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Objective: To assess the effectiveness and clinical value of case–cohort design

and determine prognostic factors of breast cancer patients in Xinjiang on the

basis of case–cohort design.

Methods: The survival data with different sample characteristics were simulated

by using Cox proportional risk models. To evaluate the effectiveness for the

case–cohort, entire cohort, and simple random sampling design by comparing

the mean, coefficient of variation, etc., of covariate parameters. Furthermore, the

prognostic factors of breast cancer patients in Xinjiang were determined based

on case–cohort sampling designs. The models were comprehensively evaluated

by likelihood ratio test, the area under the receiver operating characteristic curve

(AUC), and Akaike Information Criterion (AIC).

Results: In a simulations study, the case–cohort design shows better stability and

improves the estimation efficiency when the censored rate is high. In the breast

cancer data, molecular subtypes, T-stage, N-stage, M-stage, types of surgery,

and postoperative chemotherapy were identified as the prognostic factors of

patients in Xinjiang. These models based on the different sampling designs both

passed the likelihood ratio test (p<0.05). Moreover, the model constructed under

the case–cohort design had better fitting effect (AIC=3,999.96) and better

discrimination (AUC=0.807).

Conclusion: Simulations study confirmed the effectiveness of case–cohort

design and further determined the prognostic factors of breast cancer patients

in Xinjiang based on this design, which presented the practicality of case–cohort

design in actual data.
KEYWORDS

case-cohort design, breast cancer, survival prognosis, Cox proportional hazards model,
simulations study
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1306255&domain=pdf&date_stamp=2024-03-20
mailto:wlei81@126.com
mailto:sung853219@126.com
https://doi.org/10.3389/fonc.2024.1306255
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1306255
https://www.frontiersin.org/journals/oncology


Wu et al. 10.3389/fonc.2024.1306255
1 Introduction

Breast cancer with a high mortality rate is one of the most

widespread malignant tumors, which seriously threatens women’s

health and safety. Global Cancer Statistics 2020 pointed out that

there were 2.27 million new cases of breast cancer worldwide, and

approximately one in eight patients died of breast cancer in 2020

(1). Since the twenty-first century, the morbidity and mortality of

female breast cancer in China have been continuously increasing

(2), which would cause tremendous burden of breast cancer.

Furthermore, breast cancer is highly heterogeneous, with the

variety in molecular subtype, clinical stage, and other pathological

features (3). The differences in tumor cell growth rate, invasion

ability, and potential metastasis are strongly correlated with

patients’ survival prognosis (4). Survival analysis is widely applied

to investigate the relationship among survival time, survival state,

and important influencing factors of breast cancer patients. For

instance, Ma et al. (5) studied the serum lipid changes in breast

cancer patients during neoadjuvant chemotherapy and the impact

of dyslipidemia on their prognosis. Zhou et al. (6) identified the

potential prognostic factors of patients with triple-negative breast

cancer and built the corresponding prediction model.

In China, there are endemical variety in the morbidity and

mortality of breast cancer (7). Relevant studies (8–10) showed that

the current situation of breast cancer in Xinjiang is different from

that in other regions, with such features as lower incidence rate,

luminal breast cancer appearing more frequently, and women aged

45–55 having a higher risk of developing this disease. At present,

there have been many studies evaluating the prognostic risk factors

of patients with breast cancer in Xinjiang (11–14); for instance,

Shan et al. (11) investigated the clinicopathological features and

prognostic characteristics of patients with triple-negative breast

cancer in Xinjiang, based on clinical information for 319 patients.

Fu et al. (13) focused on the difference in survival and prognosis of

breast cancer patients with different molecular subtypes in Xinjiang.

Cao et al. (14) evaluated the association of hypoxia-inducible factor-

1a and survivin with breast cancer prognosis in breast cancer

patients. However, the sample size of some studies was relatively

small (11, 12), and those studies were mainly focus on exploring the

impact of molecular subtypes or gene expression on the prognosis

of breast cancer patients (11, 13, 14). On the other hand, it is

necessary to follow up a large number of research subjects over the

long-term in survival analysis, which may inevitably cause certain

omissions in the process of data collection. Realistically, the breast

cancer patients followed up by the hospitals or cancer centers are

equivalent to random sample from the overall population.

Therefore, it could not totally represent the basic characteristics

of the overall population to a certain extent. In particular, a previous

study showed that the mortality rate of breast cancer in Xinjiang

Cancer Registration Area was only approximately 8.72% (15).

When the incidence of interested event in the follow-up subjects

is lower, directly using the data of random samples would cause the

insufficient power of statistical analysis (16). To decrease the

sampling error produced by simple random sampling, Prentice

(17) proposed the case–cohort design in 1986. On the basis of

simple random sampling, the case–cohort design analyzes those
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patients who have experienced outcome events in the full cohort,

which is suitable for these studies with lower incidence of disease

outcomes or higher costs of covariate collections (18–20), and

compared with the simple random sampling, the case–cohort

design may decrease the sample error (21, 22). Yu et al. (18)

separately investigated the relationship between demographic

characteristics, tumor histology, and time of onset and recurrence

of nephroblastoma patients, under a case–cohort design. Cai et al.

(19) employed a case–cohort design to identify the influencing

factors of fungal infection in patients with hematopoietic cell

transplant. Particularly, the case–cohort design is widely used to

analyze the factors influencing morbidity or mortality of breast

cancer (20–22). For example, based on the case–cohort design,

Yang et al. (20) used additive risk model to explore the major

prognostic factors of patients with breast cancer. The case–cohort

design was employed to evaluate the prospective associations

between perfluoroalkyl substances and breast cancer risk in (21).

Yao et al. (22) used case–cohort design to investigate the association

of serum biomarker of vitamin D status, 25-hydroxyvitamin D

values with breast cancer recurrence, and survival prognosis. It was

indicated that the results based on the case–cohort design with

fewer samples were similar to those based on the full cohort. The

case–cohort design could be not only suitable for large cohort

studies with low incidence but also availably reduce the cost and

improve the efficiency. Furthermore, there may be a lack of

repeatability in the analysis of actual clinical data; thus, using a

case–cohort design could partly decrease the bias generated by

random sampling. Therefore, it is significant to further determine

the prognostic factors of breast cancer patients in Xinjiang by using

a case–cohort design, which could contribute to explore patients’

clinical treatments and improve their survival probability.

