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Purpose: Based on comparison of different machine learning (ML) models, we

developed the model that integrates traditional hand-crafted (HC) features and

ResNet50 network-based deep transfer learning (DTL) features from

multiparametric MRI to predict Ki-67 status in sinonasal squamous cell

carcinoma (SNSCC).

Methods: Two hundred thirty-one SNSCC patients were retrospectively

reviewed [training cohort (n = 185), test cohort (n = 46)]. Pathological grade,

clinical, and MRI characteristics were analyzed to choose the independent

predictor. HC and DTL radiomics features were extracted from fat-saturated

T2-weighted imaging, contrast-enhanced T1-weighted imaging, and apparent

diffusion coefficient map. Then, HC and DTL features were fused to formulate the

deep learning-based radiomics (DLR) features. After feature selection and

radiomics signature (RS) building, we compared the predictive ability of RS-HC,

RS-DTL, and RS-DLR.

Results: No independent predictors were found based on pathological, clinical,

and MRI characteristics. After feature selection, 42 HC and 10 DTL radiomics

features were retained. The support vector machine (SVM), LightGBM, and

ExtraTrees (ET) were the best classifier for RS-HC, RS-DTL, and RS-DLR. In the

training cohort, the predictive ability of RS-DLR was significantly better than

those of RS-DTL and RS-HC (p< 0.050); in the test set, the area under curve

(AUC) of RS-DLR (AUC = 0.817) was also the highest, but there was no significant

difference of the performance between DLR-RS and HC-RS.

Conclusions: Both the HC and DLR model showed favorable predictive efficacy

for Ki-67 expression in patients with SNSCC. Especially, the RS-DLR model

represented an opportunity to advance the prediction ability.
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1 Introduction

Sinonasal carcinomas are rare and aggressive neoplasms,

accounting for approximately 3% of head and neck cancers (1),

with sinonasal squamous cell carcinoma (SNSCC) representing the

majority of cases (2, 3). As the clinical symptoms of SNSCC are

often less marked and specific, many patients are diagnosed at

advanced stages and associated with a poor prognosis (4).

The expression of Ki-67 protein has been widely used as an

independent prognostic indicator in many malignant tumors.

Numerous studies (5, 6) have proposed that a high level of Ki-67

status often indicates a more active cell proliferation, higher degree

of aggressiveness (such as advanced tumor stage), and poorer

prognosis. In sinonasal carcinomas, some literatures (7, 8) have

demonstrated that patients with a high Ki-67 expression level

(>50% positivity) tend to present a shorter 5-year disease-free

survival, a higher possibility of local recurrence, and distant

metastasis. According to these findings, the cutoff value of 50%

for Ki-67 status was widely chosen as an optimal indicator for

forecasting the outcome of patients with sinonasal neoplasms.

In clinical application, the Ki-67 status preoperatively is usually

determined by immunohistochemistry methods from biopsy

examination. However, as an invasive way, it is impossible to

make accurate determination of the Ki-67 status due to the very

small samples of biopsy tissue and it is difficult to reflect the overall

heterogeneity of the whole tumor. Therefore, there is an urgent

need for a non-invasive, convenient, and comprehensive method

for preoperative prediction of the level of Ki-67 expression.

Magnetic resonance imaging (MRI) allows better depiction of

tumor due to the high soft tissue resolution and thus has been

widely used for preoperative evaluation of the tumors in practice.

Radiomics is an emerging method for medical image analysis,

which can extract high-dimensional and quantitative features

from routine radiological imaging (9). During the past few years,

there have been several studies on the application of MRI based-

radiomics to predict Ki-67 proliferation status in malignant tumors.

