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A study on the radiomic
correlation between CBCT and
pCT scans based on modified
3D-RUnet image segmentation
Yanjuan Yu1†, Guanglu Gao2†, Xiang Gao2*, Zongkai Zhang2,
Yipeng He2, Liwan Shi2 and Zheng Kang2*

1College of Electronic Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China,
2Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen,
Fujian, China
Purpose: The present study is based on evidence indicating a potential

correlation between cone-beam CT (CBCT) measurements of tumor size,

shape, and the stage of locally advanced rectal cancer. To further investigate

this relationship, the study quantitatively assesses the correlation between

positioning CT (pCT) and CBCT in the radiomics features of these cancers, and

examines their potential for substitution.

Methods: In this study, 103 patients diagnosed with locally advanced rectal

cancer and undergoing neoadjuvant chemoradiotherapy were selected as

participants. Their CBCT and pCT images were used to divide the participants

into two groups: a training set and a validation set, with a 7:3 ratio. An improved

conventional 3D-RUNet (CLA-UNet) deep learning model was trained on the

training set data and then applied to the validation set. The DSC, HD95 and ASSD

were calculated for quantitative evaluation purposes. Then, radiomics features

were extracted from 30 patients of the test set.

Results: The experiments demonstrate that, the modified model achieves an

average DSC score 0.792 for pCT and 0.672 for CBCT scans. 1037 features were

extracted from each patient’s CBCT and pCT images, 73 image features were

found to have R values greater than 0.9, including three features related to the

staging and prognosis of rectal cancer.

Conclusion: In this study, we proposed an automatic, fast, and consistent

method for rectal cancer GTV segmentation for pCT and CBCT scans. The

findings of radiomic results indicate that CBCT images have significant research

value in the field of radiomics.
KEYWORDS

radiomics, cone-beam CT, rectal cancer, 3D-RUnet, CLAHE
Abbreviations: pCT, Planning Computerized Tomography; CBCT, Cone Beam CT; TME, Total Mesolectal

Excision; nCRT, Neoadjuvant Chemoradiotherapy; pCR, Pathologic Complete Response; CLAHE, Contrast

Limited Adaptive Histogram Equalization; DSC, Dice similarity coefficient; 95%HD, Hausdorff-95 distance;

ASSD, average symmetric surface distance; PCC, Pearson correlation coefficient.
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Introduction

The standard-of-care treatment for locally advanced rectal

cancer (LARC, T34 or N+) is currently total mesorectal excision

(TME) followed by neoadjuvant chemoradiotherapy (nCRT) (1–3).

After nCRT, approximately 15%–27% of patients can show a

pathologic complete response (pCR) (4, 5). And several prior

studies have shown that these patients typically have outstanding

long-term outcomes without surgery (6–9). Habr-Gama and

colleagues suggested a “wait and see” policy, while Maas and

colleagues approach a reasonable solution that could avoid

surgery and preserve organs (6, 10). The pCR, however, could

only be performed using histopathological analysis of surgically

resected specimens. So, it remains a major challenge to develop a

non-invasive, validated way to reliably classify pCR patients

after chemoradiotherapy.

Tumor segmentation and the subsequent quantitative of rectal

cancer in medical images provide valuable information for the

analysis of pathologies and prediction of patient outcomes.

Numerous studies have shown that image radiomic features

extracted from multi-modality imaging techniques, such as CT

(11), MRI (12), and PET-CT (13), can be used to predict the

treatment response and prognosis of locally advanced rectal

cancer. Machine learning models based on CT and MRI image

radiomics have also demonstrated good reproducibility and

robustness (14, 15). However, these imaging techniques are

typically used for disease diagnosis before or after radiotherapy,

and are unable to monitor the changes in tumor heterogeneity

during the treatment process (16). In contrast, cone-beam CT

(CBCT) scans, which are routinely obtained during radiotherapy

to examine patient position changes, do not require patients to

undergo additional radiation exposure. The features extracted from

CBCT may provide valuable information on the changes in tumors

during the treatment process without exposing patients to

additional radiation hazards. The goal of this study is to examine

whether CBCT features can be used for clinical staging or prognosis

assessment of tumors by comparing the linear relationship between

CBCT and pCT-extracted imaging features.

