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Aim: This research aimed to explore the causal impact of blood metabolites on

oral cancer using a two-sample Mendelian randomization (MR) analysis. The

study endeavored to identify potential biomarkers for oral cancer ’s

clinical management.

Materials and methods: Based on the large individual-level datasets from UK

Biobank as well as GWAS summary datasets, we first constructed genetic risk

scores (GRSs) of 486 human blood metabolites and evaluated the effect on oral

cancer. Various statistical methods, including inverse variance weighted (IVW),

MR-Egger, and weighted median, among others, were employed to analyze the

potential causal relationship between blood metabolites and oral cancer. The

sensitivity analyses were conducted using Cochran’s Q tests, funnel plots, leave-

one-out analyses, and MR-Egger intercept tests.

Results: 29 metabolites met the stringent selection criteria. Out of these, 14

metabolites demonstrated a positive association with oral cancer risk, while 15

metabolites indicated a protective effect against oral cancer. The IVW-derived

estimates were significant, and the results were consistent across different

statistical methodologies. Both the Cochran Q test and the MR-Egger

intercept test indicated no heterogeneity and pleiotropy.

Conclusion: This MR study offers evidence of the role specific blood metabolites

play in oral cancer, pinpointing several with potential risk or protective effects.

These findings could be helpful for new diagnostic tools and treatments for oral

cancer. While the results are promising, additional research is necessary to fully

validate and refine these conclusions. This study serves as a foundational step

towards more comprehensive understandings in the future.
KEYWORDS
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1 Introduction

Oral cancer, classified under head and neck malignancies,

stands as the world’s sixth most common cancer, with oral

squamous cell carcinoma constituting over 90% of these cases (1,

2). Several oral lesions, such as lichen planus, leukoplakia,

erythroplakia, and oral sub-mucous fibrosis, have been recognized

as potential precursors to malignant oral disorders (3). With limited

understanding of oral cancer’s pathophysiology, emphasizing early

detection is crucial to enhance survival rates.

Recently, the merger of metabolomics into systems biology has

provided a novel approach to understanding disease processes.

Through metabolomics, it’s possible to discern the biological

complexity of diseases by identifying changes in metabolites and

metabolic routes. Metabolic reprogramming is a distinctive feature

of cancer cells, as many studies have highlighted (4–7).

Interestingly, these cells prefer glycolysis for their energy needs,

even in oxygen-rich conditions, a shift known as the Warburg effect

or aerobic glycolysis (5). This metabolic shift contributes to both the

initiation and progression of cancer. Besides the Warburg effect,

cancer cells undergo diverse metabolic transformations, including

shifts in lipid and amino acid pathways, such as glutaminolysis (4, 6,

7). Nonetheless, a thorough understanding of oral cancer’s

metabolic traits remains elusive. Investigating these metabolic

changes linked to oral cancer could lead to the discovery of new

biomarkers and a deeper comprehension of the disease’s

development and advancement. Recent advancements have

combined metabolomics with extensive genotyping, enabling the

examination of the relationship between genetic variations and

metabolic phenotypes through genome-wide association studies

(GWASs) (8, 9). Numerous genetic locations connected to

metabolic phenotypes have been identified through these studies

(8). By utilizing extensive GWAS data, genetic risk scores (GRSs)

and Mendelian randomization (MR) have become instrumental in

unraveling the etiology of complex diseases by effectively managing

unidentified variables (10).

MR, an emerging analytical tool, uses genetic variations

associated with exposures to assess the potential causal effects of

these exposures on observed outcomes (11). Notably, MR is often

likened to a “natural” randomized controlled trial (RCT) because

alleles are randomly distributed during gamete production, possibly

minimizing confounders and biases due to reverse causality (12).

The enduring nature of genetic influences, together with the

extensive GWAS data on oral diseases (13–19), makes MR studies

an effective alternative to conventional, long-term clinical trials

focused on preventing oral cancer, avoiding their significant costs

and lengthy monitoring periods.

MR design has been applied to identify the potential mediators

of oral cancer and related cancer. Gormley et al.’s study showed

strong evidence of smoking’s causal effect on oral/oropharyngeal

cancer and suggested an underestimated effect of alcohol when

adjusted for smoking (14). Also, Chen et al. identified a possible

causal link between inflammatory bowel disease and oral cavity

cancer (15). For the relationship between cancers and blood

metabolomic, Guo et al. applied two-sample MR to identify blood

metabolites associated with lacunar stroke, finding 15 known and
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14 unknown metabolites with potential implications in disease

pathogenesis (20). Liu et al. utilized bidirectional Mendelian

randomization on Chinese individuals, revealing 58 causal

relationships between the gut microbiome and blood metabolites,

with a notable link between fecal Oscillibacter and Alistipes and

decreased triglyceride concentration (21).