For instance, Li et al. (10) and Ye et al. (11) found that the radiomics

texture features based on dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) can predict the Ki-67 expression

in liver cancer. Ma et al. (12) demonstrated that the quantitative

radiomics features extracted from DCE-MRI are associated with Ki-

67 status in breast cancer. In the field of sinonasal malignancy, so far

only one study by Bi et al. (13) used radiomics analysis to predict the

status of Ki-67, and they found that the constructed

multiparametric MRI-based radiomics signature (RS) can

effectively evaluate Ki-67 expression with AUC and accuracy of

0.852% and 86.3%, respectively. However, in all the studies

mentioned above, radiomics analysis was undertaken based on

the conventional handcrafted (HC) features.

More recently, with the increasingly popular use of computer-

aided detection systems and artificial intelligence technology in

oncologic imaging, deep learning (DL) has been preliminarily

applied for image pattern recognition. It can provide more
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abundant texture and biological information of lesions. Actually,

training a DL model commonly requires immense amounts of

labeled data before the predictive value in clinical practice can be

reached. However, on the one hand, the low incidence rate of

sinonasal malignancy makes it difficult to enroll a large number of

patients for DL analysis, and on the other hand, labeling the big data

is a laborious and time-wasting work. To overcome these

limitations, deep transfer learning (DTL) has been applied in the

clinical trial. By pretraining a model to explore the critical features,

pretrained learning is then applied in DTL to a related image task;

subsequently, processes of fine-tuning can adjust the network for

the new feature detection task (14, 15). With regard to the use of

MRI-based DTL as an optional way to predict Ki-67 expression in

malignancy, to date, there has been only one study reported by Liu

et al. (16). In their study on 328 breast cancers, DTL-based

radiomics models were established for preoperative prediction of

Ki-67 status using multiparametric MRI and yielded better

predictive efficacy (AUC = 0.875 in the validation dataset).

Since in previous studies radiomics analysis were always

separately conducted using either HC features or DTL features,

the advantages and limitations of the two types of image features

have not been well investigated. In the current study, based on

different machine learning (ML) models, we made an attempt to

construct and validate a model that integrates the HC features and

DTL features obtained from multiparametric MRI to estimate the

Ki-67 status in SNSCC.
2 Patients and materials

2.1 Patients

This study was approved by the Institutional Review Board of

our hospital. In this retrospective study, we reviewed 337 cases of

histopathologically confirmed SNSCC at our institution from

March 2015 to December 2020. The inclusion and exclusion

criteria of the patients are shown in Figure 1. Finally, a total of

231 patients (169 men, 62 women, mean age 57.49 ± 14.23 years

old) were included. The patients were randomly divided into

training and testing cohorts at a ratio of 8:2. Clinical indexes

including gender, age, epistaxis, and clinical stage were collected.
2.2 Ki-67 index measurement

The Ki-67 status was determined by immunohistochemical

from postoperative mass excision material samples. A Ki-67

protein antibody was used to perform the immunohistochemical

staining. The Ki-67 index was scored according to the proportion of

Ki-67-positive cells. The mean value of the Ki-67 index was 53.29%

± 22.04% (range: 5%–90%; median: 55%) in our study. The cutoff

value of 50% was used for determining the high Ki-67 index (Ki 67

≥50%) and low Ki-67 index (Ki-67<50%).
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2.3 MRI image acquisition

All patients underwent MR examination using a 3T scanner

(Magnetom Verio or Prisma; Siemens Healthcare, Erlangen,

Germany) with a 12-channel head and neck coil. Axial fat-saturated

T2-weighted imaging (FS-T2WI) was firstly acquired. Then, diffusion-

weighted imaging (DWI) was performed using a high-resolution DWI

system (b values = 0, 1,000 s/mm2). The apparent diffusion coefficient

(ADC) map was derived from DWI. After the intravenous

administration of gadolinium-diethylenetriamine pentaacetic acid

(Magnevist, Bayer Schering, Berlin, Germany), axial fat-saturated

contrast-enhanced (CE) T1WI scans were obtained. The detailed

parameters are shown in Table 1.
2.4 MRI characteristics

As on T1-weighted imaging (T1WI), the border of the tumor

was ill-defined and the signal features are non-specific, in the

current study, we did not analyze the image findings on T1WI.

