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radiomics analysis
Fan Yang1,2, Dai Zhang1,2, Li-Hui Zhao1,2, Yi-Ran Mao1,2,
Jie Mu1,2, Hai-Ling Wang1,2, Liang Pang3, Shi-Qiang Yang4,
Xi Wei1,2* and Chun-Wei Liu5*

1Department of Ultrasound Diagnosis and Treatment, Tianjin Medical University Cancer Institute and
Hospital, National Clinical Research Center for Cancer, Tianjin, China, 2Key Laboratory of Cancer
Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University,
Tianjin, China, 3Department of Urology, Tianjin Occupational Diseases Precaution and Therapeutic
Hospital, Tianjin, China, 4Department of Urology, Tianjin First Central Hospital, Tianjin, China,
5Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
Objective: To investigate the diagnostic efficacy of the clinical ultrasound

imaging model, ultrasonographic radiomics model, and comprehensive model

based on ultrasonographic radiomics for the differentiation of small clear cell

Renal Cell Carcinoma (ccRCC) and Renal Angiomyolipoma (RAML).

Methods: The clinical, ultrasound, and contrast-enhanced CT(CECT) imaging

data of 302 small renal tumors (maximum diameter ≤ 4cm) patients in Tianjin

Medical University Cancer Institute and Hospital from June 2018 to June 2022

were retrospectively analyzed, with 182 patients of ccRCC and 120 patients of

RAML. The ultrasound images of the largest diameter of renal tumors were

manually segmented by ITK-SNAP software, and Pyradiomics (v3.0.1) module in

Python 3.8.7 was applied to extract ultrasonographic radiomics features from

ROI segmented images. The patients were randomly divided into training and

internal validation cohorts in the ratio of 7:3. The Random Forest algorithm of the

Sklearn module was applied to construct the clinical ultrasound imaging model,

ultrasonographic radiomics model, and comprehensive model. The efficacy of

the prediction models was verified in an independent external validation cohort

consisting of 69 patients, from 230 small renal tumor patients in two different

institutions. The Delong test compared the predictive ability of three models and

CECT. Calibration Curve and clinical Decision Curve Analysis were applied to

evaluate the model and determine the net benefit to patients.
Abbreviations: ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-

enhanced CT; ROI, region of interest; AUC, Area under the ROC curve; GLCM, gray level cooccurrence

matrix; GLRLM, gray-level run-length matrix; GLSZM, gray level size zone matrix; GLDM, gray level

dependence matrix; ICCs, Interclass and intraclass correlation coefficients; MRMR, max-relevance and min-

redundancy; VIF, Variance Inflation Factor; RFA, Random forest algorithm.
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Results: 491 ultrasonographic radiomics features were extracted from 302 small

renal tumor patients, and 9 ultrasonographic radiomics features were finally retained

for modeling after regression and dimensionality reduction. In the internal validation

cohort, the area under the curve (AUC), sensitivity, specificity, and accuracy of the

clinical ultrasound imaging model, ultrasonographic radiomics model,

comprehensive model, and CECT were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,

61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%, 91.1%, respectively.

In the external validation cohort, AUC, sensitivity, specificity, and accuracy of the

three models and CECT were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%;

0.90, 85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively. The DeLong

test showed no significant difference between the clinical ultrasound imagingmodel

and the ultrasonographic radiomicsmodel (Z=-1.287, P=0.198). The comprehensive

model showed superior diagnostic performance than the ultrasonographic

radiomics model (Z=4. 394, P<0.001) and the clinical ultrasound imaging model

(Z=4. 732, P<0.001). Moreover, there was no significant difference in AUC between

the comprehensive model and CECT (Z=-0.252, P=0.801). Both in the internal and

external validation cohort, the Calibration Curve and Decision Curve Analysis

showed a better performance of the comprehensive model.