Inspired by the aforementioned discussion, in this paper, we

first explored the effectiveness of the case–cohort sampling design

by using simulated data. To do this, we employed the Cox

proportional hazards model to fit the parameters of covariates in

these models under full cohort, case–cohort with different sampling

proportions, and simple random sampling designs, respectively,

and then, we compared these estimated values of parameters for

those models (such as the mean, standard deviation, coefficient of

variation, and bias). Second, due to the fact that the mortality for the

Xinjiang breast cancer patients was relatively lower, we further

discussed the applicability of the case–cohort design in identifying

the prognostic factors of breast cancer patients in Xinjiang, by

comparing the comprehensive performance of these models

established under the case–cohort and full cohort sampling

designs. These results could offer scientific basis for evaluating the

prognosis of breast cancer patients in Xinjiang.
2 Methods

2.1 Case–cohort design

In the case–cohort design, the random subcohort (denoted as S)

was selected by simple random sampling from the full cohort. We

denoted Si and di as indicator variables, respectively, whether the i
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th patient was included in the random subcohort and whether the i

th patient experienced outcome events. That is, if the i th patient

was included in the random subcohort, then Si = 1, and if the i th

patient experienced the outcome event (i.e., case), then di = 1. The

case–cohort samples included the random subcohort and all cases

outside the random subcohort (20) (see Figure 1). Denote CCi as an

indicator variable, the explicit expression is as follows,

CCi =
1,       di = 1 or Si = 1  ,

0,       di = 0 and     Si = 0   :

(

In this paper, it is assumed that there are N independent

individuals in total. For the survival data with censored, the Cox

proportional hazards model is used for analysis. Let X be the

covariable for the i th individual and b be the partial regression

coefficient, then the basic form of the Cox proportional hazards

model is,

hi(tjX) = h0(t) exp (Xb),  i = 1,…,N ,

where h0(t) denotes the baseline risk function. Since the case–

cohort design is a biased sampling, the cases and non-cases in the

case–cohort design are equally weighted. The pseudolikelihood is

used to infer the partial regression coefficient b , then an estimator

for b may be obtained by maximizing the pseudolikelihood

function

Lp(b) =
YN
i=1

exp XT
i b i

� �
oj∈R(Ti)

exp XT
j b j

n o
24 35di

 ,

where Ti represents the observed true event time for i th patient,

the risk set at time t denoted by R(t) =  j :Tj ≥ t, j ∈ D(t) ∪ S 
� �

,

and D(t) is the collection of cases at time t. Then, the maximum

pseudolikelihood estimator for b be solved as

Up(b) =o
N

i=1
di½X i −

oj∈R(Ti)
exp XT

j b j

n o
Xj

oj∈R(Ti)
exp XT

j b j

n o � = 0:
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2.2 Simulation study

Let T*i and Ci be the time that the interested event occurs or fails

and the time that the i th patient was followed up or censored

(i = 1,…,N), respectively. If T*i ≤ Ci, then the i th patient

experienced the outcome event before the end of the observation

period. Otherwise, if T*i > Ci, then the i th patient is censored. Thus,

the observed true event time is defined as Ti = min (T*i ,Ci).

Whether or not each patient experienced the outcome event is

given by the right censored indicative variable di = I(T*i ≤ Ci),

where I( · ) is an indicator function.

The time that the interested event occurs or fails for an

individual is usually described by using exponential, Weibull,

lognormal, and Gamma distributions, etc. The censored time

usually follows uniform, exponential distribution and so on (23).

In this paper, the survival data were simulated based on the total

number of the full cohort sample N = 5; 000, T*i eWeibull(a ,   l),
and Ci e uniform(0,   q), where the scale parameter l = 4, the shape

parameter a = 2, and q denotes as censored rate. Given that this

paper mainly focuses on categorical variables, Bernoulli

distributions with different probabilities of occurrence were

chosen to fit covariates during the simulation process. Therefore,

assuming that there are three covariates for each individual, namely,

X1, X2, and X3, generated from Bernoulli distributions with success

rates of 0.1, 0.5, and 0.9, respectively, i.e., X1 e B(0:1), X2 e B(0:5),
and X3 e B(0:9) (Table 1). Then, the Cox proportional hazards

model is considered as follows:

hi(t) = h0(t) exp (X1b1 + X2b2 + X3b3) :

The simulated data with six different sample characteristics was

simulated based on different censored rates and regression

coefficients (Table 1).

In the following, we compared the parameter estimations of

these sampling designs:

FC: parameter estimations based on full cohort (b̂ FC).

CCI: parameter estimations based on a case–cohort design with

one-third proportion sample (b̂ CCI).
FIGURE 1

Schematic diagram of the case–cohort design.
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CCII: parameter estimations based on a case–cohort design

with one-sixth proportion sample (b̂ CCII).

RS: parameter estimations based on random subcohort with

one-third proportion sample (b̂ RS).

The simulated data were sampled 1,000 times for parameter

estimations. The mean, standard error of the mean (SE.mean),

standard deviation (SD), coefficient of variation (CV), range, and

bias of these parameters were compared to assess the performance

of different sampling designs.
2.3 Analysis of breast cancer data

The breast cancer patients collected in this paper was sourced

from the Affiliated Cancer Hospital of Xinjiang Medical University.

Based on full cohort and case–cohort sampling designs, the survival

data of these patients were analyzed to identify the independent

prognostic factors of breast cancer patients in Xinjiang, by using

Kaplan–Meier analysis, Cox proportional hazards model, and

stepwise regression. Meanwhile, the parameter estimations of

those models were compared to evaluate the comprehensive

performance of these models based on case–cohort and full

cohort sampling designs and then assess the effectiveness and

clinical value of the case–cohort design.

Potential influencing factors such as survival status (life or

death), survival time, basic demographic, and clinicopathological

of patients were gathered. The patients’ histological grades of

tumors are divided into low, medium, and high. According to

immunohistochemical technique, there are luminal A, luminal B,

HER2 overexpression, and triple-negative breast cancer. The TNM

staging system is divided into T stage (primary tumor), N stage

(regional lymph nodes), and M stage (distant organ metastases).