The MRI characteristics on FS-T2WI, ADC, and CE images were

reviewed independently by two radiologists [readers 1 and 2, with 5

and 8 years of work experience, respectively] on a Siemens Syngo

workstation. The disagreement was resolved through further

discussion with a third radiologist [reader 3, with 20 years of

experience] to reach a consensus. The characteristics include (a)

maximum tumor diameter (>5 cm or<5 cm), (b) margin (well-

defined or ill-defined), (c) laterality (unilateral or bilateral), (d)
Frontiers in Oncology 03
cysts/necrosis areas within tumor (yes or no), (e) enhancement

degree [moderate (enhancement approaching that of the adjacent

muscle) or apparent (enhancement approaching that of the adjacent

vessels)], (f) bone destruction (yes or no), (g) enlarged (short

diameter >1.0 cm)/necrotic lymph node (yes or no), and (h) ADC

value. When measuring the ADC value, a small circular ROI was

placed on the darkest area of the lesion on the ADC map avoiding

cystoid variations, hemorrhage, and necrosis areas. For each case,

three ROIs were placed and the lowest ADC was retained. The size

of the each ROI was 0.5 cm2–1 cm2.
TABLE 1 Parameters of the enrolled MR sequences.

T2WI DWI CE-T1WI

Sequence
Turbo

spin-echo

Readout-segmented
echo-planar imaging,
two-dimensional

navigator-
based reacquisition

Turbo spin-echo

Repetition
time (ms)

4,190
(scanner 1)

3,700 (scanner 1) 4.7 (scanner 1)

Echo
time (ms)

81 (scanner 1) 66 (scanner 1) 1.8 (scanner 1)

Thickness
(mm)

4 4 3

Field of
view
(mm2)

230 × 230 230 × 230 230 × 230
FIGURE 1

The inclusion and exclusion criteria of the patients.
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2.5 Histopathological-clinical-image model

To assess the histopathological grade, clinical data, and MRI

features, we used chi-square test to compare categorical variables,

Fisher’s exact test for groups with small sample sizes, and

independent samples t-test for normally distributed continuous

variables. To choose the independent predictors of high Ki-67

status, univariate logistic regression (LR) analysis was used to

analyze the histopathological, clinical, and MRI image features

with p< 0.100, and then multivariate LR analysis (backward

stepwise: Wald) was used to select the statistically significant

predictors by analyzing features with p< 0.05. Finally, the factors

with p< 0.05 were considered as the independent predictors and

enrolled into the histopathological-clinical-image model.
2.6 Tumor segmentation and radiomic
data preprocessing

The radiomic workflow is displayed in Figure 2.

Tumor segmentation was conducted by two radiologists with 8

years of experience and 20 years of experience in head and neck

radiology independently using the ITK-SNAP software

(www.itksnap.org). The radiologists were blinded to the patient’s

histopathological findings before analyzing the images. The

volumes of interests (VOIs) were outlined slice by slice to cover

the whole tumor avoiding obvious necrotic and cystic areas on three

sequences (FS-T2WI, ADC, and CE-T1WI), respectively.

Because the range of pixel values of medical images varies under

different MRI scanners, we sorted all the pixel values in each image

and truncated the intensities to the range of 0.5 to 99.5 percentiles to

reduce the side effect of pixel value outliers. VOIs are common with
Frontiers in Oncology 04
heterogeneous voxel spacing because of different acquisition

protocols. The fixed resolution resampling method was applied to

reduce the effect of voxel spacing variation.
2.7 HC radiomic feature extraction

The HC radiomic features were extracted from the image set

using PyRadiomics (www.radiomics.io/pyradiomics.html),

including shape features, first-order features, and textural

features. Texture features included the gray-level co-occurrence

matrix (GLCM), gray-level run length matrix (GLRLM), gray-

level size zone matrix (GLSZM), and neighborhood gray-tone

di fference matr ix (NGTDM) methods . Eight wavelet

transformations algorithms (LLL, LLH, LHL, LHH, HLL, HLH,

HHL, and HHH) and Laplace of Gaussian (LoG) filters were

conducted for first-order and textural features. A total of 3,495

HC radiomics features were extracted from three MR sequences.