Conclusion: It is feasible to construct an ultrasonographic radiomics model for

distinguishing small ccRCC and RAML based on ultrasound images, and the

diagnostic performance of the comprehensive model is superior to the clinical

ultrasound imaging model and ultrasonographic radiomics model, similar to that

of CECT.
KEYWORDS

small renal tumor, clear cell renal cell carcinoma, ultrasound, radiomics,
renal angiomyolipoma
Introduction

With the improvement of imaging techniques, the incidence of

renal cell carcinoma (RCC) has been steadily increasing at a rate of

2%-4% every year (1), among which the proportion of patients

diagnosed with small RCC (diameter ≤ 4 cm) has been constantly

increasing (2). Recently, small renal tumors have become a hot topic

in research. About 20-30% of small renal tumors are benign, and

renal angiomyolipoma (RAML) is the most common pathology

type (3). Clear cell renal cell carcinoma (ccRCC) is the most

common pathology type of RCC. There’s a lack of typical

malignant ultrasound features (necrosis or tumor embolism) in

small renal tumors less than 4cm, which makes it difficult to

discriminate small ccRCC from RAML. The low-fat content results

in hypoechoicity on ultrasound in fat-poor renal angiomyolipoma

(fpRAML), similar to small renal carcinomas. Transabdominal

ultrasonography is a common method in preoperative imaging

examination of renal tumors, but the small renal tumors may be

ignored due to the above sonographic characteristics.

In clinical practice, the identification of ccRCC and RAML is

mainly based on contrast-enhanced CT (CECT). However, CECT is
02
an invasive procedure involving intravenous contrast injection,

making it unsuitable for patients with renal dysfunction or iodine

contrast allergies. Ultrasonography examination is widely used in

clinical practice and is inexpensive, feasible, and reproducible.

Moreover, the small ccRCC may be untypical on CECT, and their

presentation could be easily confused with RAML, especially low-fat

RAML (4). In case of an unclear diagnosis, a repeated examination

is required during the follow-up period. So, repeated ultrasound

examinations may be more acceptable to these patients.

Improvement of the ultrasound diagnostic capability in clinical

physical examination will be beneficial.

With the development of artificial intelligence, radiomics

prediction models have gained attention in cancer diagnosis (5, 6).

Radiomics can extract inaccessible feature data from medical images

with high throughput and has great application prospects in

predicting the biological behavior of tumors (7, 8). In recent years,

few studies have been reported on ultrasonographic radiomics to

identify small ccRCC. It is unclear whether the diagnostic

performance could be improved using ultrasonographic radiomics

in these patients. In this current study, we investigated the feasibility

of ultrasonographic radiomics to discriminate ccRCC and RAML by
frontiersin.org

https://doi.org/10.3389/fonc.2024.1298710
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2024.1298710
constructing a clinical ultrasound imaging model, ultrasonographic

radiomics model, and comprehensive model. We also compared the

diagnostic efficacy between the above models and CECT.
Materials and methods

Study population

This retrospective study was approved by the ethics committee of

Tianjin Medical University Cancer Institute and Hospital (bc2023079).

From June 2018 to June 2022, 385 small renal tumor patients with a

histological examination at TianjinMedical University Cancer Institute

(institution 1) were retrospectively recruited to construct training and

internal validation cohorts of the model. Another 230 small renal

tumor patients with a histological examination from Tianjin First

Central Hospital, and Tianjin Occupational Diseases Precaution and

Therapeutic Hospital (institutions 2 and 3) were retrospectively

recruited, constituting an independent external validation cohort to

verify the efficacy of the prediction model. The inclusion criteria were

as follows: (1) patients performed an ultrasonic examination and CECT

within 2 weeks before the operation, and the images of the tumor’s

largest diameter were clear, (2) the diagnosis of ccRCC or RAML was

confirmed by postoperative pathology, (3) patients had no previous

history of other malignancies, (4) maximum diameter of renal tumor ≤

4cm. The excluding standards were as follows: (1) there were significant

artifacts in the ultrasound or CT images, (2) tumor components were

predominantly cystic (the solid component was less than 25%) (9), and

(3) incomplete clinical information on patients. As a result, 302 patients

with 302 small renal tumors were finally enrolled in our study to

construct ultrasonographic radiomics models and internal validation;

and 69 patients for external validation (Figure 1). Patients in institution

1 were divided into the ccRCC group (n = 182; 107 men and 75

women; mean age 56.85 ± 10.71 years) and RAML group (n = 120; 57

men and 63 women; mean age 53.64 ± 12.23 years). The mean age of

the external validation cohort was 55.72 ± 14.58 years (38 men and

31 women).
Ultrasonography and CT scanning methods
and image analysis

Color Doppler ultrasonic diagnostic apparatus of PHILIPS

EPIQ5, Toshiba Aplio 500, and 800 were used. Transabdominal

ultrasound was performed using a convex array probe with 1~6MHz.