T stage was divided into T1 (tumor size, ≤2 cm), T2 (tumor size, 2–5

cm), T3 (tumor size, >5 cm), and T4 (tumors of any size with direct

extension to the chest wall and/or to the skin, that is ulceration or

skin nodules, macroscopic nodules); N stage included N0 (no

regional lymph node metastases), N1 (micrometastases, or

metastases in one to three axillary lymph nodes), N2 (metastases

in four to nine axillary lymph nodes), and N3 (metastases in 10 or

more axillary lymph nodes); and M stage was split into M0 (no

clinical or radiographic evidence of distant metastases) and M1
Frontiers in Oncology 04
(distant metastases) (24). The types of surgery that patients

underwent included no surgery, radical surgery, and breast-

conserving surgery. In addition, the age [classified into three

categories: younger group (≤45 years), middle-aged group (46–69

years), and the elderly group (≥70 years)] and postoperative

chemotherapy of patient were also included.

The inclusion criteria for patients were 1) the age of patient was

above 18, 2) tumor of primary site was only identified as breast

cancer, and 3) the information of clinicopathological and follow-up

were complete. Patients were excluded if 1) medical documents

were unsigned, such as informed consent and patient instructions,

at the time of admission, and 2) the information about the

molecular subtypes, clinical stage, types of surgery, etc., were

partial. A total of 8,226 breast cancer patients were followed up in

this paper, and the end of the follow-up period was 31 December

2021. Among them, 7,948 patients were effectively followed up, with

a follow-up rate of 96.62%. According to the inclusion and

exclusion criteria, a total of 3,641 patients were ultimately

included, of which 326 patients died (i.e., the censored rate more

than 90%).

In this paper, all statistical analysis and visualization were

conducted using R 4.1.3 software. A p<0.05 based on a two-tailed

test was considered statistically significant.
2.4 Model evaluation

2.4.1 Likelihood ratio test
The likelihood ratio test was used to evaluate Cox regression

models in general and reflect the fitting effect of the models (25),

based on the following formula,

c2
v = −2LogLi − ( − 2LogLj),

where c2
v e   c2(v), − 2LogLi represents the log-likelihood

function value of a regression model with i parameters. The

smaller the value of c2
v , the better the fitting effect of the model.

2.4.2 Akaike Information Criterion
Akaike Information Criterion (AIC) (26) is applicable to select

the most effective model from various models and evaluate the

validity of the modeling results. The general form of this is as

follows

AIC   = −2ln(L)   +   2K  ,

where L and K is the maximum likelihood function and the

number of independent parameters, respectively. The smaller the

AIC value is, which indicates a minimum discrepancy between the

probability and the true distribution, the better the model is.

2.4.3 Discrimination
The accuracy of the model predictions is evaluated on the basis

of the discrimination. A model showed good discrimination if this

model can distinguish whether the patient has reached the

endpoint. The area under the receiver operating characteristic
TABLE 1 Different sample characteristics of simulated data.

Number q Covariates distribution b

1
50%

X1 ~ B (0.1), X2 ~ B (0.5),
X3 ~ B (0.9)

(1.5, 1.5, 1.5)T

2 (-1.5, -1.5, -1.5)T

3
80%

X1 ~ B (0.1), X2 ~ B (0.5),
X3 ~ B (0.9)

(1.5, 1.5, 1.5)T

4 (-1.5, -1.5, -1.5)T

5
90%

X1 ~ B (0.1), X2 ~ B (0.5),
X3 ~ B (0.9)

(1.5, 1.5, 1.5)T

6 (-1.5, -1.5, -1.5)T
q denotes as censored rate. X1, X2, and X3 indicate covariates. b denotes the corresponding
estimated parameters.
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(ROC) curve (AUC), which has a value of 0.5–1.0 and the

discrimination is better with the higher value of AUC, was used

to assess the discrimination of models (27).
3 Results

3.1 Results of simulation

In the simulation data of six different sample characteristics, the

parameters b1, b2, and b3 of these models constructed in FC, RS,

CCI, and CCII sampling designs were estimated, where full cohort

N = NFC = 5; 000 and subcohort  NRS = 1; 666 (see Table 2,

Supplementary Tables S1, S2, respectively).

The estimated results of b1, b2, and b3 showed that its mean

values were relatively close under different parameter settings of
Frontiers in Oncology 05
four sampling designs. Its SE.mean, SD, CV, range, and bias were

small, which demonstrated that Cox proportional hazards model

presents the better ability in the analysis of the simulated data.

Moreover, the findings showed that the fitting results of parameters

in the RS and CCI sampling designs approached to the same with a

large bias in the results of CCII sampling design when q = 50%. For

instance, in the scenario of q = 50% and b1 = b2 = b3 = �1:5

(Supplementary Table S2), the bias value of b3 in CCII is

approximately 0.02, and its SD, CV, and range are also larger

than those of other sampling designs.

On the other hand, it was found that when the censored rate

increases, the efficiency of simple random sampling design

decreases, the range, SD, and CV of parameter estimations under

this sampling design become larger, and then the possibility of

outlier is increased. In actual application, there may be a large bias

in the results of simple random sampling design without repeated
TABLE 2 The simulation results of b1 under different censored rate and sampling design.