The interoperator variability of the features was evaluated by the

intraclass correlation coefficient (ICC). Features with intra-ICCs

>0.75 were retained for subsequent analysis.
2.8 DTL feature extraction
and compression

DTL features were extracted from pretrained CNN via transfer

learning. In this study, ResNet50 was chosen as the pretrained CNN

model. The Resnet50 model was trained on the 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC-2012) dataset

(17). The slice which had the largest tumor area was picked out to

represent each patient. Then, the gray values were normalized to
FIGURE 2

Flowchart of radiomics for predicting Ki-67 status in patients with SNSCC.
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range [-1, 1] using min–max transformation. Next, each cropped

subregion image was resized to 224 × 224 with nearest

interpolation. The obtained images can be used as the model input.

Because of leak of image data, in order to better carry out the

generalization, we carefully set the learning rate. We adapted cosine

decay learning rate algorithm in this study. Our learning rate was

presented as follows:

htask−spec
t = hi

min +
1
2
(hi

max − hi
min) 1 + cos

Tcur

Ti
p

� �� �

hi
min = 0, hi

max = 0.01, and Ti = 30 represent the minimum

learning rate, the maximum learning rate, and the number of

iteration epochs, respectively. Because the backbone part adopted

pretraining parameters, in order to ensure the migration effect, Tcur

= 1
2 Ti fine-tunes the parameters of the backbone part. Therefore,

the learning rate of backbone part was as follows:

hbackbone
t =

0 ifTcur ≤
1
2 Ti

hi
min +

1
2 (h

i
max − hi

min) 1 + cos Tcur
Ti

p
� �� �

ifTcur >
1
2 Ti

8<
:

(Hyperparameters: cross entropy was used as loss function,

SGD preformed as optimizer, learning rate was initialized from

0.01, batch size was 32, training max epoch was set to 30, with early

stop at 5).

In order to ensure the balance between features, we

subsequently used principal component analysis (PCA) to reduce

the dimension of DTL features from 2,048 to 96 to improve the

generalization ability of the model and reduce the risk of

over fitting.
2.9 Feature fusion and selection

The HC radiomics features group and compressed DTL features

group were fused together to formulate the deep learning-based

radiomics (DLR) features group for subsequent analysis process. All

the DLR features were normalized (Z-score transformation). Then,

based on the training cohort, a least absolute shrinkage and

selection operator (LASSO) model with fivefold cross-validation

was applied to select the most meaningful features.
2.10 Radiomics signature

We put each feature group into different ML algorithms to

construct three RSs (RS-DLR, RS-DTL, and RS-HC). Here, we

adopt nine ML algorithms including support vector machine

(SVM), k-nearest neighbor (KNN), decision tree (DT), random

forest (RF), extra trees (ET), XGBoost, LightGBM, multilayer

perception (MLP), and LR for RS-DTL and RS-DLR, and 8ML

algorithms for RS-HC. To evaluate the performance of three RSs, we

compared the following indicators of RSs in the training and testing

sets: the area under the receiver operating characteristic curve

(AUC), sensitivity, specificity, accuracy, positive predictive value
Frontiers in Oncology 05
(PPV), and negative predictive value (NPV). Then, RS with the

highest predictive performance was chosen as the best RS.
2.11 Statistical analysis

The statistical analysis were performed on SPSS (v.24.0),

MedCalc (version v.19.0.4), R software (v.4.1.0), and Python

(v3.7.6). p< 0.050 was regarded as statistical significance.
3 Results

3.1 Clinical and MRI characteristics

High Ki-67 expression was present in 53.0% of the training

cohort and 54.3% of the testing cohort. The clinical and MRI

manifestations of SNSCC in two cohorts are shown in Table 1.

