

KNN 0.945
(0.916–0.97)

84.4 89.1 85.1 0.866
(0.786–0.947)

83.5 80.5 83.0

MLP 0.658
(0.583–0.73)

65.7 75.0 59.6 0.674
(0.558–0.791)

61.8 59.3 75.2

GNB 0.905
(0.863–0.94)

83.1 87.7 80.5 0.900
(0.832–0.967)

81.8 91.6 78.8

LR 0.911
(0.870–0.95)

84.4 90.8 80.5 0.893
(0.824–0.962)

79.7 87.1 79.0
F
rontiers in O
ncology 05
AUC, area under the curve; CI, confidence interval; SVM, support vector machine; KNN, k-nearest neighbor; MLP, multilayer perceptron; GNB, Gauss naive Bayes; LR, logistic regression.
TABLE 1 Analysis of clinical features based on univariate and multivariate logistic regression.

Univariate analysis Multivariate analysis

OR value (95% CI) P-value OR value (95% CI) P-value

Age 1.007 (0.968, 1.049) 0.718 – –

Gender 0.745 – –

Female Ref – –

Male 1.099 (0.584, 2.091) 0.771

Smoking history 0.874

No Ref – –

Yes 1.125 (0.609, 2.096) 0.708 – –

Drinking history 0.984

No Ref – –

Yes 1.066 (0.583, 1.959) 0.836 – –

Tumor location 0.088

Upper Ref – –

Middle 0.520 (0.217, 1.224) 0.136 – –

Lower 0.123 – –

Tumor thickness 1.276 (1.170, 1.406) <0.001* 1.189 (1.060, 1.351) 0.005

TNR 6.622 (2.929, 16.139) <0.001* 2.966 (1.174, 7.894) 0.024

Clinical T stage NA NA – –

Clinical N stage <0.001*

N0 Ref <0.001 Ref <0.001

N1 4.031 (2.044, 8.132) 0.003 5.828 (1.752, 20.811) 0.005

N2 6.613 (2.050, 25.559) 0.987 7.832 (1.202, 61.733) 0.039

N3 NA 1.536 (0, NA) 1

Clinical AJCC stage NA NA – –
TNR, tumor-to-normal wall enhancement ratio; AJCC, American Joint Committee on Cancer; OR, odd ratio; CI, confidence interval; Ref, reference; NA, not available.
*P-value <0.05.
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therapy before surgery. At present, how to predict the occurrence of

LVI non-invasively and accurately before surgery is still quite

difficult. Enhanced CT is a routine examination for esophageal

cancer patients, which has important value in differential

diagnosis, preoperative evaluation, efficacy evaluation, and

prognosis prediction.

In this study, in order to construct a radiomics label, we used

LASSO to reduce the regression coefficient and then checked the

correlation between predictive factors and results. This method is
Frontiers in Oncology 06
superior to the method of selecting predictors based on the strength

of the univariate association between the predictors and the results,

and it can also combine the selected features into the radiomics label

(20). In our study, we screened out crucial radiomics features from

1,316 candidate features and finally selected 14 radiomics features

that can predict the condition of LVI, in which the wavelet filter

provides more information (n = 7). These results indicate that the

wavelet filter provides the best radiomics information on tumor

heterogeneity and is the best available option, in accordance with
B

A

FIGURE 1

ROC curves of different machine learning models of the training set (A) and validation set (B).
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the results of other radiomics studies (21). Among the selected

radiomics features in this study, GLSZM (n = 7), NGTDM (n = 1),

GLRLM (n = 3), and GLCM (n = 1) are high-order texture features,

which can accurately reflect tumor heterogeneity. Based on the final

selected radiomics features, we construct the radiomics label, which

has a high degree of stability and low level of redundancy and

maintains a stable correlation with LVI. On the basis of the

radiomics label, we construct this radiomics prediction model.

The results revealed that this radiomics model showed good

predictive performance in both training and validation sets, with

AUC values of 0.858 (95% CI 0.798–0.905) and 0.876 (95% CI

0.780–0.940), indicating that the prediction accuracy and stability of
Frontiers in Oncology 07
this model are relatively high, which is superior to the above clinical

model based on clinical factors and semantic features of CT images

and consistent with the research results of Li et al. (22).

