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Intraductal T2 mapping based on a catheter receiver is proposed as a method of

visualizing the extent of intraductal and periductal cholangiocarcinoma (CCA).

Compared to external receivers, internal receivers provide locally enhanced

signal-to-noise ratios by virtue of their lower field-of-view for body noise,

allowing smaller voxels and higher resolution. However, inherent radial sensitivity

variation and segmentation for patient safety both distort image brightness. We

discuss simulated T2 weighted images and T2 maps, and in vitro images obtained

using a thin film catheter receiver of a freshly resected liver specimen containing a

polypoid intraductal tumor from a patient with CCA. T2 mapping provides a simple

method of compensating non-uniform signal reception patterns of catheter

receivers, allowing the visualization of tumor extent without contrast

enhancement and potentially quantitative tissue characterization. Potential

advantages and disadvantages of in vivo intraductal imaging are considered.
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1 Introduction

Cholangiocarcinoma (CCA) is rare in Europe and North America, where known risk

factors include primary sclerosing cholangitis (PSC), viral hepatitis, and occupational exposure

to industrial chemicals (1). Presentation is typically late, when disease is advanced. The 5-year

survival is consequently low, and surgical resection is the only real curative possibility, although

recently approved targeted chemotherapy may offer some hope in a minority of patients (1, 2).
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The incidence of CCA in South-East Asia is around 100 times higher

than Western Europe, due to consumption of raw and partly cooked

fish, contaminated with the parasitic liver flukes, Opisthorchis viverrini

or Clonorchis sinensis (1). Around 60million people in the region are at

risk of infection, with CCA a possible consequence for 1-2% of fluke-

infected individuals (3). Flukes can be eradicated using anthelmintic

drugs, but re-infestation is common and food safety education provides

only a partial solution (3).

Risk groups are screened in Thailand, using stool analyses and

urinary dipsticks to detect fluke infestation and ultrasound to locate

periductal fibrosis and mass-forming tumors (4). Similar programs

are now being developed in Lao PDR. Magnetic resonance imaging

(MRI) and computed tomography (CT) are used for confirmatory

diagnosis. CCA is heterogeneous, and can present an extrahepatic

and intrahepatic tumor, with mass-forming, periductal infiltrating

and intraductal sub-types (5). MRI can delineate obstructed bile

ducts owing to the long T2 time constant of bile, and contrast-

enhancement can highlight mass-forming tumors due to their

enhanced micro-vascularity (6). However, the small duct wall

changes in early-stage disease are hard to detect (7), so precise

staging and surgical planning are difficult.

Here, we make the case for intraductal MR imaging with T2

mapping to improve tumor visualization for effective patient

management. These strategies are not only applicable in Thailand

where CCA is a common problem, but potentially to all healthcare

systems where a hepatobiliary service is offered.
2 The clinical case for
improved imaging

Except in South-East Asia, CCA remains a rare cancer, but its

incidence has been rising for the past 30 years, with significant

geographical variations (8). North-East Thailand has by far the

highest age-standardized incidence rate (ASIR) of 85/100000 (8). By

comparison, the United States has an ASIR of 1.6/100000 and the

United Kingdom 2.2/100000 (8), which are more in keeping with

the world average.

The early detection of CCA remains difficult (9). Guidelines

recommend standard contrast-enhanced CT or MRI for the

diagnosis and staging of CCA. Both can identify mass-forming

tumors, whereas the periductal infiltrating form is difficult to detect.

When complicating biliary strictures, these periductal cancers may

be very small and thus, beyond the resolution of standard imaging

techniques. Whether a bile duct stricture harbors an underlying

malignancy or not in the presence of stricturing conditions such as

PSC remains a pertinent issue for current technologies (9).

CCA has hitherto been a tumor with an extremely high mortality,

unless operable surgically, but new targeted chemotherapy techniques

offer promise (10). The need for accurate and early diagnosis has not

therefore been greater.
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3 The approaches to the problem

Resolution in MRI is determined by signal-to-noise ratio (SNR),

with higher SNR allowing smaller voxels and higher resolution.

However, SNR is limited by body noise using an external

radiofrequency (RF) coil such as a “torso array” configuration

(11). One solution may be intraductal MRI, with detection carried

out using a catheter receiver inserted into the common bile duct at

endoscopic retrograde cholangiopancreatography (ERCP). Internal

RF coils offer locally increased SNR by virtue of their non-uniform

signal reception, which reduces the field-of-view (FOV) for body

noise (12). Higher SNR can then be obtained near the coil, but this

reduces as the reciprocal of radial distance squared for rectangular

RF coils, so a catheter receiver can outperform an external coil over

a cylindrical volume coaxial to a duct. The local SNR advantage of

internal coils in endoluminal MRI has been verified by many

authors, for example in arterial imaging (13), gastrointestinal

imaging (14), and endoscopy (15), and internal RF coils have

already been used in biliary drainage tubes (16). Non-uniform

reception complicates image interpretation but can be

compensated by using relaxometry (17), estimating parameters by

nonlinear least-squares fitting (18) and plotting spatial variations of

time constants rather than grey scale images.

