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Multimodal machine learning
models identify chemotherapy
drugs with prospective clinical
efficacy in dogs with relapsed
B-cell lymphoma
A. John Callegari 1, Josephine Tsang1, Stanley Park1,
Deanna Swartzfager1, Sheena Kapoor1, Kevin Choy2

and Sungwon Lim1*

1ImpriMed Inc., Mountain View, CA, United States, 2Department of Oncology, Blue Pearl Seattle
Veterinary Specialist, Kirkland, WA, United States
Dogs with B-cell lymphoma typically respond well to first-line CHOP-based

chemotherapy, but there is no standard of care for relapsed patients. To help

veterinary oncologists select effective drugs for dogs with lymphoid malignancies

such as B-cell lymphoma, we have developed multimodal machine learning

models that integrate data from multiple tumor profiling modalities and predict

the likelihood of a positive clinical response for 10 commonly used chemotherapy

drugs. Here we report on clinical outcomes that occurred after oncologists

received a prediction report generated by our models. Remarkably, we found

that dogs that received drugs predicted to be effective by the models experienced

better clinical outcomes by every metric we analyzed (overall response rate,

complete response rate, duration of complete response, patient survival times)

relative to other dogs in the study and relative to historical controls.
KEYWORDS

chemotherapy, machine learning, personalized & precision medicine (PPM), lymphoma,
artificial intelligence - AI, rescue therapy, salvage therapy
Introduction

Diffuse large B cell lymphoma (DLBCL) is the most commonly occurring lymphoma in

both dogs and humans (1, 2). In both species, the tumors are typically highly responsive to

first-line combination therapies that include cyclophosphamide, doxorubicin, vincristine,

and prednisone (CHOP). There is not yet a standard of care for either dogs or humans

when patients relapse after first-line therapy (2, 3). Patients may be reinduced with first-line

therapy or treated with one of several different rescue therapies (salvage therapies). Thus, in
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both humans and dogs there is an unmet need for support in

identifying the most effective treatment option in the event

of relapse.

To help veterinary oncologists rapidly identify the most effective

treatments for dogs with lymphoid malignancies like DLBCL, we

developed machine learning (ML) models that predict clinical

outcomes for 10 different chemotherapy drugs commonly used to

treat these malignancies (3). The models predict outcomes derived

from medical records by integrating information from two tumor

profiling technologies known to yield actionable information with a

high frequency: multicolor flow cytometry (4, 5) and ex vivo drug

sensitivity testing (3, 6–8). Flow cytometry provides quantitative

information about immune cell composition, cell size, and cell

granularity at the single-cell level, while ex vivo drug sensitivity

testing directly quantifies the cytotoxic effects of different drugs

using live tumor cells. ML models like ours, which integrate data

from multiple tumor profiling modalities, are termed “multimodal”

ML models. Because these models have the potential to increase the

accuracy of ML-based precision oncology tools and the frequency

with which these tools provide actionable clinical guidance, the

development of multimodal ML models is a highly active area of

research (9–11).To our knowledge, the study presented here is the

first to report on prospective clinical outcomes for cancer patients

treated with the assistance of a multimodal ML tool (10).
Results

We used ML models to generate a prediction report that was

provided to oncologists at multiple sites in the US beginning in June

of 2020. The report was sent 7 days after live tumor biopsies were

received for profiling at our testing facility. In the report, tumor

response predictions were presented for each drug on a scale of 0 to

1, with 1 representing the highest likelihood of a positive clinical

response (partial response or complete response). We found that

there was an approximate correspondence between a prediction

score of 0.5 and a 50% probability of a positive response (3). The

report provided written guidance on how to interpret the

predictions but did not specify how the information should be

used to modify treatment plans. Thus, clinicians were free to

combine their clinical expertise with the additional information in

the prediction report.

The reports were provided to veterinary oncologists at multiple

clinics in the US and treatment outcomes were then collected and

analyzed. Our primary endpoint for analysis of patient outcomes

was patient survival time, but for this study we also analyzed

duration of complete response, complete response rate, and

overall response rate. Because of the high prevalence of B-cell

lymphoma and the short duration of response to therapy in

relapsed patients with this cancer type [106 days (12)], patients

with relapsed B-cell lymphoma were among the first patients in our

population for whom we were able to accumulate a statistically

relevant number of prospective survival outcomes. For the current

study, we analyzed a cohort of 60 dogs that had relapsed from a

prior therapy or therapies at the time that our prediction report was

provided (Supplementary Figure 1).
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Performance of the prediction report was quantified using a

matching score analysis commonly employed in human clinical

trials where patients are stratified by the degree of matching

between recommended and administered drug treatments (13–

18). For each dog, the degree to which treatments matched the

prediction report was summarized using a matching score similar to

those described previously (13–18). The matching score was

calculated as the percentage of all administered drug treatments

assigned a prediction score greater than 0.5 in our prediction report.