Machine learning is a field of artificial intelligence, which can be

seen as an automated pattern recognition and prediction

technology; through the learning of data, machine learning

algorithms are able to analyze the rules of the data and make

reasoning, decisions, or predictions based on it. At present, there

have been some research studies on the use of the machine learning

algorithm to predict the condition of LVI (23–26). Liu et al. (27)

used arterial phase CT image features and clinical factors to build a

deep learning and SVM model to predict the presence of the

invasion by microvascular tissue of hepatocellular carcinoma

(HCC). The results show that the deep learning model has the

best effect, and its AUC value is 0.845. However, the deep learning

model needs plenty of sample data to exert its prediction ability, and

overfitting is easy to occur under small sample data, so it is difficult

to obtain the optimal parameter values. Therefore, it is necessary to

consider the limit of the sample size in practical applications. In

view of insufficient data, we can improve the prediction

performance of the model by the method of data enhancement

and transfer learning. In our study, 14 radiomics features were

screened out to construct radiomic labels using enhanced CT

images of the arterial stage of esophageal cancer, and 3 clinical

factors and CT image features screened out through multifactor

logistic regression were combined into this model for training and

validation, demonstrating the rationality of the optimal feature

subset selection in this study. Furthermore, five machine learning

models (i.e., SVM, KNN, LR, GNB, and MLP) were constructed.

Among them, SVM, KNN, LR, and GNB had better AUC values

and high sensitivity, specificity, and accuracy in the test set, showing

that these four machine learning models all have higher prediction

power, while the MLP model had poor performance. The feasibility

of using machine learning model training in the study is suggested,

which can provide a reference for the prediction of the LVI

condition of ESCC before operation. In the validation set, from

the perspective of model differentiation index and AUC value, the

GNB model has the best effect and high accuracy, followed by the

LR model, the SVMmodel, and the KNNmodel. In the training set,

the AUC values of the KNN and SVMmodels were 0.945 and 0.905

but decreased to 0.866 and 0.867 in the validation set, which

indicated an obvious overfitting phenomenon. The AUC values of

the GNB and LR models in the training and test groups were 0.905,

0.900, 0.911, and 0.893, respectively. The model performance was

relatively stable and had good fitting and prediction ability.

Therefore, we concluded that the GNB and LR models could be

used as good machine learning prediction models to predict the

condition of LVI in ESCC before surgery. To further improve its

predictive ability, we constructed and validated a multiscale

combination model on the basis of enhanced CT radiomics

features and CT image semantic features to predict LVI condition

in ESCC. The results showed that the AUC of the training set was

0.911, with 90.8% sensitivity, 80.5% specificity, and 84.4% accuracy.

The AUC of the validation set was 0.893, with 87.1% sensitivity,

79.0% specificity, and 79.7% accuracy. The results showed that the

model predicted the results properly, and the predictive value was
FIGURE 3

Nomogram of the multiscale combination model to predict ESCC
with LVI.
FIGURE 2

Calibration curves of the five machine learning models in the
test set.
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verified by the calibration curve, which is consistent with the

pathological findings. Chen et al. (12) used arteriovenous phase

contrast-enhanced CT images to build a radiomics model for

predicting LVI condition in gastric cancer. Compared with our

study, this model performed similarly, but our radiomics model

used enhanced CT images of the single-artery phase. For esophageal

cancer, venous phase contrast-enhanced CT scanning is not a

routine sequence, and the single-artery phase is used more

commonly in clinical practice. Our multiscale combination model

can generate an individual probability for the prediction of LVI
Frontiers in Oncology 08
condition by integrating preoperative radiomics features, clinical

risk factors, and semantic features of CT images, which can provide

physicians and patients with a user-friendly scoring system for the

personalized prediction of LVI risk before operation, which aligns

with the present pattern of individualized healthcare.

A few limitations are present in the study. Firstly, it is a

retrospective study, including only surgical patients, and there may

be a certain degree of selection bias. Secondly, it is a single-center study,

which means that the patient population only includes cases from one

research center, with insufficient sample size and lack of external
B

A

FIGURE 4

Decision curve analysis (DCA) of the training set (A) and validation set (B). In DCA, the abscissa represents the range of risks that may be predicted,
and the ordinate represents the net benefits.
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validation, so further research involving multicenter validation and a

larger sample size is needed. Thirdly, only radiomics features were

analyzed, and there was no integration of multiple omics such as

genomics or proteomics in this study. The combined study of multiple

omics can further improve the accuracy of LVI prediction of ESCC.

Finally, the biological interpretability of imaging features is insufficient.

How to correlate imaging features with biological characteristics and

establish reliable imaging biomarkers are the next research directions.
5 Conclusion

LVI can better guide preoperative treatment strategies when

predicted before treatment. The machine learning model on the

basis of enhanced CT radiomics features can effectively predict the

LVI condition of ESCC, among which the GNB and LRmodels have

good stability, which is expected to provide a new way for non-

invasive prediction of the LVI condition of ESCC before treatment.

The multiscale combined model constructed by combining clinical

risk factors, semantic features of CT images, and radiomics features

has good predictive accuracy for the prediction of the LVI condition

of ESCC before treatment. The new method will support clinical

decision-making for patients with ESCC by stratifying their

risk levels.
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