There were no significant differences in patients’ clinical,

histopathological, and MRI characteristics between high- and

low-Ki-67 groups in both training and testing cohorts (p >

0.050) (Table 2).

Then, we enrolled the factors with p< 0.100 into univariate LR

analysis; however, the results revealed the absence of statistically

significant clinical, histopathological, and MRI independent

predictors for Ki-67 status. This means the histopathological-

clinical-image model failed to be built.
3.2 Radiomics feature extraction, fusion,
and selection

A total of 3,071 HC features with ICC >0.75 were retained for

analysis. The 3,071 HC and 96 DTL features were fused together to

formulate the DLR features group. Based on LASSO regression (as

shown in Figure 3), the DLR features were reduced to 52 optimal

features, which included 42 HC radiomics features (8 T2WI-based

features, 16 CE-based features, and 18 ADC-based features) and 10

DTL features (6 T2WI-based features, 2 CE-based features, and 2

ADC-based features). Figure 4 shows the distributions of 52 optimal

features in the training cohort.
3.3 Performance of RS-DLR vs. RS-DTL vs.
RS-HC

For RS-HC, the optimal classifier was the SVM algorithm, with

an AUC of 0.803 (95% CI: 0.679–0.927) and accuracy, sensitivity,

specificity, PPV, and NPV of 0.728, 0.880, 0.762, 0.759, and 0.824 in

the test cohort, respectively.

For RS-DTL, the optimal classifier was LightGBM algorithm,

with a high AUC of 0.987 (95% CI: 0.976–0.999) in the training

cohort, whereas in the test cohort, the predictive ability was not as

high as that in the training cohort; the AUC value was only 0.650
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TABLE 2 Clinical data and conventional MRI characteristics of the patients.

Characteristic

Training cohort

P value

Testing cohort

P valueHigh ki-67 Low ki-67 High ki-67 Low ki-67

(n= 98) (n= 87) (n=25) (n=21)

Clinical characteristics

Gender 0.515 0.489

Male 74 62 19 14

Female 24 25 6 7

Age 0.527 0.071

Mean ± SD
(years old)

56.9 ± 14.77 57.7 ± 14.75 60.0 ±
9.96

56.4 ± 14.36

Epistaxis 0.216 0.939

Yes 39 27 11 9

No 59 60 14 12

Clinical stage 0.142 0.194

I~II 24 30 10 14

III 48 43 8 4

IV 26 14 7 3

Histopathological
characteristics

Grade 0.100 0.566

I~II 55 60 16 16

III 43 27 9 5

Conventional
MRI characteristics

Maximum
diameter

0.064 0.054

>5 cm 47 30 13 5

<5 cm 51 57 12 16

ADC value 0.323 0.123

Mean ± SD
(×10−3 mm2/s)

0.769 ±
0.126

0.831 ± 0.130 0.752 ± 0.108 0.851 ± 0.149

Margin 0.084 0.179

Well-defined 20 24 6 9

Ill-defined 78 63 19 12

Laterality 0.550 0.988

Unilateral 14 16 19 16

Bilateral 84 71 6 5

Cysts/necrosis 0.341 0.208

yes 83 69 13 7

no 15 18 12 14

Enhancement
degree

0.992 0.669

Moderate 54 48 17 13

Apparent 44 39 8 8

Bone destruction 0.997 0.750

Yes 80 71 18 16

(Continued)
F
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(95% CI: 0.487–0.812) and the values of accuracy, specificity, PPV,

and NPV were all relatively low (<0.800).

For RS-DLR, the optimal classifier was the ET algorithm, with

an extremely high AUC of 1 in the training cohort. In the test

cohort, the predictive ability was also excellent, the AUC value was

0.817 (95% CI: 0.697–0.937), and specificity was 0.952, which were

superior to those of RS-HC and RS-DTL; thus, the RS-DLR was

chosen as the best RS in our study.