Precise segmentation of rectal cancer as the mask is particularly

important for radiomics extraction and affects the robustness of

radiomic features. The current image segmentation methods

include manual, semiautomatic, and fully segmentation. The U-Net

(17) based models have proven effectiveness over traditional medical

segmentation algorithms. However, the 2D U-Net model for

segmenting tumors only obtain a single tumor slice in CT scan,

while tumors are usually distributed in continuous CT slices (18). To

solve the issues, we extend the 2D U-Net to a 3D version with Resnet

architecture to capture the inter-slice continuity of the tumor.
Methods

Patients

The article under consideration presents a retrospective analysis

of 103 patients who underwent neoadjuvant chemoradiotherapy in
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the Department of Oncology Radiotherapy at the Affiliated Hospital

of Xiamen University between January 2019 and October 2020. The

study followed the ethical principles outlined in the Helsinki

Declaration and its subsequent relevant revisions for all

procedures involving human participants. The inclusion criteria

for the retrospective analysis were as follows:
1. Biopsy-confirmed primary rectal adenocarcinoma

2. Locally advanced disease (T stage ≥3) prior to treatment

3. No prior receipt of chemoradiotherapy, radiotherapy,

or chemotherapy
Only patients who met these criteria were included in the

analysis. In compliance with the Helsinki Declaration of 1964 and

its later corresponding revisions, all the procedures carried out in

this study involving human participants were compliant. CBCT was

scanned during the whole treatment period.
Image acquisition

The CT scans utilized in this study for lesion localization were

conducted using a GE LightSpeed device (manufactured by GE

Medical System, USA). The scans were performed using parameters

of 120 kV tube voltage, 200 mA tube current, a 512×512

reconstruction matrix, and 5mm slice thickness. In addition,

CBCT scans were performed using a Truebeam linear accelerator

(manufactured by Varian Medical System), with a 512×512

reconstruction matrix and 3mm slice thickness.
CLA-UNet structure analysis

In this article, we extend the traditional 2D U-Net to 3D U-Net

equipped with ResNet architecture to capture the inter-slice

continuity of the tumor, and we propose a CLAHE (19)

processed U-Net (CLA-UNet) model to further improve the

clarity of the anatomy structure, texture, and boundary in the

CT image before segmentation. This CLA-UNet designed to

accurately segment the lesion area in positioning CT (pCT) and

cone-beam CT (CBCT) images of rectal cancer tumor. The CLA-

UNet network combines the popular 3D-UNet structure with a

residual module (Res-net) to improve the accuracy of tumor

location and boundary description, ensuring a precise radiation

target area.

The structure of the CLA-UNet network is illustrated in

Figure 1 of the article. The network is designed to automatically

segment the lesion area both in pCT and CBCT images, which also

providing valuable information for radiation treatment planning

and evaluation.
CLAHE algorithm processing

Prior to importing the 3D CT data into the 3D-RUNet network

for training, a preprocessing step is carried out to crop the CT
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volume and enhance the image contour. This involves removing

any blank areas or areas without drawn target regions, resulting in

the cropped CT volume being resized to 256×256×128 voxels using

linear interpolation. As rectal tumors are considered soft tissue, the

CT value range is restricted to (-200, 300). To focus the network

training on information that is relevant to rectal tumors, the 3D CT

image is thresholder such that any image values outside the

specified range are replaced with corresponding boundary values.
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To further improve the clarity of the anatomy structure, texture,

and boundary in the CT image, the thresholder CT image is

processed using the Contrast Limited Adaptive Histogram

Equalization (CLAHE) algorithm.

This results in the rectal structure and boundary becoming

clearer and an overall improvement in image quality, as

demonstrated in a comparison of the image before and after

thresholding and CLAHE processing shown in Figure 2.
FIGURE 2

Data pre-processing with CLAHE. (A) Original CT image; (B) CT image intercepted by threshold with HU=(-200~300); (C) CT image transformed by CLAHE.
FIGURE 1

Layers of the proposed CLA-UNet model.
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Model training and evaluation

The CLA-UNet network is based on the PyTorch kernel

platform and the training machine is configured with a Windows

10 operating system and a Quadro P5000 GPU device. The Adam

optimizer is used for training with an initial learning rate of 0.0001,

and the batch size for network training is set to 2 with a maximum

training cycle of 150. This study is trained on a 103 rectal cancer CT

dataset provided by the First Affiliated Hospital of Xiamen

University, with 70% of the data randomly selected as the

training set and 30% as the testing set. The network is trained

using the Tversky Loss function, shown in Equation 1.

T(a , b) = oN
i=1p0iɡ0i

oN
i=1p0iɡ0i + aoN

i=1p0iɡ1i + boN
i=1p1iɡ0i

(1)

p0i is the probability that the i-th voxel is a tumor, p1i is the

probability that the i-th voxel is not a tumor, g0i is 1 if the voxel is

abnormal, 0 if it is not abnormal, g1i is the opposite of g0i. Tversky

Loss effectively solves the problem of data imbalance by finding a

better balance between accuracy and recall.

The model is evaluated using the Dice similarity coefficient

(DSC), Hausdorff-95 distance (95% HD), and average symmetric

surface distance (ASSD) evaluation metric to compare the

segmentation results with those of CBCT scans.