Parametric mapping of liver disease has already been

demonstrated with external coils (19, 20), and we have

previously reported methodology for intraductal MRI. Work has

focused on duodenoscope modification for MR environments

(21), the production of catheter-based receivers (22), the

verification of the local SNR advantage of catheter receivers over

torso array coils (23) and initial ex vivo imaging studies of surgical

specimens (24).

Receivers have been constructed from thin-film circuits formed

in copper-clad Kapton and mounted on tubular scaffolds using

heat-shrink tubing. Division of the circuit into arrays of

magnetically coupled, figure-of-eight-shaped L-C resonators can

reduce coupling to B1 magnetic and corresponding electric fields

during excitation (25), but this leads to a segmented FOV. The

catheters are flexible and compatible with biopsy channels and

guidewires. Technical challenges included developing the design

concept, simulating electro-magnetic performance, integrating

flexible circuits on catheters, connecting receivers to auxiliary coil

interfaces, and performing initial assessments of RF heating

potential. Imaging has been carried out using a clinically available

whole-body 3T Philips Achieva™ (Philips, Best, the Netherlands)

MRI system in Khon Kaen in North-East Thailand, the epicenter of

liver fluke-associated cholangiocarcinoma (24). Clinical challenges

included synchronizing imaging with surgery in a busy hospital,

identifying specimens suitable for cannulation, and correlating T2

maps of CCA with histopathology for the first time. We explain

below the principle of and make the case for intraductal

T2 mapping.
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4 The potential solution

The ex vivo intraductal imaging shown in the diagrams was

performed on resection specimens from Thai patients with CCA at

Khon Kaen University Hospital (KKUH), following the granting of

ethics approval by the local Ethics Committee (Ref. HE581409) and

the provision of prior written informed consent from patients. The

imaging was conducted according to the ethical precepts set out in

the Declaration of Helsinki of 1975.
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Figure 1 compares simulated T2-weighted images and T2 maps

of model tissue. Figure 1A shows the signal reception pattern of a

3mm diameter catheter receiver with 1/r2 radial sensitivity variation

and 50mm-long segments, highlighting the first two sensitive lobes;

other lobes are similar. Figure 1B shows the model tissue, assumed

roughly coaxial to a central receiver. Two artificially homogeneous

ellipsoidal tissue volumes are shown, with T2 values of 63 ms

(brown, representing tumor tissue) and 42 ms (green, representing

periductal fibrosis). Surrounding tissue (liver parenchyma, not
B

C D

E F

A

FIGURE 1

Simulated T2-weighted axial images and T2 maps of model tissue obtained using a catheter receiver: (A) Receiver tip reception pattern; (B) model
tissue showing periductal fibrosis and tumor; (C) T2-weighted images; (D) T2 maps; (E, F) volumetric data. Blue - liver parenchyma; green - fibrosis;
Brown - tumor; red - catheter track.
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shown) has a T2 of 28 ms. Imaging and T2 mapping are simulated

using a single echo time TE1=140/9ms and five echo times

TEn=n×140/5ms, respectively. T2 values are estimated using a

least-squares non-linear fit to mono-exponential decay without

bias correction (18). A peak signal-to-noise ratio (SNR) of 800 is

assumed at the catheter. Cropping at a low signal level is used to

avoid presenting noise beyond the limit of effective reception.

Figures 1C, D show axial T2-weighted images and T2 maps

obtained by simulation. Figures 1E, F show corresponding

volumetric data. In the images, the signal variation introduced by

non-uniform reception is so large that little can be seen of the

important tissue boundaries; the reception pattern of the catheter is

dominant. While the sensitivity variation can be compensated, the

catheter axis must be accurately known, and the procedure is slow.

Tissue differentiation is obtained from the T2 maps directly, which

clearly show tumor (brown), fibrosis (green) and parenchyma

(blue). The effect of radially decreasing SNR is to increase the

scatter and bias of estimated T2 values (18). However, near the

catheter, homogeneity is high and tissue boundaries are sharp.

Figure 2 shows data from an ex vivo resection specimen from a

Thai patient with polypoid intraductal CCA, adapted and modified

from a previous publication (24). Imaging was carried out at 3T

using a catheter receiver on a resection specimen immediately post-

surgery. Figure 2A shows part of a much longer panel of thin-film

receiver circuits and a single circuit before mounting on a catheter.

The circuits are devoid of protrusions, and each figure-of-eight loop

has a half-length of 50 mm. Figure 2B shows the segmented signal

reception pattern, obtained by imaging tank phantoms on either

side of the catheter and plotting coronal scans as surface-rendered

volumetric data. Multiple sensitive lobes can be seen, each again 50

mm long. Figure 2C shows the specimen with the catheter inserted

into a visibly enlarged duct in segment 2. The region of interest

(ROI) is highlighted. Figure 2D shows cropped axial T2-weighted

volumetric images obtained using a spin-echo sequence with TE=9

ms. As with Figure 1E, this presentation mainly highlights the

catheter location and the first one and a half lobes of the segmented

receiver reception pattern. Figure 2E shows corresponding T2

maps, obtained from five excitations with TE between 9ms and 95

ms. The tissue is well differentiated, and the assigned T2 values were

verified by histopathology (24). Resolution is high, and CCA-

induced thickening of the duct wall is apparent; with the

exclusion of T2 values below 45ms (Figure 2F), the tumor

boundary is clear and correlated well with Figure 2C.