However, we also observed that the AUC of RS-DLR in the test

cohort failed to show statistically significant difference from the that

of RS-HC (p > 0.050) (Table 3), which means that both the RS-HC

and RS-DLR can achieve excellent predictive ability. Figure 5 shows

the prediction performances of RS-HC, RS-DTL, and RS-DLR

based on different ML classifiers, respectively.
4 Discussion

Ki-67 is an important indicator related to tumor heterogeneity

and cell proliferation. Extensive literatures (5, 18) on cell cycle

analysis showed that Ki-67 was helpful in predicting the tumor

prognosis and thus has been applied widely in clinical decision-

making for tumor treatment.

In the current study, an investigation of the proliferation of Ki-

67 in SNSCC, which combine the HC and DTL features from
Frontiers in Oncology 07
multiple MR sequences, revealed the ET and ResNet50 algorithm-

based DLR model to be required for the highest AUC result, while

the pathological grade, clinical, and conventional MRI

characteristics did not show predictive value for Ki-67 status

in SNSCC.

MRI has been widely used for diagnosing the sinonasal tumors.

However, due to the lack of specific image features, it is difficult to

predict the expression of Ki-67 status on conventional MRI. A

research by Xiao et al. (8) has proposed that the combined use of

quantitative dynamic contrast-enhanced MRI and intravoxel

incoherent motion model of DWI was helpful for predicting Ki-

67 status of sinonasal cancer. However, in view of the significantly

prolonged image acquisition time and quite complex modeling

process, this image approach was not easy to widely popularize.

Radiomics, which is an evolving field for assessment of disease,

can extract high-throughput features from medical images and

assess the tumor biology. The use of radiomics in predicting the

Ki-67 status has been reported by many researchers (10–13). In

head and neck squamous cell carcinoma, Zheng et al. constructed

and validated the computed tomography (CT)-based radiomics

nomogram model to predict the Ki-67 expression level (19).

However, given the high degree of heterogeneity of the malignant

tumor, more and more controversies remain as to whether the

traditional HC features are comprehensive and precise enough for

evaluating the biological characteristics of whole tumor.
TABLE 2 Continued

Characteristic

Training cohort

P value

Testing cohort

P valueHigh ki-67 Low ki-67 High ki-67 Low ki-67

(n= 98) (n= 87) (n=25) (n=21)

No 18 16 7 5

Enlarged/necrotic
lymph node

0.114 0.224

Yes 27 15 7 2

No 71 72 18 19
A B

FIGURE 3

Radiomics feature selection using LASSO in the training cohort. (A) Radiomics feature selection. (B) The non-zero coefficients have been plotted.
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In recent years, developments in the field of computer-aided

signal processing and the expansion of computing power with the

latest high-speed graphics processors make DL-based radiomic

analysis primarily used for tumor recognition and diagnosis. In

order to better train or finetune the DL model, many modified or

advanced DLmodels have been developed, including visual geometry

group (VGG)16, VGG19, and ResNet50. Among them, the ResNet

network, which is modified from the VGG19 network and

constructed by adding residual blocks through the short-circuit

mechanism, can not only save the operational time but also reduce

the learning difficulty of the network. Previous studies (20, 21) have

found that the ResNet50 model was the best architecture framework

with the highest accuracy and efficiency for the image classification

task. Danala et al. (14) proposed that the pretrained ResNet50 model-

based DTL feature can yield significantly higher AUC than that of the

traditional HC feature for characterizing the malignancies (p< 0.01).

In our study, we also trained the DL method on the ResNet50 for

DTL features extracting and applied to fine-tune on ResNet50 model

for prediction task. After comparison of the 9 ML algorithm,

LightGBM was the best classifier for DTL-RS. For HC-RS, the ML

algorithm of SVMwas the best classifier with the highest AUCs in the

training and test sets. After integrating HC with DTL features, the

classifier of ET owned the best predictive ability than other

algorithms for DLR-RS. Actually, ET was initially derived from the

traditional algorithm of DT in 2005 by adding some innovative

algorithm steps and improvement in DT. On the one hand, it
Frontiers in Oncology 08
increases the randomness of the DT algorithm, on the other hand,