q (b1, b2, b3)T
Sampling
design

b1

Mean SE.mean SD CV Range Bias

50% (1.5, 1.5, 1.5)T FC 1.4998 0.0019 0.0594 0.0396 0.4566 0.0002

RS 1.5064 0.0032 0.1006 0.0668 0.7138 −0.0064

CCI 1.5043 0.0039 0.1218 0.0809 0.8582 −0.0043

CCII 1.5198 0.0053 0.1689 0.1112 1.0474 −0.0198

(−1.5, −1.5, −1.5)T FC −1.5037 0.0029 0.0933 −0.0620 0.5794 0.0037

RS −1.5011 0.0050 0.1590 −0.1060 1.1000 0.0011

CCI −1.4970 0.0048 0.1533 −0.1024 0.9272 −0.0030

CCII −1.4922 0.0066 0.2074 −0.1390 1.3636 −0.0078

80% (1.5, 1.5, 1.5)T FC 1.4989 0.0025 0.0785 0.0524 0.6556 0.0011

RS 1.5049 0.0043 0.1363 0.0906 1.0314 −0.0049

CCI 1.5062 0.0045 0.1420 0.0943 1.0461 −0.0062

CCII 1.5185 0.0062 0.1963 0.1293 1.1437 −0.0185

(−1.5, −1.5, −1.5)T FC −1.5094 0.0058 0.1847 −0.1223 1.3911 0.0094

RS −1.5247 0.0105 0.3306 −0.2168 2.4861 0.0247

CCI −1.5041 0.0073 0.2311 −0.1537 1.7562 0.0041

CCII −1.4966 0.0087 0.2749 −0.1837 1.6536 −0.0034

90% (1.5, 1.5, 1.5)T FC 1.4977 0.0032 0.1002 0.0669 0.7329 0.0023

RS 1.5003 0.0058 0.1847 0.1231 1.2513 −0.0003

CCI 1.5030 0.0050 0.1589 0.1057 1.2128 −0.0030

CCII 1.5134 0.0068 0.2137 0.1412 1.2151 −0.0134

(−1.5, −1.5, −1.5)T FC −1.5420 0.0091 0.2888 −0.1873 1.8267 0.0420

RS −1.7807 0.0570 1.8040 −1.0131 17.9073 0.2807

CCI −1.5379 0.0102 0.3225 −0.2097 1.9279 0.0379

CCII −1.5257 0.0111 0.3510 −0.2301 2.5577 0.0257
q denotes as censored rate. b1, b2, and b3 indicate the estimated parameters.
SE, mean standard error of the mean; SD, standard deviation; CV, coefficient of variation; FC, full cohort; RS, random subcohort; CCI, case–cohort design with one-third proportion sample;
CCII, case–cohort design with one-sixth proportion sample.
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sampling. For instance, under the RS sampling design, when q =

90%, b1 = b2 = b3 = �1:5 (Figure 2C) or 1:5 (Figure 2D),

respectively, there are many outliers with the ranges of

approximately 18 in the fitted values of b3 and b1, which greatly

exceeds the ranges of the estimated values under other

sampling designs.

Moreover, when the censored rate is high (i.e., q = 80% or q =

90%), CCI and CCII sampling designs have good stability, with

smaller dispersion degree and variation index of the parameters,

especially CCI. CCI sampling design improves the estimation

efficiency because only partial samples (approximately 40%) of

the full cohort samples were used by this sampling design to

reach the fitting result of FC sampling design, as shown in

Table 2, Figure 2, and Supplementary Figures S1, S2. Therefore,

when the sample censored rate was 90%, the sample error of the

case–cohort design is smaller than that of simple random sampling.
3.2 Results of breast cancer data
In this paper, there were 3,641 breast cancer patients in Xinjiang

with a censored rate of more than 90% as full cohort samples, of

which only 326 patients experienced the outcome event (i.e., death).

Hence, based on the results of the simulation in Section 3.1, the

case–cohort design with a one-third sample proportion was selected

to analyze these data. First, one-third of the patients were randomly

selected as a random subcohort (1,214 patients) combining with all

cases outside the subcohort, and then, a case–cohort sample with

1,418 patients was formed. The basic information about

clinicopathological characteristics of patients is shown in Table 3.

Furthermore, Kaplan–Meier analysis was performed to analyze the

clinical data of patients based on the full cohort and case–cohort
Frontiers in Oncology 06
sampling designs, as shown in Figures 3 and 4, respectively. Then,

the statistically significant factors (p< 0.05) in Kaplan–Meier

analysis and factors with clinical practice value were added to the

Cox regression model, and the significant prognostic factors were

selected by bidirectional stepwise regression.

The fitting results of Cox regression model showed that the

parameter estimations under the two sampling designs were very

close (see Figure 5). It was finally determined that molecular

subtypes, T stage, N stage, and M stage were the risk factors for

prognosis of Xinjiang breast cancer patients (p<0.05 and HR>1). In

detail, patients with clinicopathological features of triple-negative

breast cancer, T3, N3, and M1 substages had the highest risk of

death. Simultaneously, types of surgery and postoperative

chemotherapy were protective factors for independent prognosis

(p<0.05 and HR<1). Patients who underwent breast-conserving

surgery, radical surgery, and postoperative chemotherapy had a

lower risk of death than others who did not have surgery. Thus, a

model that can effectively predict prognosis of patients has been

established as follows:

h(tjX) = h0(t) exp (b1XMolecular subtypes + b2XT�stage + b3XN�stage

+ b4XM�stage + b5XTypes of surgery 

+ b6XPostoperative chemotherapy) :

Finally, the performances of these models established on the

basis of the case–cohort (CCI) and full cohort (FC) sampling

designs were comprehensively evaluated, as shown in Table 4.

Both Cox proportional hazards models established under the two

sampling designs passed the likelihood ratio test (p<0.05), where

c2
v   CCI = 490:05 <   c2

v   FC = 518:80. In addition, the AIC value

(3,999.96) obtained by the CCI was also smaller compared with
A B

D E F

C

FIGURE 2

Fitting values of b1, b2, and b3 under different sampling designs (q = 90%). The yellow dashed line represents the initial value of the regression
coefficients. (A–C) The fitting values of b1, b2, and b3 when the initial regression coefficients are 1.5; (D–F) the fitting values of b1, b2, and b3 when
the initial regression coefficients are −1.5. FC, full cohort; RS, random subcohort; CCI, case–cohort design with one-third proportion sample; CCII,
case–cohort design with one-sixth proportion sample.
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the FC, which indicated that the fitting effect of the case–cohort

sampling design was better.

Moreover, ROC curves of Cox regression models under FC and

CCI sampling designs were separately drawn to compare the

discrimination of these models (Figure 6). It was shown that both

AUC values were >0.8, and they were very close, which confirmed a

good discrimination for the prognostic model constructed in this

paper and also further verified that the case–cohort sampling design

reached a better fitting effect only using approximately 38.9% of the

full cohort samples.
4 Discussion

Case–cohort design is suitable for cancer research with large

cohort and low incidence, which could improve efficiency and

reduce the cost of collecting redundant non-case data (18). One

of the highlights of this paper is that the effectiveness of the case–

cohort design was verified based on the Cox proportional risk

model, and the different censored rates (50%, 80%, and 90%) and

different sampling ratios (1/3, 1/6) were conducted in the

simulation study. By simulating the survival data with different

sample characteristics, this study estimated the coefficients of Cox

regression models in FC, CCI, CCII, and RS sampling designs to

assess the performance of the models and sampling designs,

respectively. Our findings showed that the case–cohort design

could improve the estimation efficiency, especially the higher

censored rate. Since the morbidity of breast cancer has been an

increasing tendency year by year in Xinjiang (10), and the mortality

for the followed up Xinjiang breast cancer patients was relatively

lower, using the case–cohort design could reduce the bias caused by

random sampling, more effectively identify prognostic factors, and

further promote the improvement of clinical prognostic methods.