The T2 maps presented here have been compared with axial MR

images obtained using external and internal coils (24). In the former

case, the FOV encompasses the entire torso, and contrast-enhanced

imaging allows rapid location of strictures and trapped bile in vivo.

However, early duct wall changes and the full extent of periductal and

intraductal tumors are insufficiently conspicuous. In the latter case, the

FOV is limited to the immediate vicinity of the catheter, and

uncorrected images cannot easily be interpreted. Duct wall

enlargement is clarified after correction for non-uniform signal

reception, but the procedure for optimization of the correction center

is lengthy andmay not be practical for oblique or curved catheter tracks.

Intraductal T2 mapping does appear to offer advantages.

However, implementation may require clinic layout alterations,
Frontiers in Oncology 04
including co-location of endoscopy and MRI suites and provision

of facilities for cleaning or disposal of catheter receivers. In addition,

anesthesia and equipment for respiratory gating and software for

motion tracking would be needed for patients deemed incapable of

breath-holding.
5 Discussion

Few alternative imaging techniques are emerging for CCA, and

all suffer from limitations (26). Established X-ray fluoroscopy

visualizes stricture-induced dilation rather than duct wall changes.

The FOV of endoscopic camera probes is restricted to the biliary

mucosal layer. Contrast-enhanced CT suffers from relatively low

resolution and soft-tissue contrast. Trans-abdominal and

intraductal ultrasound also suffer from low resolution and

contrast, but the former provides an effective mass screening tool

(27). While molecular and nuclear imaging techniques hold

theoretical promise, to date, positron emission tomography (PET)

and single-photon emission computed tomography (SPECT) offer

low resolution, unless combined with MRI or CT (9).

Questionable aspects for future adoption of intraductal MRI

include the safety, complexity and cost of a procedure involving both

ERCP and MRI and the resolution enhancement obtained in vivo.

ERCP is routinely used to clarify difficult CCA cases, but MR-

compatible endoscopic procedures under sedation would be required

for patient safety. Cannulation of the ducts of interest might be difficult

if strictures are present. Though additional scans are required for T2

mapping, and off-axis coil orientations will reduce the local SNR

advantage, recent technical advances in imaging methodology,

including artificial intelligence, can help to leverage the information

available and mitigate the challenges in motion and SNR (28, 29). The

radial FOV of the catheter receiver is limited, but may be sufficient for

early-stage disease, and extension of the axial FOV along the entire

catheter length (Figure 2B) allows catheter tracking. Necessary

hardware has been demonstrated, but manufacture of disposable

receivers would be needed, together with non-magnetic

duodenoscopes, unless these are withdrawn before imaging, or the

catheter is introduced via percutaneous transhepatic cholangiogram

(PTC). Interpretation of T2maps would require a comparison database

but may reveal early-stage tissue changes not visible on contrast-

enhanced MRI. Potential benefits include more effective surgical

planning and improved determination of R0 margins. Both might

increase the survivability of CCA, currently at a very low level.

Potential barriers to adoption include additional equipment,

consumable and procedure costs, and the need for training in

catheter receivers and T2 mapping. Additional expenses will be

mitigated by the reduction in care costs expected from increased

surgical success rates. Training for endoscopists will be similar in

scope to the requirements for camera probes, while training for

radiographers and radiologists may amount to revision of earlier

specialized courses. Infrastructure changes have been mentioned

above and would be considered on a clinic-by-clinic basis.

Further pilot studies are warranted to assess in vivo feasibility,

but the potential for increased and earlier tumor detection seems

promising, particularly in populations such as in Thailand where
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https://doi.org/10.3389/fonc.2024.1306242
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Syms et al. 10.3389/fonc.2024.1306242
CCA is not uncommon and underlying causes are understood,

resulting in a need for screening programs (1). Furthermore, T2

mapping with standard external phase-array RF coils, rather than

the intraductal RF coils we describe here, may provide a simpler

method of identifying enlarged bile ducts, albeit at lower image

resolution. This may be possible because of the strong

differentiation between liver parenchyma and ductal tissue. The

same principles may also be useful for better and earlier assessment
Frontiers in Oncology 05
of hepatocellular carcinoma, particularly in the context of a nodular,

cirrhotic liver.
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FIGURE 2

(A) Panel and single element of thin-film receiver circuits; (B) catheter reception pattern; (C) human tissue specimen with intraductal CCA; (D)
volumetric T2-weighted imaging data; (E), volumetric relaxometry data; (F) as (E) but excluding T2 values below 45. Blue - liver parenchyma; green -
periductal fibrosis; yellow - original duct; brown - tumor; red - catheter track.
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