We found that the matching scores for this cohort were generally

very high, with a median value of 87.5% (Supplementary Figure 2).

To examine the relationship between matching scores and

clinical outcomes, we split the cohort into two groups at the

median matching score value and analyzed outcomes in the two

groups (17). One group comprised the lower-matching half of the

population while the other group comprised the higher-matching

half of the population. A detailed discussion of dichotomization

methods is included below in the methods section.

Baseline patient and tumor characteristics were similar in the

two matching groups (Supplementary Table 1), but clinical

outcomes were better in the high matching group for every

metric we analyzed. Using the Kaplan-Meier estimator to

analyze the interval between receipt of the prediction report

and death of the patient (Figure 1A), we found that patients in

the high matching group experienced significantly longer survival

times (p < 0.001 for the logrank test), with a median survival time

of 270 days in the high matching group and 83 days in the low

matching group.

Patients in the high matching group experienced both a higher

CR rate (CRR) and a higher overall response rate (ORR) than

patients in the low matching group (Figure 1B) (CRR: 53.3% high,

13.3% low, p = 0.002; ORR: 70.0% high, 46.6% low, p = 0.12). In

patients that experienced a CR, Kaplan-Meier analysis indicated

that duration of CR was longer in the high matching group than in

the low matching group (Figure 1C) (p = 0.10 for the logrank test).

The statistical power of this survival curve comparison is limited

because only five patients in the low matching group experienced a

CR. The median duration of a CR was 200 days for the high

matching group as compared to 48 days for the low matching

group. Thus, the longer survival experienced by the high matching

group was accompanied by a similarly extended period of good

health during which the lymphoma was in complete remission.

To determine if matching scores were influenced by the drugs

predicted to be effective in the report, we analyzed the frequency

with which the prediction report contained scores above 0.5 for the

chemotherapy drugs in the high matching and lowmatching groups

(Figure 1D). No statistically significant difference was found

between the relative frequency of these predictions in the two

groups for any drug. Thus, matching scores in the low matching

group cannot be explained by properties of the drugs predicted to be

effective for the dogs in that group. This analysis also suggests that

the drug sensitivity of the two matching groups was similar at the

population level and that any differences in clinical outcomes were

likely attributable to personalization of the drug selection process.

To isolate the effect of matching score from other variables that

might confound our analysis of patient survival times, we corrected
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for tumor grade, cancer stage, and cancer substage using

multivariate Cox regression. In both univariate and multivariate

Cox regression models, matching score group was the best predictor

of patient survival with a hazard ratio (HR) of 0.31 (95% CI 0.15-

0.65) in a univariate model and HR of 0.28 (95% CI 0.14-0.59) in a

multivariate model (Table 1). Thus, consistent with the baseline

patient characteristics shown in Supplementary Table 1, the

markedly longer survival seen in the high matching group cannot

easily be explained by the presence of more advanced or aggressive

disease in the low matching group.
Discussion

The clinical outcome advantage of the high matching group

relative to the low matching group was observed with every metric

examined (ORR, CRR, durations of CRs, survival times) and after

correcting for potentially confounding variables using multivariate

Cox modeling. The clinical outcome advantage was also evident in

all four metrics when we compared high matching group outcomes

to historical controls (Table 2). Both ORR and CRR values observed

in the high matching group were higher than historical control

values (ORR: 70% this study, 48% controls; CRR: 53% this study,
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27% controls) (19). The median duration of CR of 200 days that we

observed in the high matching group was longer than a historical

control value of 106 days taken from the mean of 15 rescue therapy

studies (12). Thus, the patients in our study group that received

treatments matching their multimodal ML predictions to a high

degree experienced approximately double the frequency of CR and

double the duration of CR compared to historical values reported in

the literature. Although patient survival is not uniformly reported in

the canine rescue therapy literature, we estimated that historical

median survival time after relapse to be 110 days (see methods

section for details), which is substantially lower than the value of

270 days that we observed in the high matching group.