it improves the accuracy of the suboptimal solution and calculation

flexibility. Maier et al. (22) found that ET owned better performance

than SVM for voxel-wise classification because it turned out to be

easy to tune and not sensitive to the selection of the training data. In

the current study, the ET algorithm-based DLR-RS performed

significantly better than LightGBM algorithm-based DTL-RS and

SVM algorithm-based HC-RS in the training cohort. In the test set,

the AUC of DLR-RS was also superior to HC-RS and DTL-RS. A

previous work by Bo et al. (23) used multiparametric MRI to

distinguish brain abscess from cystic glioma and showed that DTL

features combined with HC features could contribute to a

significantly higher accuracy than HC and DTL features alone.

Another study by Hu et al. (24) using DWI to diagnose breast

cancer demonstrated that the diagnostic efficiency of the HC-DL-

fusion classifier was significantly higher than the HC-based classifier

and slightly higher than the DL-based classifier. These outcomes, in

general, indicated that the fusion model yields more biological

information about tumor than a single type of radiomic features.

However, in our study, we observed that in the test dataset, there was

no significant difference of the performance between DLR-RS and

HC-RS (both AUCs > 0.8), which means both the HC and DLR

model showed favorable predictive efficacy in patients with SNSCC.

In the current study, we did not establish the histopathological-

clinical-image model because all the histopathology, clinical, and MRI

characteristics lack statistical significance for predicting Ki-67 status.
FIGURE 4

Distributions of 52 optimal features based on LASSO regression in the training cohort.
TABLE 3 The predictive performances of three RSs in the training and test cohorts.

RS
type

Cohort
Optimal
classifier

AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

RS-HC
Training SVM 0.882 0.828–0.936 0.832 0.847 0.851 0.807 0.868

Test SVM 0.803 0.679–0.927 0.728 0.880 0.762 0.759 0.824

RS-DTL
Training LightGBM 0.987 0.976–0.999 0.956 0.990 0.920 0.933 0.988

Test LightGBM 0.650 0.487–0.812 0.630 0.840 0.476 0.643 0.611

RS-DLR
Training ExtraTrees 1.000 / 1.000 1.000 1.000 1.000 1.000

Test ExtraTrees 0.817 0.697–0.937 0.673 0.600 0.952 0.667 0.688
RS, radiomics signature; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value.
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Even though the SNSCC tumors of high Ki-67 proliferation status

tended to show higher histopathological grade, larger maximum

diameter, and ill-defined margin, univariate and multivariate LR

analyses showed no independent predictor was observed. A similar

result was also detected by Bi et al. (13); in their study on 128 patients

with different pathological types of sinonasal malignancies, no

independent predictor of high Ki-67 status was found based on age,

gender, signal feature, tumor margin, size, level of enhancement, etc.

Our study has certain limitations. Firstly, the performance of

DTL-RS in the test cohort was not high and we have noticed that in

some studies (22, 23) the CNN model of VGG-19 was chosen for

DTL feature extraction instead of Resnet50, as they believed that

VGG-19 can better focus on the details of the tumor region; thus,

further effort on VGG-19 is needed to enhance the performance of

the DTL classifier and integrated RS-DLR. Secondly, because of the

rarity of SNSCC, we used a relatively small sample from one

institution; the multicenter, large-sample experiments will be

beneficial in order to validate the applicability of the model.

Thirdly, in general, the predictive capacity of RS-DLR still remains

poorly understood; the advanced feature fusion method also needs to

be studied to improve the model accuracy in the future.

To our knowledge, this is the first report to focus on the

associations of multiparametric MRI-based integrated DLR-RS,

clinical risk factors, and MRI manifestations, with Ki-67 expression

in patients with SNSCC. Our results demonstrated that based on the

ET classifier, the integrated RS-DLR could represent an opportunity

to advance precise prediction for Ki-67 status and provide a reference

for individualized treatment plans in SNSCC. Further predictive

value remains to be promoted by subsequent studies.
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