However, to our knowledge, there is no MR study to assess the

causal role of blood metabolites on oral cancer. In this study, we

performed the first two-sample MR analysis of the GWAS summary

data containing blood metabolites and oral cancer, revealed the

causal impact of blood metabolites on oral cancer, provided new

biomarkers for the clinical management of oral cancer.
2 Materials and methods

2.1 Study design

MR study adheres to three fundamental instrumental variable

(IV) assumptions: (1) the genetic variants must correlate with the

exposure; (2) these variants should be free from confounding

factors; and (3) they should only affect the outcome via the

exposure (Figure 1). Data summaries for the blood metabolites

and oral cancer used in this research were sourced from publicly

accessible GWASs, primarily based on cohorts of European descent

(8). This MR study followed the guidelines of Strengthening the

Reporting of Observational Studies in Epidemiology using

Mendelian Randomization (STROBE-MR).
2.2 Blood metabolites data synopsis

Blood metabolite genetic data were retrieved from the

metabolomics GWAS server (https://metabolomics.helmholtz-

muenchen.de/gwas/), which represents the most comprehensive

study on blood metabolite genetic loci presently (Supplementary

Table S1). The research by Shin et al. pinpointed around 2.1 million

SNPs connected with 486 human metabolites by integrating

Genome-wide association scans with high-throughput metabolic

profiling (8), with metabolites prefixed by ‘X-’ having unidentified

chemical properties. This research involved 7,824 Europeans: 1,768

from Germany’s KORA F4 study and 6,056 from the UKTwin Study.

Among the 486 metabolites, 107 remain undefined chemically, while

309 have undergone chemical validation and are classified into eight

primary metabolic groups, as cited in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. These groups encompass

amino acid, carbohydrate, cofactors and vitamin, energy, lipid,

nucleotide, peptide, and xenobiotic metabolism.
2.3 Oral cancer data synopsis

The genetic association data for oral cancer originated from the

UK Biobank’s GWAS (22, 23). This initiative registered close to

500,000 participants aged between 40 and 69 (24) (Supplementary

Table S2). The UK Biobank’s medical records utilized the
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International Classification of Diseases, Tenth Revision (ICD-10-

CM), and Ninth Revision (ICD-9-CM). The discussed GWAS

comprised a sample of 372,373 European-descent individuals,

including 7.72 million SNPs. This data is accessible via the IEU

GWAS database at https://gwas.mrcieu.ac.uk/. A linear mixed

model (LMM) association method was applied, facilitated by

BOLT-LMM (v2.3) (25). Addressing the population structure

involved SNP selection post-filtration based on multiple criteria,

including MAF > 0.01, genotyping rate > 0.015, a Hardy-Weinberg

equilibrium p-value below 0.0001, and LD pruning to an limit of 0.1

using PLINKv2.00.
2.4 Selection of IVs

For the MR evaluation, SNPs linked to blood metabolites at a

genome-wide significance threshold (p < 1� 10−5) from prior

GWASs were utilized. These SNPs were chosen ensuring no

linkage disequilibrium (LD) with other SNPs, maintaining an r2

below 0.1 within a 500 kb clumping radius. In cases where SNPs

exceeded the r2 = 0.1 limit, only the SNP with the strongest

association (smallest P value) with the metabolite was selected.

This selection strategy is consistent with methods commonly

employed in earlier studies (26, 27). To counteract potential bias

from inferior instruments, the R2 and F statistics for each SNP were

determined using the following formulas:

R2 =
2� b2 � EAF � (1 − EAF)