To compare the clinical performance of our precision oncology

platform with results from other platforms, we compiled mortality

hazard ratios (HRs) from a sample of prospective matching score

studies in the published literature (Table 3) (13–18). A low HR

means that reduced mortality was observed for patients in the high

matching group. The HR that we report here (0.28, 95% CI 0.14-

0.59) is comparable to that of the most performant precision

oncology platform in the sample of published values (HR 0.24,

95% CI 0.078–0.76). Among the studies shown in Table 3, our study

is the only to use computer-automated predictions rather than

recommendations from human experts.
A B C D

FIGURE 1

Comparison of clinical outcomes in low matching and high matching groups. (A) Kaplan-Meier curves showing survival of dogs after oncologists
were provided with multimodal ML predictions. All causes of mortality are included. p-value was calculated using the logrank test. (B) Bar graphs
showing CRR and ORR for the two matching score groups. p-values from Fisher's exact test were p = 0.002 for CRR and p = 0.12 for ORR.
(C) Kaplan-Meier curves showing disease-free survival after CR for the subset of dogs that experienced CR after their oncologists received
multimodal ML predictions (n = 5 for low matching and n = 16 for high matching). p-value was calculated using the logrank test. (D) Bar graph
showing the relative frequencies with which different chemotherapy drugs were predicted to elicit a positive response for dogs in the two matching
groups. p-values are from the two-sample Z-test with correction for multiple hypothesis testing using the Benjamini-Hochberg method.
TABLE 1 Cox proportional hazards models of patient survival.

covariate

Univariate Multivariate

coef HR (95% CI) P-value concordance coef HR (95% CI) P-value

grade -0.11 0.90 (0.27-2.98) 0.861
0.49

0.33 1.4 (0.41-4.7) 0.604

substage 0.63 1.8 (0.85-4.14) 0.121
0.55

0.96 2.6 (1.1-6.1) 0.027

stage -0.13 0.87 (0.57-1.34) 0.535
0.52

-0.23 0.80 (0.49-1.3) 0.357

matching group -1.16 0.31 (0.15-0.65) 0.002
0.57

-1.26 0.28 (0.14-0.59) <0.001
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The results reported here strongly support the efficacy of

combining clinical knowledge with multimodal ML decision

support to optimize rescue therapy outcomes for canine patients

with relapsed B-cell lymphoma. We are actively researching

application of this technology in human oncology and the impact

of tumor mutation profiling data on ML model performance.
Methods

Study design

Multimodal ML models were initially developed during a

preclinical research stage and then provided to veterinary

oncologists throughout the US. The preclinical research was

reported in a previous study (3) and clinical research is reported

here. An open cohort study design was used to assess the

performance of clinical decision support provided by multimodal

ML models. Enrollment began in June of 2020 and is continuing at

the time of this publication. Informed consent was obtained from

pet owners using a form that was approved by the clinical review

boards and ethical review committees of participating veterinary
Frontiers in Oncology 04
hospitals. Veterinary oncologists at multiple sites in the US

collected live-cell tumor biopsies from dogs with lymphoid

malignancies as described below. Tumor samples were profiled at

ImpriMed labs, generating inputs for multimodal ML models. ML

prediction reports were provided to oncologists in pdf format with

an average turnaround time of seven days from receipt of samples in

the labs. Chemotherapy was administered by veterinary oncologists

according to the standards used at their treatment sites. Medical

records were requested 3 months after delivery of the prediction

report and then periodically after that to increase the length of the

outcome observation interval. The stopping point for this study was

chosen when we estimated that sufficient time had elapsed from the

beginning of the enrollment period to assess patient survival in a

statistically relevant number of patients.
Tumor biopsy

Fine-needle aspirates (FNAs) from enlarged lymph nodes were

collected at oncology clinics and shipped to the ImpriMed testing

lab via overnight courier and processed within 24-72 hours of

collection. Cells were maintained at a high level of viability during

shipping using ImpriMed Transport Media (ImpriMed Inc.,

Mountain View, CA) that was optimized for this purpose.
Inclusion criteria

For this study, we included dogs with B-cell lymphoma that had

relapsed from prior cytotoxic chemotherapy when their oncologists

were provided with ML prediction reports. Relapse status was

reported to us by participating oncologists or determined by

inspection of medical records. We performed immunophenotyping

and clonality testing on all tumor samples internally at our A2LA-

accredited testing lab. Patients were included in this study that were

determined to have a clonal rearrangement of a B-cell receptor using

PARR and to have the following immunophenotype using flow

cytometry: (CD21+ or CD79a+)CD34-CD14-CD3-CD5-. Only dogs

that were treated with 3 or more anticancer drug administrations

after reception of the prediction report were included. This final
TABLE 2 Comparison of high matching group outcomes to internal and
historical controls.