Therefore, based on the case–cohort design, this study analyzed the

actual clinical data of breast cancer patients in Xinjiang to identify

independent prognostic factors (molecular subtypes, T stage, N

stage, M stage, types of surgery, and postoperative chemotherapy).

Another innovation of this paper is that the performance of the

model established under the full cohort and case–cohort in the

actual data were comprehensively evaluated in breast cancer

patients in Xinjiang by likelihood ratio test, AIC criterion, and

discrimination. This further confirmed that the prognosis model

constructed under the case–cohort sampling design had better

fitting effect than that based on the full cohort sampling design,

and the case–cohort sampling design showed certain applicability in

the actual data.

The results of simulations in this paper displayed that the

estimated mean values of regression coefficients were close to the

given initial values in the survival data with different scenarios,

indicating that Cox proportional hazards model could achieve the

better fitting effect. In addition, when the censored rate was lower,

the fitting results of the regression coefficients under the RS and CCI

sampling designs were nearly the same, while there was a lager bias

of the parameter estimations under CCII sampling designs. It

demonstrated that not only the suitable sampling designs should
TABLE 3 Basic information about clinicopathological characteristics of
breast cancer patients in Xinjiang.

Full cohort Case–cohort

(N=3641) (N=1418)

Survival time

�x ± sd 1,630 ± 578 1,520 ± 616

Survival state

Survival 3,315(91.0%) 1,092(77.0%)

Death 326(9.0%) 326(23.0%)

Age

≤45 691(19.0%) 273(19.3%)

46-69 2,609(71.7%) 988(69.7%)

≥70 341(9.4%) 157(11.1%)

Histological grade

Low 138 (3.8%) 60 (4.2%)

Medium 2,606 (71.6%) 1,007 (71.0%)

High 897 (24.6%) 351 (24.8%)

Molecular subtyping

Luminal A 473 (13.0%) 182 (12.8%)

Luminal B 2,218 (60.9%) 824 (58.1%)

HER2 overexpression 397 (10.9%) 175 (12.3%)

Triple-negative 553 (15.2%) 237 (16.7%)

T-stage

T1 1,740 (47.8%) 632 (44.6%)

T2 1,620 (44.5%) 633 (44.6%)

T3 171 (4.7%) 90 (6.3%)

T4 110 (3.0%) 63 (4.4%)

N-stage

N0 1,814 (49.8%) 636 (44.9%)

N1 1,140 (31.3%) 463 (32.7%)

N2 389 (10.7%) 156 (11.0%)

N3 298 (8.2%) 163 (11.5%)

M-stage

M0 3,518 (96.6%) 1,335 (94.1%)

M1 123 (3.4%) 83 (5.9%)

Types of surgery

No surgery 357 (9.8%) 179 (12.6%)

Breast-conserving surgery 630 (17.3%) 230 (16.2%)

Radical surgery 2,654 (72.9%) 1,009 (71.2%)

Postoperative chemotherapy

No 635 (17.4%) 275 (19.4%)

Yes 3,006 (82.6%) 1,143 (80.6%)
�x ± sd denotes mean ± standard deviation.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1306255
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2024.1306255
A B

D E F

G H

C

FIGURE 3

Results of Kaplan–Meier analysis for the clinical data of breast cancer patients based on the full cohort sampling designs. (A) Age; (B) histological
grade; (C) molecular subtyping; (D) T stage; (E) N stage; (F) M stage; (G) types of surgery; and (H) postoperative chemotherapy.
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FIGURE 4

Results of Kaplan–Meier analysis for the clinical data of breast cancer patients based on the case–cohort sampling designs. (A) Age; (B) histological
grade; (C) molecular subtyping; (D) T stage; (E) N stage; (F) M stage; (G) types of surgery; and (H) postoperative chemotherapy.
Frontiers in Oncology frontiersin.org08

https://doi.org/10.3389/fonc.2024.1306255
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2024.1306255
be selected but also the sampling proportion should not be too small

in the analysis; otherwise, it would also reduce the statistical

efficiency. On the other hand, when the censored rate gradually

increased, the parameter estimations under the single simple

random sampling design would be more likely to generate

outliers, which could result in the gradual decrease in efficiency

under this sampling design. However, in actual applications, it is

often difficult to conduct multiply repeated sampling, which may

lead to a significant deviation in the obtained results. Meanwhile,

our findings revealed that when the censored rate was higher, the

CCI and CCII sampling designs had superior stability (i.e., there are

fewer outliers and smaller deviations), especially CCI sampling

design. Both estimated mean values under CCI and CCII

sampling designs had smaller dispersion degree and variation

index, and the CCI design results that only used 38.9% samples of

the full cohort samples were close to FC design results. Moreover,

using different types of covariates may have a certain influence on

the simulation results, but this impact is relatively small, as

demonstrated in the paper by Yang et al. (20), where there were

slight differences between simulation results of the normal and
Frontiers in Oncology 09
uniform distribution. To sum up, the simulation results of this

paper confirmed that the case–cohort design is a cost-effective

sampling design compared with simple random sampling design,

which could improve the efficiency of estimation. In particular, the

case–cohort design was more effective and stable when the

interested events had a relatively lower incidence, which was

consistent with the results in these references (18, 20, 28).

In this paper, the breast cancer patients followed up were

registered in the Affiliated Cancer Hospital of Xinjiang Medical

University, which could be regarded as a random sample from the

overall population, with more than 90% censored rate. Thus, a one-

third proportion of case–cohort sampling design was used to

analyze these data, and the same Cox regression model was also

simultaneously implemented in the full cohort sampling design to

compare the difference between the two designs’ results. The results

showed that the prognosis of patients with triple-negative breast

cancer was the worst, which may be the cause of the tumor cells of

those patients being more aggressive and more prone to recurrence

and metastasis (29). Luminal breast cancer patients had better

prognosis and higher survival rate than other non-luminal
FIGURE 5

Multivariate Cox regression models of breast cancer patients in Xinjiang with full cohort and case–cohort sampling designs. The red lines and
squares reflect the HR and 95%CrI for risk factors, while green reflects the HR and 95%CrI for protective factors. HR, hazard ratio; CrI,
credibility interval.
TABLE 4 Evaluation indexes of Cox regression models under different sampling designs.