The DSC is defined as follows, shown in Equation 2:

DSC =
2 P ∩ Gj j
Pj j + Gj j (2)

Where the P represents the ground truth, G denotes the

prediction results and the P ∩ G is the intersection of P and G.

The range of DSC evaluation is [0,1], and the higher the score is

close to 1.0, the more accurate the prediction is. P and G represent

the target structure drawn by the physician and the

model, respectively.

The HD(A,B) is defined as follows, shown in Equation 3:

HD(A,B) = max(maxa∈B minb∈Bd(a, b)ð Þ,maxb∈B mina∈Bd(b, a)ð Þ)
(3)

Where d (a, b) is the distance between the point a and b.

The ASSD is shown in Equation 4:

ASSD =
1

S(A) + S(B)
(oSA∈S(A)d SA, S(B)ð Þ +oSB∈S(B)d SB, S(A)ð Þ) (4)

Where S(A) represents the surface voxels in set A, and d(SA,S

(B)) represents the shortest distance from SA to S(B).
Radiomics correlation analysis

The open source radiomics extraction software Pyradiomics 3.0

(https://pyradiomics.readthedocs.io/en/latest/) was used to extract

high-throughput features from patient images. In the test group, a

total of 30 cases were automatically segmented from pCT and

CBCT images using the 3D CLA-UNet model. All the images were

filtered by Laplacian of Gaussian (LoG) filter and performed wavelet
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transformation, so there are four types of images, namely, “Original

Images”, “texture Images”, “LoG Images”, and “Wavelet Images”.

After that, the Pearson correlation test was used to analyze the

correlation between the image radiomic feature values of pCT and

CBCT, if the Pearson correlation coefficient (PCC) R is greater than

0.9, it is considered that the feature value has strong consistency and

substitutability in machine learning (14). Pearson correlation

coefficient is a method for measuring the similarity of vectors, the

range of correlation is [-1, 1], it is defined as the ratio of the

covariance and standard deviation of two feature variables,

calculated as follows shown in Equation 5:

r =
Cov(X,Y)

sxsy
=
E½(X − mx)(Y − mx)�

sxsy
(5)

Among them, X and Y are two different groups of eigenvalue

variables, and m_x and s_x are mean and standard deviation

respectively. This process was implemented using the Pearson

algorithm in the R language (R language 3.6).
Results

Study population

The radiomics analysis were conducted on a test set of 30

patients, patients’ radiomic characteristics were grouped by LN

metastasis and compared in Supplementary Table 1. The clinical

information includes gender, age, pathology, and clinical-stage

information. All the patients received pCRT followed by TME,

and group differences were examined.
Model performance

The trend of the average Loss and average Dice values during

the CLA-UNet training process is depicted in Figure 3. It is evident

that as the number of training rounds, also known as epochs,

increases, the Loss values (a) on both the training and validation

sets rapidly decrease, while the Dice values (b) steadily improve.

When the number of epochs reaches 50, the trend stabilizes, with

the Loss value reaching close to 0 and the Dice value reaching a

stable value around 0.8, details were shown in Table 1.

The results of the CLA-UNet network training on 103 samples

showed that the network could segment the rectal tumor with good

accuracy, details shown in Figure 4. As seen in the transverse

sections, the performance of the automatic segmentation was

satisfactory for the majority of the levels. However, there were

some regions, particularly near the cecum and anus, where larger

discrepancies were observed between the manual annotations and

the machine segmentations. This was likely due to the close

proximity of densities in these areas, making it more challenging

to distinguish between the different tissues. In such cases, manual

annotations by doctors may require additional imaging modalities,

such as MRI or PET-CT, or the use of their experience to assist in

the outlining process. Despite these limitations, the average Dice
frontiersin.org
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score for the CLA-UNet outlining ranged from 0.72 to 0.86, which

is generally in line with the clinical requirements.
Inter-group correlations calculation

Automatically contouring 30 patient images based on deep

learning algorithms to ensure consistency in contouring results.