metric

high
matching
group

low matching
group inter-
nal control

historical
controla

complete response
rate [%] 53* 13* 27

overall response
rate [%] 70** 47** 48

median duration
of complete
response [days] 200 48 106

median survival
after
relapse [days] 270 83 ~110
p-value comparisons between high and low matching groups calculated using Fisher's exact:
*p = 0.002, **p = 0.12. aSee main text for information on historical controls.
TABLE 3 Mortality hazard ratios for high matching group patients in a sample of different precision oncology publications.

year study HR 95% CI n patients

2023 Shaya et al. (13) 0.24 0.078–0.76 18

2023 this study 0.28 0.14-0.59 60

2019 Sicklick et al. (14) 0.44 0.19-1.1 69

2019 Rodon et al. (15) 0.48 0.28–0.84 69

2022 Louie et al. (16) 0.54 0.28–1.03 80

2019 Rodon et al. (15) 0.56 0.25–1.3 38

2016 Wheler et al. (17) 0.65 0.43–1.0 188

2022 Charo et al. (18) 0.65 0.34 to 1.25 113
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inclusion criterion was added to improve the accuracy of the

matching scores by guaranteeing a minimal sample size for the

calculation. Cohort selection statistics are shown in Supplementary

Figure 1. The patients who met all of these inclusion criteria had

prediction reports delivered to oncologists on their behalf between

June 26th, 2020 and November 1st, 2022. Biopsy samples and

medical records for patients in the study cohort were provided by

31 veterinarians at 29 clinics in 14 states. Of the 31 veterinarians, 29

were board-certified oncologists, 1 was an oncology resident, and 1

was a general practitioner.
Tumor profiling

The sensitivity of live tumor cells to 13 different drugs was

quantified using a high-throughput ex vivo assay as previously

described (3). Tumor cells were profiled at the single-cell level using

multicolor flow cytometry and a panel of 9 primary antibodies as

previously described (3).
Collection of clinical information

Baseline patient characteristics (Supplementary Table 1) were

collected at the time of biopsy or soon afterwards from service

request forms or a web portal. Tumor grades were determined by

individual oncology practices and may refer to cytology or

histopathology results. Patient medical charts and electronic

health record exports were emailed to us by oncology clinics

three months or more after the biopsy date. Medical records were

inspected and drug treatments, tumor responses, and death/

euthanasia events were manually entered into spreadsheets.

Tumor response annotations were classified into four categories

progressive disease (PD), stable disease (SD), partial response (PR),

or complete response (CR). We found that some clinicians used

RECIST (20) to objectively assign response categories while others

recorded qualitative clinical assessments. Medical records collected

and analyzed in this fashion were used both to create clinical

outcome labels for training ML models and to quantify health

outcomes occurring after delivery of ML predictions.
ML model development

Binary drug response labels were generated from medical

records as previously described (3). Briefly, drug treatments

followed by SD or PD clinical tumor responses were assigned a

value of 0 and drug treatments followed PR or CR were assigned a

value of 1. ML models were trained to predict the binary drug

response labels for a set of commonly used drugs using features

from flow cytometry and ex vivo drug sensitivity assays as

previously described (3). Models were updated periodically over

the course of the study by retraining existing models with additional

data (continual ML) and by adding models for drugs that had

previously lacked sufficient data for model development.
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Continuous accrual of additional training samples was a

consequence of our open cohort study design and resulted in an

increasing number of samples independently and identically drawn

from the same population of dogs. The first generation of models

was trained to predict clinical outcomes for 7 different

chemotherapy drugs using training data from 463 dogs with

known clinical outcomes. During this study, the number of

individual drug prediction models increased to 10 and the

number of training samples increased to 842 dogs. The models in

release v1.0 were random forest models generated using the caret

(21) and ranger (22) libraries. The models in releases v2.0 and above

were generated using the scikit-learn (23), BayesOpt (24), XGBoost

(25), and imbalanced-learn (26) libraries and were either random

forest models, elastic net logistic regression models, or voting

ensembles composed of multiple different ML models. Predictions

for the low and high matching groups were evenly distributed in

time, resulting in a similar utilization of the different model versions

in the two matching groups (Supplementary Figure 3).
Matching score calculation

Matching score was determined by calculating the percentage of

the drug treatments received by a dog that corresponded to drugs

with a prediction score above 0.5 in the prediction report:

matching score = 100� treatments with prediction score > 0:5
total number of treatments