Sampling designs
Likelihood ratio test

AIC AUC (95%CrI)
c2
v p-value

Full cohort (FC) 518.80 <0.05a 4690.78 0.805 (0.779, 0.832)

Case-cohort (CCI) 490.05 <0.05a 3999.96 0.807 (0.780, 0.835)
AIC, Akaike Information Criterion; AUC, the area under the receiver operating characteristic curve. CrI, credible interval.
ap<0.05 indicates statistically significant. c2

v denotes the value of chi-square test.
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patients. Moreover, T, N, and M stages were independent risk

prognostic factors of breast cancer patients. Patients with advanced

T stage had larger tumors, more tumor cells, and the longer time for

the tumor formation, so these patients would be more likely to

develop into distant metastasis breast cancer ones. The later stage of

N stage indicated greater probability, more numbers of lymph node

metastases, and higher risk of death, which are typical clinical

features of breast cancer progression (30). Because distant

metastasis of breast cancer (i.e., M stage) means that the tumors

of breast cancer could spread to the lung, liver, brain, and other

parts of the body, the occurrence of distant metastasis (i.e.,

advanced breast cancer) would result in more difficult clinical

treatment (31). Therefore, regular breast self-examination and

clinical screening for women were recommended to achieve the

purpose of early detection, early diagnosis, and early treatment, and

then reduce the mortality and improve the prognosis of breast

cancer patients. At the same time, it was also shown that the breast-

conserving surgery [HR=0.30, 95%CrI: (0.17, 0.55)], radical surgery

[HR=0.52, 95%CrI: (0.35, 0.76)], and postoperative chemotherapy

[HR=0.43, 95%CrI: (0.30, 0.61)] were protective factors for breast

cancer patients in Xinjiang. These surgeries could effectively reduce

the size of the tumor, reduce the number of tumors, and control the

spread of the disease, thereby greatly improving the survival

probability for breast cancer patients. Initially, the radical surgery,

as a common treatment, occupied a very important position. But

now, breast-conserving surgery is more widely used to treat patients

with early disease progression, with the characteristics of shorter

operation time and lower incidence of postoperative complications

(32). Standard postoperative adjuvant chemotherapy for patients

could prevent the recurrence and control the metastasis of cancer to

a certain extent, and it could reduce the pain, improve the quality of

life, and then extend their life cycle for some patients with advanced

stage (33). Finally, the likelihood ratio test, ROC curve, and AIC

criteria were used to compare the superiority of model prediction in

the full cohort and the case–cohort sampling designs. The

comparison findings showed that both models under FC and CCI

sampling designs passed the likelihood ratio test (p<0.05), and the

model constructed under the CCI design had better fitting effect
Frontiers in Oncology 10
(AIC=3,999.96) and better discrimination [AUC=0.807, 95%CrI:

(0.780, 0.835)], which demonstrated that the case–cohort design

was suitable to analyze the prognosis of breast cancer patients

in Xinjiang.

There are some limitations in this study. On the one hand, we

only employed Cox proportional hazards model with Prentice’s

weight method to investigate the effectivity and stability of the case–

cohort design. However, different weighted estimation methods

(such as Barlow and Self-Prentice method) or different statistical

models (such as additive risk model) could also be applied to make

statistical inference to be more accurate and effective under the

case–cohort design when the weights of case–cohort samples are

not mutually independent or the actual data do not follow the

proportional hazards assumption. On the other hand, only the

clinical data of breast cancer patients in Xinjiang were analyzed in

this paper, but the applicability of the case–cohort design in the

other regions or other cancers deserves to be further explored. Last

but not least, the main purpose of our paper is to explore the factors

affecting the prognosis of breast cancer patients in Xinjiang, based

on the case–cohort design and Cox proportional risk model. Hence,

we focused on the influence degree of different factors on the

occurrence time of the event. It was needed to consider the

impact of covariates on survival time and the chronological order

of events; therefore, we only reported HR values in the outcome in

this paper. In our future work, we will consider different methods

such as logistic regression or propensity score to calculate different

statistical indicators (such as OR and RR values) (34–36), in order

to find the best reporting indicator for actual data with different

sample characteristics.
5 Conclusion

In summary, this study demonstrated the effectivity and

stability of the case–cohort design through simulating data and

confirmed that this design could maintain a better estimation

efficiency in cancers with high censored rate. Furthermore,

independent prognostic factors of breast cancer patients in
A B

FIGURE 6

ROC curves of Cox regression models under different sampling designs. (A) Full cohort design; (B) case–cohort design. AUC, the area under the
receiver operating characteristic curve.
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Xinjiang were determined under the case–cohort design, and the

practical fitting effect and useful application of the case–cohort

design were demonstrated by comparing with the results based on

full cohort design.
Data availability statement

The data that support the findings of this study are available

from the Affiliated Cancer Hospital of Xinjiang Medical University

but restrictions apply to the availability of these data, which were

used under license for the current study, and so are not publicly

available. Requests to access the datasets should be directed to TiZ,

zhaoting0557@163.com.
Ethics statement

The studies involving human participants were reviewed and

approved by Medical Ethics Committee of the Affiliated Cancer

Hospital of Xinjiang Medical University (approval number: K-

2023001). The participants provided their written informed

consent to participate in this study.
Author contributions

MW: Conceptualization, Software, Writing – original draft,

Writing – review & editing. GS: Data curation, Funding

acquisition, Writing – review & editing. TaZ: Software, Writing

– original draft. CG: Methodology, Writing – original draft. TiZ:

Data curation, Resources, Writing – review & editing. QZ: Data

curation, Resources, Writing – review & editing. LW:

Conceptualization, Methodology, Writing – original draft,

Writing – review & editing.
Frontiers in Oncology 11
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Natural Science Foundation of

China (Grant Nos. 12061079 and 82060520), the Project of Top-

notch Talents of Technological Youth of Xinjiang (Grant No.