½2� b2 � EAF � (1 − EAF) + 2� (se(b2)2 � N � EAF � (1 − EAF)�

F =
N − k − 1

k
� R2

1 − R2

Here, b indicates the genetic variant’s effect size; EAF

represents its effect allele frequency; se(b) is the standard error

for this effect size; N denotes the sample size for the exposure; and k

is the count of SNPs. SNPs with an F value under 10 were deemed
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weak and subsequently discarded. The subsequent procedure

extracted outcome-associated SNPs, discarding those correlated

with the outcome (p < 1� 10−5). Exposure and outcome SNP

harmonization followed, with the removal of palindromic and

allele inconsistent SNPs. The third assumption was satisfied by

excluding outcome-associated SNPs with p < 1� 10−5. The analysis

culminated in an MR study on metabolites represented by over two

SNPs (28).
2.5 Statistical analysis

The potential causal relationship between blood metabolites

and oral cancer was explored using multiple techniques in this

research. These methodologies included inverse variance weighted

(IVW), MR-Egger, weighted median, weighted mode, MR-PRESSO,

and simple model strategies. The overarching impact of blood

metabolites on oral cancer was determined using a meta-analysis

approach, combined with Wald estimates for each SNP via the IVW

method. In the scenario where horizontal pleiotropy is absent, IVW

results remain unbiased (29). The MR-Egger regression, based on

the InSIDE assumption that instrument strength is not linked to a

direct effect, gauges pleiotropy via its intercept term. An intercept

term of zero in the MR-Egger regression indicates alignment with

IVW results, implying an absence of horizontal pleiotropy (30). The

weighted median method can provide accurate causal inferences,

even if as many as 50% of the IVs are considered invalid (31). In

instances where the InSIDE assumption is challenged, the weighted

mode estimate offers enhanced power, reduced bias, and a lower

type I error rate compared to MR-Egger regression (31). The MR-

PRESSO approach identifies and corrects for horizontal pleiotropy

by eliminating significant outliers. Yet, the MR-PRESSO outlier test

is contingent on InSIDE premises and mandates that a majority of

the genetic markers serve as valid instruments (32). While the

simple mode method may exhibit lower precision, it typically

presents a diminished bias relative to alternative techniques (31).
FIGURE 1

Diagram of the MR analysis. Assumption 1, genetic instruments are strongly associated with the exposures of interest; Assumption 2, genetic
instruments are independent of confounding factors; Assumption 3, genetic instruments are not associated with outcome and affect outcome only
via exposures. IVW, inverse variance weighted; LD, linkage disequilibrium; LOO analysis, leave-one-out analysis; MR-PRESSO, MR-Pleiotropy
RESidual sum and outlier; WMedine, weighted medine; SNPs, single nucleotide polymorphisms; WM, weighted mode; SMode, simple mode.
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To corroborate significant outcomes, tests for heterogeneity and

horizontal pleiotropy were undertaken using meta-analytical

methods, including the modified Cochran Q statistic and the MR

Egger intercept test for deviation (33). To alleviate the impact of

horizontal pleiotropy attributed to a single SNP, a leave-one-out

analysis was performed, systematically omitting one SNP at a time.

The “TwoSampleMR” (34) and “MRPRESSO” R packages, version

4.1.3, facilitated these evaluations.

Furthermore, the Steiger test was executed to counteract

potential biases from reverse causality (35). The causal inference

direction could be erroneous if the explained variance of IVs in oral

cancer surpasses that of blood metabolites.
3 Results

Upon stringent quality control of IVs, 486 metabolites were

included in the MR analysis. These IVs comprised SNPs ranging

from 4 to 136 (with X-14056 genetically represented by 4 SNPs and

tryptophan having the highest representation with 136 SNPs. The F

statistics of all SNPs associated with metabolites were greater than 10

(Supplementary Table S3). Subsequent IVW analysis, paired with

supplemental and sensitivity evaluations, pinpointed 29 metabolites

that satisfied the stringent selection criteria as potential candidates

(Figure 2). These consisted of 15 identified metabolites and 14 with

unknown chemical identities. The identified metabolites were

chemically categorized into Amino Acid, Vitamin, Alkaloid,

Steroid, Lipid, Peptide, Nucleoside and Xenobiotics.
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The positive association between the risk of oral cancer and 14

blood metabolites were as follow (Figure 2): tryptophan (OR 1.0032,

95% CI: 1.0005–1.0059, p=0.0183), pentadecanoate (15:0) (OR

1.0031, 95% CI: 1.0001–1.0061, p=0.0427), laurate (12:0) (OR

1.0032, 95% CI: 1.0002–1.0063, p=0.0378), X-03088 (OR 1.0030,

95% CI: 1.0009–1.0052, p=0.0059), X-03094 (OR 1.0036, 95% CI:

1.0008–1.0064, p=0.0107), 1-oleoylglycerol (1-monoolein) (OR

1.0019, 95% CI: 1.0001–1.0037, p=0.0397), X-10510 (OR 1.0023,

95% CI: 1.0000–1.0046, p=0.0479), N-(2-furoyl)glycine (OR 1.0004,

95% CI: 1.0000–1.0008, p=0.0396), X-03056 (OR 1.0026, 95% CI:

1.0006–1.0047, p=0.0121), X-12435 (OR 1.0006, 95% CI: 1.0001–

1.0012, p=0.0181), X-12680 (OR 1.0030, 95% CI: 1.0000–1.0060,

p=0.0481), X-12786 (OR 1.0020, 95% CI: 1.0003–1.0038, p=0.0230),

1-palmitoylglycerophosphoethanolamine (OR 1.0028, 95% CI:

1.0005–1.0052, p=0.0185), palmitoyl sphingomyelin (OR 1.0031,

95% CI: 1.0004–1.0057, p=0.0234). This suggests that these blood

metabolites may increase the risk of oral cancer.

On the other hand, we found that 15 blood metabolites were

associated with a reduced risk of oral cancer (Figure 2): uridine (OR

0.9954, 95% CI: 0.9909–1.0000, p=0.0485), allantoin (OR 0.9982,

95% CI: 0.9964–1.0000, p=0.0467), alpha-tocopherol (OR 0.9959,

95% CI: 0.9928–0.9991, p=0.0109), X-03003 (OR 0.9929, 95% CI:

0.9880–0.9978, p=0.0046), X-06350 (OR 0.9963, 95% CI: 0.9938–

0.9987, p=0.0031), saccharin (OR 0.9991, 95% CI: 0.9982–1.0000,

p=0.0487), pyridoxate (OR 0.9971, 95% CI: 0.9944–0.9997,

p=0.0279), X-06126 (OR 0.9979, 95% CI: 0.9960–0.9998,

p=0.0285), X-11905 (OR 0.9989, 95% CI: 0.9979–1.0000,

p=0.0403), 1-methylxanthine (OR 0.9984, 95% CI: 0.9970–0.9999,
FIGURE 2

Forest plot of Mendelian randomization estimates between blood metabolites and oral cancer. The figure showed the IVW estimates of significantly
oral cancer-associated blood metabolites. The blue dots represent the IVW estimates, and the blue bars represent the 95% confidence intervals of
IVW estimates of protective factors. The red dots represent the IVW estimates, and the red bars represent the 95% confidence intervals of IVW
estimates of risk factors.
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p=0.0324), pro-hydroxy-pro (OR 0.9968, 95% CI: 0.9936–0.9999,

p=0.0430), X-13429 (OR 0.9990, 95% CI: 0.9980–0.9999, p=0.0351),

X-14056 (OR 0.9958, 95% CI: 0.9917–1.0000, p=0.0479), X-14541

(OR 0.9988, 95% CI: 0.9978–0.9999, p=0.0343), 4-androsten-

3beta,17beta-diol disulfate 2* (OR 0.9974, 95% CI: 0.9955–0.9993,

p=0.0070). This suggests that these blood metabolites may have a

protective effect against oral cancer.

In summation, IVW-derived estimates were significant (p<0.05),

and there was consistency in direction and magnitude across IVW,

MR-Egger, Weighted median, Weighted mode and Simple mode

estimates (Figure 3; Supplementary Table S4). Scatter plots for

identified metabolites across various tests are displayed in Figure 4.

Both the Cochran Q test (p>0.05) and the MR-Egger intercept test

(p>0.05) strongly supported the lack of heterogeneity and pleiotropy

(Table 1). Leave-one-out analysis affirmed that no individual SNP

introduced bias into the MR estimation (Supplementary Figure S1).

The funnel plots were showed on Supplementary Figure S2. In

addition, the Steiger test revealed that the causality between

genetically proxied metabolites and oral cancer was not violated by

reverse causal effects (Supplementary Table S5).
4 Discussion

In recent decades, extensive research has emphasized the

significant roles of metabolic reprogramming and energy

metabolism in the proliferation and metastasis of oral cancer

cells. Within the realm of normal cellular function, alterations in

metabolism not only bolster cellular proliferation and division but

also predispose cells to oncogenic transformation, a critical aspect

in the context of oral cancer. In the course of conducting a
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Mendelian randomization study on the impact of blood

metabolites on oral cancer, a multitude of blood metabolites were

identified to be significantly associated with the risk of oral cancer.