1037 features were extracted from pCT and CBCT modalities using

machine learning algorithms, including shape features (n=14), first-

order features (n=19), texture features (n=172), wavelet features

(n=728), and loG features (n=104). Pearson’s correlation analysis

was used to analyze the correlation of two sets of features, and

strong correlated features were extracted. 73 features had Pearson

correlation coefficients R greater than 0.9, meaning that these 73

features can be interchangeable. The three features confirmed in

previous literature to be related to rectal cancer staging and new

adjuvant therapy effectiveness (20), including original first-order

Energy, wavelet-HLH_glrlm Gray Level Non Uniformity, and

original_glrlm Gray Level Non Uniformity, are included in the
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strong correlated features. The correlation coefficients R of these

three features are 0.9521, 0.9406, and 0.9191, respectively, the data

of the subsequent two radiomics were shown in detail in Figure 5.
Discussion

The usage of imaging radiomics in CT scans for rectal cancer

diagnosis and prognosis analysis has been well documented in

previous studies (21). However, the application of CBCT in this

regard has been less explored. In this study, a modified deep

learning algorithm, CLA-UNet, was developed to automatically

segment the rectal cancer tumor location. With our previous

work, we had trained the deep-learning model and used it in our

clinical practice. The results indicate that the CLA-UNet model is

feasible and time-saving to perform fully automatic segmentation

for the rectal tumor both on CBCT and pCT images. To evaluate the

accuracy of the 3D mask of the CLA-UNet mode, we compared the

coverage of the predicated area with the manual segmentation with

an average Dice value, which was 0.792 for pCT and 0.672 for

CBCT scans.

Subsequently, imaging radiomic features were extracted and

analyzed from both pCT and CBCT scans using machine learning

algorithms. The results showed that 73 features had a correlation

coefficient (R) greater than 0.9. Our findings also demonstrate that

some of the prognostically significant features of radiomics have a

strong linear relationship between the pCT and CBCT images based

on automatic image segmentation, which indicate a measure of

interchangeability between the two scans. These high-correlation
A B

DC

FIGURE 3

Trend of Loss and Dice value with epoch during training both for CTs (A, B) and CBCTs (C, D).
TABLE 1 Comparison results on the test set for the pCT and
CBCT scans.

pCT CBCT

DSC 0.792 ± 0.056 0.672 ± 0.084

HD95(mm) 15.4 ± 9.5 20.2 ± 12.4

ASSD 4.3 ± 2.1 5.4 ± 2.6
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FIGURE 4

Gross tumor volume contouring with Dice = 0.78. (A) manual; (B) contouring of CLA-UNet; comparing of segmentations between manual and
deep-learning both for transverse (C) and coronal (D) planes. The red was contoured by CLA-UNet and the white was contoured by manual.
FIGURE 5

Scatter diagram of features extracted from CBCT and CT scans.
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features include those previously reported in literature as important

indicators for rectal cancer (22, 23). This highlights the potential

value of CBCT as an early biomarker for treatment response

evaluation (24).

Moreover, high-dimensional features were confirmed in

previous literature to be related to rectal cancer staging and new

adjuvant therapy effectiveness, in the present study, most of the key

features were wavelet features, which are challenging to decipher

with the naked eyes. However, high-dimensional features hold more

detailed information about the tumor and more sensitive when

assessing pCR, as was also demonstrated in recent study (20).

However, there are still some challenges in using CBCT images

for radiomics, cause the extracted textural features typically depend

on the reconstruction and scanning parameters (25). To be

consistent throughout in this study all the CBCTs were resampled

into an equal size of 5mm as pCTs, and the influence of slice

thickness on the radiomic parameters needs further investigation.

Nevertheless, other unknown factors may also influence the

consistency evaluation between pCT and CBCT radiomics.

Potentially, a radiomics approved reconstruction or corrections

could in general improve the consistency and utility of radiomics

in medical imaging. Besides this, the detector size of the CBCT has a

limited field of view (FOV) that may not be large enough for off-axis

patient positions and extensive tumors.

In conclusion, this study provides a preliminary exploration of

the correlation between pCT and CBCT imaging radiomics in locally

advanced rectal cancer. The CLA-UNet algorithm was successfully

applied to segment the rectal tumors, then the correlation between

the extracted imaging radiomic features was analyzed. The results

showed that radiomic features have a high correlation between pCT

and CBCT images, indicating the potential use of CBCT images as an

early biomarker for the evaluation of treatment response. However,

there are still some limitations in the use of CBCT images. First, the

patient sample size was small, a larger sample size test is needed to

achieve robust results. Second, the differences in reconstruction

algorithms and scan parameters, FOV limitations, and sensitivity to

motion artifacts which will influence the consistency evaluation

between pCT and CBCT radiomics. Further research is needed to

explore the potential applications of CBCT in the diagnosis and

prognosis of rectal cancer. Future studies could also focus on multi-

center data collection and validation, and on reducing the number of

features for clinical predictions.
Conclusion

In this study, we have presented a modified 3D-UNet

segmentation method, CLA-UNet, based on deep learning to

automatic segmentation the rectal cancer tumor both for pCTs

and CBCTs. Subsequently, radiomic features were extracted and

analyzed to find out the inter-group correlation, and the results

indicate that some of the prognostically significant features of

radiomics have a strong linear relationship between the pCT and

CBCT images, which indicate a measure of interchangeability

between the two scans.
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