2022TSYCCX0108), the Natural Science Foundation of Xinjiang

(Grant No. 2022D01C287), and the Tianshan Cedar Talent

Training Project of Science and Technology Department of

Xinjiang Uygur Autonomous Region (Grant No. 2020XS14).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

2. Pu XY, Ma Y, Zhong ZG. Trend analysis of female breast cancer deaths in China
between 2006 and 2020–Based on an Age-Period-Cohort Model. Health Econ Res.
(2023) 40:28–33. doi: 10.14055/j.cnki.33-1056/f.2023.02.002

3. Kang B, Lee J, Jung JH, Kim WW, Keum H, Park HY. Differences in clinical
outcomes between HER2-negative and HER2-positive luminal B breast cancer. Med
(Baltimore). (2023) 102:e34772. doi: 10.1097/MD.0000000000034772

4. Tao ZQ, Shi AM, Lu CT, Song T, Zhang ZG, Zhao J. Breast cancer: Epidemiology
and etiology. Cell Biochem Biophys. (2015) 72:333–8. doi: 10.1007/s12013-014-0459-6

5. Ma Y, Lv M, Yuan P, Chen X, Liu Z. Dyslipidemia is associated with a poor
prognosis of breast cancer in patients receiving neoadjuvant chemotherapy. BMC
Cancer. (2023) 23:208. doi: 10.1186/s12885-023-10683-y

6. Zhou HL, Chen DD. Prognosis of patients with triple-negative breast cancer: a
population-based study from SEER database. Clin Breast Cancer. (2023) 23:e85–94. doi:
10.1016/j.clbc.2023.01.002

7. He R, Zhu B, Liu J, Zhang N, Zhang WH, Mao Y. Women's cancers in China: A
spatio-temporal epidemiology analysis. BMC Womens Health. (2021) 21:116.
doi: 10.1186/s12905-021-01260-1
8. Qiu XJ, Liu Y, Wu E, Meng T, Cheng F. Clinicopathological characteristics and
prognosis analysis among 1006 cases of different molecular subtypes of breast cancer in
Xinjiang. Chin Clin Oncol. (2015) 20:525–30.

9. Wang C, Wang YH, Shen YY, Han W. Clinicopathological characteristics among
different molecular subtypes of breast cancer in Xinjiang. J Mod Oncol. (2017) 25:1921–4.
doi: 10.3969/j.issn.1672-4992.2017.12.017

10. Li HF, Guo CM, Wang HY, Dilimurati A. Epidemiological analysis of 1701 cases
of breast cancer in a Third Grade Hospital of Urumqi of Xinjiang province. Pract J
Cancer. (2022) 37:975–9. doi: 10.3969/j.issn.10015930.2022.06.030

11. Shan MH, Li HT, Luo L, Yao XM, Ma BL, Ma J. Analysis on clinico-pathological
features and prognosis of TNBC patients in Xinjiang Region. J Xinjiang Med Univ.
(2020) 43:63–68+73. doi: 10.3969/j.issn.1009-5551.2020.01.016

12. Nie Y, Ying B, Lu Z, Sun T, Sun G. Predicting survival and prognosis of
postoperative breast cancer brain metastasis: a population-based retrospective analysis.
Chin Med J (Engl). (2023) 136:1699–707. doi: 10.1097/CM9.0000000000002674

13. Fu AL, Liu YJ, Abudushalimu YMT, Zhao T. Correlation of molecular subtypes
with survival and prognosis among females with breast cancer: a single-center analysis.
Chin J Cancer Prev Treat. (2023) 30:587–92. doi: 10.16073/j.cnki.cjcpt.2023.10.03

14. Cao Q, Mushajiang M, Tang CQ, Ai XQ. Role of hypoxia-inducible factor-1a
and survivin in breast cancer recurrence and prognosis. Heliyon. (2023) 9:e14132.
doi: 10.1016/j.heliyon.2023.e14132
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1306255/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.14055/j.cnki.33-1056/f.2023.02.002
https://doi.org/10.1097/MD.0000000000034772
https://doi.org/10.1007/s12013-014-0459-6
https://doi.org/10.1186/s12885-023-10683-y
https://doi.org/10.1016/j.clbc.2023.01.002
https://doi.org/10.1186/s12905-021-01260-1
https://doi.org/10.3969/j.issn.1672-4992.2017.12.017
https://doi.org/10.3969/j.issn.10015930.2022.06.030
https://doi.org/10.3969/j.issn.1009-5551.2020.01.016
https://doi.org/10.1097/CM9.0000000000002674
https://doi.org/10.16073/j.cnki.cjcpt.2023.10.03
https://doi.org/10.1016/j.heliyon.2023.e14132
https://doi.org/10.3389/fonc.2024.1306255
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2024.1306255
15. Zhao R, Liu LX, Ni MJ, Li SG, Yan YZ, Zhang XF, et al. Disease burden of
premature death of Malignant neoplasms in Xinjiang cancer registries. Modern Prev
Med. (2017) 44:1703–1707+1713. doi: CNKI:SUN:XDYF.0.2017-09-040

16. Onland-Moret NC, van der A DL, van der Schouw YT, Buschers W, Elias SG,
van Gils CH, et al. Analysis of case-cohort data: a comparison of different methods.
J Clin Epidemiol. (2007) 60:350–5. doi: 10.1016/j.jclinepi.2006.06.022

17. Prentice RL. A case-cohort design for epidemiologic cohort studies and disease
prevention trials. Biometrika. (1986) 73:1–11. doi: 10.2307/2336266

18. Yu JC, Cao YX. Diagnostics for the proportional hazards model with case-cohort
data. Acta Mathematica Sin (Chinese Series). (2020) 63:137–48. doi: 10.3969/
J.ISSN.0583-1431.2020.02. 004

19. Cai J, Kim S. Correction: Case-cohort design in hematopoietic cell transplant
studies. Bone Marrow Transplant. (2022) 57:145. doi: 10.1038/s41409-021-01522-4

20. Yang J, Ding JL. Additive risk regression analysis in case-cohort design and its
application to breast cancer data. J Math. (2021) 41:270–82. doi: 10.13548/
j.sxzz.2021.03.009