Our experimental results revealed that metabolites such as

tryptophan, uridine, allantoin, pentadecanoate, a-tocopherol, and
laurate were correlated with the risk of oral cancer.

Amino acids play a crucial role in oral cancer by providing

essential building blocks and energy for tumor cell proliferation and

are intimately involved in metabolic processes linked to tumor

growth and survival (36). Gupta et al. discerned that metabolites

including glutamine, propionate, acetone, and choline could

accurately differentiate oral cancer from healthy controls, partially

resonating with our findings (37). Synchronous luminescence

spectroscopy has been employed to distinguish oral cancer

tissues. Notable observations were made concerning peak shifts

and broadening for tryptophan, NADH, and FAD in oral cancer

tissues (38). These findings suggest substantial biochemical and

micro-environmental alterations at the cellular level. When we pair

these observations with our positive data, especially that of

tryptophan (OR 1.0032, 95% CI: 1.0005–1.0059, p=0.0183), it

underscores the significance of tryptophan as a crucial

endogenous fluorophore in oral cancer. The changes in

tryptophan not only echo the biochemical shifts within cells but

might also be indicative of the progression and development of the

cancer. However,. Our study also observed a down-regulation in the

levels of pro-hydroxy-pro (OR 0.9968, 95% CI: 0.9936–0.9999,

p=0.0430) in oral cancer patients, a finding corroborated by

Yonezawa et al., who reported a down-regulation in the serum

levels of several amino acids in head and neck cancer patients (39).

Further analysis aligns our findings with the study by Kong et al.,

who through NMR analysis found that the up-regulation of lactate,
FIGURE 3

Preliminary MR analyses for the associations between blood metabolites and the risk of oral cancer. The circle from the outer to the inner
represented the IVW, MR-Egger, weighted medine, simple mode and weighted mode, respectively. Blood metabolites was classified in order, Amino
Acid, Nucleoside, Alkaloid, Vitamin, Xenobiotics, Lipid, Peptide, Steroid, Unknown. The shades of color were reflections of the magnitude of the p-
value as the label inside the circle. (MR, Mendelian randomization; IVW, inverse variance-weighted; WMedine, weighted median; SMode, simple
mode; WMode, weighted mode.).
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choline, and glucose and the down-regulation of proline, valine,

isoleucine, aspartate, and 2-hydroxybutyric acid may contribute to

oral cancer development (40). This further affirms the significance

of plasma metabolites as potential metabolic biomarkers for

oral carcinogenesis.

Our observation is the consistent demonstration of the

anticancer activity of a-tocopherol across multiple studies,

especially regarding its therapeutic potential for oral cancer (41–

43). a-tocopherol acts by inducing apoptosis to inhibit the growth

of cancer cells. Moreover, it serves as a scavenger of free radicals,

combating cancer cells through oxidative stress. While its antitumor

activity may be perceived as weaker compared to cisplatin,

indications of apoptosis onset appear earlier for a-tocopherol. Its
lack of cytotoxicity further illustrates its potential as an antitumor

agent (41). Alpha-tocopherol has displayed effective antitumor

activity against ORL-48 in experiments (43). Alongside elevated

serum levels of retinol, it’s been associated with a decreased risk of

oral cancer. These findings suggest that alpha-tocopherol might
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serve as a promising therapeutic agent for oral cancer. Variations in

tryptophan concentrations hint at biochemical and micro-

environmental changes occurring in oral cancer tissues. In our

Mendelian experiment, a-tocopherol has an OR value of 0.9959,

with a 95% CI of 0.9928-0.9991 and p=0.0109, indicating a

significant association with a specific condition or phenotype.

This bolsters its potential therapeutic implications.

In our study, we initially linked allantoin to oral cancer with a

down-regulation (OR 0.9982, 95% CI: 0.9964–1.0000, p=0.0467).