Only treatments occurring after delivery of the prediction

report were included in the calculation. For the purposes of this

analysis, a treatment was defined as a 1 week course of a drug that

was administered more than once per week, or a single

administration of a drug that was given weekly or at lower

frequency. To illustrate calculation of the matching score,

consider a dog that received 6 weeks of prednisone treatments

given twice per week, and 2 infusions of rabacfosadine (trade name

Tanovea-CA1) separated by a three week interval. If the dog’s

prediction scores for prednisone and rabacfosadine were 0.3 and 0.7

respectively, then the dog received 2 rabacfosadine treatments that

matched the ML predictions and 6 prednisone treatments that did

not match the ML predictions for a total of 8 treatments. Thus, the

matching score for this dog would be 100 * 2/8 = 25%.

Our matching score calculation was slightly different than the

calculation most frequently found in the precision oncology

literature (13–18). We introduced a modification to the

calculation to prevent the score from biasing our outcome

statistics towards positive clinical outcomes in the high matching

group. Matching score is typically calculated by dividing the

number of drugs given that match actionable biomarkers by the

total number of actionable biomarkers. When we implemented this

standard matching score for our study, we discovered that the high

matching group experienced better clinical outcomes even when we

shuffled the drug recommendations. In retrospect, it is easy to see

why the standard matching score calculation introduces a bias
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towards positive clinical outcomes in the high matching group.

Patients who lived longer tended to receive a greater number of

different drugs by virtue of the fact that the oncologist had more

time for empirical therapy (i.e. to try more drugs). Thus, any

matching score that rewards the total number of drugs

administered will bias towards healthier patients regardless of the

performance of the precision oncology platform. We eliminated this

inherent bias by including the total number of drugs administered

in the denominator of our calculation.
Dichotomization by matching score

Several methods were found in the precision oncology literature

for choosing the threshold value used to dichotomize the study

cohort into low matching and high matching groups. In the studies

we examined, four used the arbitrary threshold value of 50% (13, 14,

16, 27), three adjusted the threshold to create the greatest difference

in outcomes between the high and lowmatching groups (14, 15, 18),

and one study used the median matching score (17). We chose the

median matching score as the threshold for dichotomization of our

cohort because this method offers no opportunity for investigator

bias introduced by testing multiple hypotheses about the

appropriate threshold value. The clinical outcome advantage

associated with higher matching scores was not dependent on the

method of dichotomization (Supplementary Figure 4).
Analysis of clinical outcomes

Clinical outcomes data were analyzed using custom Python

scripts and statistical functions from Python libraries.

Supplementary Table 1 was automatically generated using the

TableOne library (28). The lifelines library (29) was used for

Kaplan-Meier statistics and logrank testing. The scipy library (30)

was used to compute Fisher’s exact test. The statsmodels (31) library

was used to calculate the two-sample Z-test and Benjamini-

Hochberg corrections.
Cox proportional hazards modeling

The lifelines library (29) was used for univariate and

multivariate Cox regression. Confounding variables were chosen

based on prior evidence of prognostic significance. The

proportional hazards assumption of time invariance was verified

for each variable using the check_assumptions() method of the

CoxPHFitter class. Models were fit using default parameters for the

CoxhPHFitter class (baseline_estimation_method = ‘breslow’,

penalizer = 0.0, strata = None, l1_ratio = 0.0, n_baseline_knots =

None, knots = None, breakpoints = None). Confidence intervals

and p-values were generated by CoxhPHFitter during model fitting.

Concordance for the multivariate model was 0.62. Concordance

values for univariate models are shown in Table 1.
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Estimation of survival after relapse for
historical control

We estimated that the historical median survival time after

initiation of rescue therapy is roughly 110 days by subtracting

median time to relapse frommedian overall survival time [the mean

values from 14 published studies were used to derive this

estimate (19)].
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