21. Feng Y, Bai Y, Lu Y, Chen M, Fu M, Guan X, et al. Plasma perfluoroalkyl
substance exposure and incidence risk of breast cancer: A case-cohort study in the
Dongfeng-Tongji cohort. Environ pollut. (2022) 306:119345. doi: 10.1016/
j.envpol.2022.119345

22. Yao S, Kwan ML, Ergas IJ, Roh JM, Cheng TD, Hong CC, et al. Association of
serum level of vitamin d at diagnosis with breast cancer survival: A case-cohort analysis
in the pathways study. JAMA Oncol. (2017) 3:351–7. doi: 10.1001/jamaoncol.2016.4188

23. Wan F. Simulating survival data with predefined censoring rates for proportional
hazards models. Stat Med. (2017) 36:838–54. doi: 10.1002/sim.7178

24. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al.
Breast cancer-major changes in the American joint committee on cancer eighth edition
cancer staging manual. CA Cancer J Clin. (2017) 67:290–303. doi: 10.3322/caac.21393

25. Mbona SV, Ndlovu P, Mwambi H, Ramroop S. Multiple imputation using
chained equations for missing data in survival models: applied to multidrug-resistant
tuberculosis and HIV data. J Public Health Afr. (2023) 14:2388. doi: 10.4081/
jphia.2023.2388
26. Vrieze SI. Model selection and psychological theory: a discussion of the

differences between the Akaike information criterion (AIC) and the Bayesian
Frontiers in Oncology 12
information criterion (BIC). Psychol Methods. (2012) 17:228–43. doi: 10.1037/
a0027127

27. Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves:
review of methods with applications in diagnostic medicine. Phys Med Biol. (2018)
63:07TR01. doi: 10.1088/1361-6560/aab4b1

28. Tuo JY, Bi JH, Li ZY, Shen QM, Tan YT, Li HL, et al. [Statistical methods for
relative risk estimation and applications in case-cohort study]. Zhonghua Liu Xing Bing
Xue Za Zhi. (2022) 43:392–6. doi: 10.3760/cma.j.cn112338-20210812-00638

29. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, et al.
Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. (2012)
30:1879–87. doi: 10.1200/JCO.2011.38.2010

30. Pereira ER, Jones D, Jung K, Padera TP. The lymph node microenvironment and
its role in the progression of metastatic cancer. Semin Cell Dev Biol. (2015) 38:98–105.
doi: 10.1016/j.semcdb.2015.01.008

31. Huo X, Li J, Zhao F, Ren D, Ahmad R, Yuan X, et al. The role of capecitabine-
based neoadjuvant and adjuvant chemotherapy in early-stage triple-negative breast
cancer: a systematic review and meta-analysis. BMC Cancer. (2021) 21:78. doi: 10.1186/
s12885-021-07791-y

32. Qiu H, Xu WH, Kong J, Ding XJ, Chen DF. Effect of breast-conserving surgery
and modified radical mastectomy on operation index, symptom checklist-90 score and
prognosis in patients with early breast cancer. Med (Baltimore). (2022) 99:e19279.
doi: 10.1097/MD.0000000000019279

33. Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights
and therapeutic interventions. MedComm. (2021) 2:587–617. doi: 10.1002/
mco2.100

34. Noma H, Misumi M, Tanaka S. Risk ratio and risk difference estimation in case-
cohort studies. J Epidemiol. (2023) 33:508–13. doi: 10.2188/jea.JE20210509

35. Månsson R, Joffe MM, Sun W, Hennessy S. On the estimation and use of
propensity scores in case-control and case-cohort studies. Am J Epidemiol. (2007)
166:332–9. doi: 10.1093/aje/kwm069

36. Ek M, Roth B, Nilsson PM, Ohlsson B. Characteristics of endometriosis: A case-
cohort study showing elevated IgG titers against the TSH receptor (TRAb) and mental
comorbidity. Eur J Obstet Gynecol Reprod Biol. (2018) 231:8–14. doi: 10.1016/
j.ejogrb.2018.09.034
frontiersin.org

https://doi.org/CNKI:SUN:XDYF.0.2017-09-040
https://doi.org/10.1016/j.jclinepi.2006.06.022
https://doi.org/10.2307/2336266
https://doi.org/10.3969/J.ISSN.0583-1431.2020.02. 004
https://doi.org/10.3969/J.ISSN.0583-1431.2020.02. 004
https://doi.org/10.1038/s41409-021-01522-4
https://doi.org/10.13548/j.sxzz.2021.03.009
https://doi.org/10.13548/j.sxzz.2021.03.009
https://doi.org/10.1016/j.envpol.2022.119345
https://doi.org/10.1016/j.envpol.2022.119345
https://doi.org/10.1001/jamaoncol.2016.4188
https://doi.org/10.1002/sim.7178
https://doi.org/10.3322/caac.21393
https://doi.org/10.4081/jphia.2023.2388
https://doi.org/10.4081/jphia.2023.2388
https://doi.org/10.1037/a0027127
https://doi.org/10.1037/a0027127
https://doi.org/10.1088/1361-6560/aab4b1
https://doi.org/10.3760/cma.j.cn112338-20210812-00638
https://doi.org/10.1200/JCO.2011.38.2010
https://doi.org/10.1016/j.semcdb.2015.01.008
https://doi.org/10.1186/s12885-021-07791-y
https://doi.org/10.1186/s12885-021-07791-y
https://doi.org/10.1097/MD.0000000000019279
https://doi.org/10.1002/mco2.100
https://doi.org/10.1002/mco2.100
https://doi.org/10.2188/jea.JE20210509
https://doi.org/10.1093/aje/kwm069
https://doi.org/10.1016/j.ejogrb.2018.09.034
https://doi.org/10.1016/j.ejogrb.2018.09.034
https://doi.org/10.3389/fonc.2024.1306255
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Assessing of case–cohort design: a case study for breast cancer patients in Xinjiang, China
	1 Introduction
	2 Methods
	2.1 Case–cohort design
	2.2 Simulation study
	2.3 Analysis of breast cancer data
	2.4 Model evaluation
	2.4.1 Likelihood ratio test
	2.4.2 Akaike Information Criterion
	2.4.3 Discrimination


	3 Results
	3.1 Results of simulation
	3.2 Results of breast cancer data

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