While focusing on oral cancer, broader research suggests allantoin’s

effects might extend to other cancers, indicating a need to understand

its systemic impact beyond the oral cavity. Allantoin could increases

under stress conditions, has shown cytotoxicity against various age-

related cancers, especially in environments simulating oxidative

stress. In our study, 1-palmitoylglycerophosphoethanolamine (OR

1.0028, 95% CI: 1.0005–1.0052, p=0.0185), has an up-regulation in

oral cancer patients. In an Alpha-Tocopherol, Beta-Carotene Cancer

Prevention Study, 1-palmitoylglycerophosphoethanolamine has
FIGURE 4

Scatter plots of the MR estimates for the significant causality of blood metabolites and the risk of oral cancer. The causal effect of the 15 identified
metabolites on oral cancer. The lines implying positive correlations moved diagonally upward from left to right, indicating a facilitative effect of
metabolites on oral cancer. The horizontal and vertical lines indicated each correlation’s 95% confidence interval. The lines implying negative
correlations move diagonally downward from left to right, indicating the inhibitory effect of blood metabolites on oral cancer. (MR, Mendelian
randomization; SNPs, single nucleotide polymorphisms).
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reported a significant association with retinol levels, suggesting its

potential role in the metabolic pathways influenced by vitamin A (44,

45). Randomized trials and meta-analyses indicated a potential

increased risk for certain cancers with high serum retinol

concentrations or after supplementation (46). Both cases highlight

the importance of studying these metabolites in a wider

cancer context.

Our study also unveiled results that diverge from previous

research. For example, our research found a significant negative

correlation between the levels of uridine and pyridoxate and the risk

of oral cancer, a finding not reported in previous studies. This may

suggest a diverse role of these metabolites in the onset and

progression of oral cancer. Additionally, our study discovered
Frontiers in Oncology 07
new metabolites related to oral cancer risk, such as X-03003 and

X-03088, which have not been previously reported to be associated

with oral cancer risk. These novel findings may contribute to a more

comprehensive understanding of the metabolic mechanisms of oral

cancer and offer new potential biomarkers for the early diagnosis

and prevention of oral cancer.

Several limitations exist within this study. Firstly, the exposure of

interest at the genome-wide level had a restricted number of SNPs.

This was addressed by applying slightly relaxed thresholds for theMR

analysis, mirroring practices in previous research. Nonetheless, with

F-statistic values for the chosen SNPs surpassing 10, the robustness of

our IVs is indicated. The Steiger test results further affirm the validity

of our threshold approach by consistently supporting the causal
TABLE 1 Pleiotropy and heterogeneity of MR.

Exposure Cochran Q MR-Egger MR-PRESSO

tryptophan 0.37 0.27 0.36

uridine 0.29 0.26 0.31

allantoin 0.61 0.28 0.55

pentadecanoate (15:0) 0.58 0.55 0.55

alpha-tocopherol 0.99 0.54 0.99

laurate (12:0) 0.15 0.98 0.19

saccharin 0.32 0.60 0.41

1-oleoylglycerol (1-monoolein) 0.35 0.55 0.36

N-(2-furoyl)glycine 0.79 0.28 0.81

pyridoxate 0.38 0.59 0.45

1-methylxanthine 0.84 0.89 0.89

pro-hydroxy-pro 0.32 0.09 0.39

1-palmitoylglycerophosphoethanolamine 0.36 0.45 0.38

4-androsten-3beta,17beta-diol disulfate 2* 0.09 0.10 0.09

palmitoyl sphingomyelin 0.45 0.45 0.47

X-03003 0.65 0.22 0.68

X-03056 0.31 0.58 0.37

X-03088 0.75 0.11 0.66

X-03094 0.59 0.45 0.58

X-06126 0.70 0.25 0.74

X-06350 0.41 0.21 0.48

X-10510 0.90 0.14 0.91

X-11905 0.91 0.27 0.91

X-12435 0.57 0.35 0.60

X-12680 0.07 0.08 0.09

X-12786 0.26 0.61 0.32

X-13429 0.82 0.72 0.88

X-14056 0.94 0.60 0.93

X-14541 0.28 0.18 0.30
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direction. Secondly, our MR analysis exclusively utilized GWAS data

from European ancestry individuals, limiting ethnic variability.

Consequently, the applicability of these findings to diverse

populations necessitates further investigation and validation.

Thirdly, the MR estimation’s precision is inherently tied to sample

size, emphasizing the need to augment the sample size for result

validation. While MR analysis sheds light on disease etiology, it’s

imperative to corroborate our findings through rigorous RCTs and

foundational research before clinical integration.
5 Conclusion

This MR study offers evidence of the role specific blood

metabolites play in oral cancer, pinpointing several with potential

risk or protective effects. These findings could be helpful for new

diagnostic tools and treatments for oral cancer. While the results are

promising, additional research is necessary to fully validate and

refine these conclusions. This study serves as a foundational step

towards more comprehensive understandings in the future.
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