Patients should be fasting for 8-12 hours to show the largest section of

tumors clearly. We performed a multisectional examination of both

kidneys in the supine, lateral, or prone position. Ultrasonographic

features of renal tumors were recorded, including tumor location,

maximum diameter, tumor boundaries, echo pattern, presence of

calcifications, necrotic cystic degeneration, and blood flow signals.

Preoperative CECT was performed on multiple scanners:

Siemens Somatom Definition, GE HiSpeed 16, and Philips

Brilliance 64. Acquisition parameters were as follows: tube voltage,

120–140 kV; automated varied milliampere-second settings;

collimation width, 1.5 mm. CT and CECT features included fat
Frontiers in Oncology 03
density assessment, peak enhancement degree, homogeneity of

enhancement, and the velocity of contrast in and out.

Ultrasonographic and CECT imaging were independently

assessed by two sonographers and two radiologists (all with more

than 10 years of experience). They were blinded to the pathology

results. When the diagnostic results were inconsistent, they reached

a consensus through discussion. Clinical information of these

patients was recorded, including sex, age, and clinical symptoms.
Segmentation and pre-processing of
ultrasound images

The framework of this study is illustrated in Figure 2. Ultrasound

images of the largest renal tumor cross-section were imported into

ITK-SNAP software (version v 3.8.0, www.itksnap.org), and the tumor

edges were manually outlined as the region of interest (ROI) by

sonographer A with more than 10 years’ experience (Figure 3). Two

weeks later, sonographer A and sonographer B (with 5 years of

experience) made ROI outlining from 50 renal tumor images

randomly, to assess intra- and inter-observer correlation

coefficients (ICCs).
Radiomics features extraction

Z-Score was performed to standardize the data of different

orders before radiomics feature extraction. The Pyradiomics

module of Python 3.8.7 (v3.0.1) was used to extract the radiomics

features of ROIs, including shape-based features, first-order

features, and structural texture features. The structural texture

features included a gray level cooccurrence matrix (GLCM), gray

level run-length matrix (GLRLM), gray level size zone matrix

(GLSZM), and gray level dependence matrix (GLDM). ICCs were

used to evaluate the agreement of feature extraction. The intra-

observer ICC was calculated based on two feature extractions by

sonographer A, and inter-observer ICC was calculated based on the

features extracted firstly by sonographer A and subsequently by

sonographer B. Features with better consistency (ICC > 0.9) were

retained. The maximum relevance-minimum redundancy features

were obtained by max-relevance and min-redundancy (MRMR)

algorithm filtering. The covariance between ultrasound features was

assessed by calculating the Variance Inflation Factor (VIF). Finally,

the high-stability radiomics features were subjected to Spearman’s

correlation analysis, with a correlation coefficient threshold of 0.7.
Construction of ultrasonographic
radiomics model

The patients were randomly divided into training and internal

validation cohorts in the ratio of 7:3. The Random forest algorithm

(RFA) of the Sklearn module (Python 3.8.7) was applied to

construct the clinical ultrasound imaging model, ultrasonographic

radiomics model, and comprehensive model, to predict diagnostic

efficacy for small ccRCCs. Both feature extraction and model
frontiersin.org
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construction used ten-fold cross-validation and parameter tuning to

optimize the predictive performance.
Statistical analysis

All data were analyzed using the SPSS Statistics software version

23.0 (IBM, Armonk, NY, USA), Python3.8.7 and R software version

4.2.2. All categorical variables were expressed as numbers(n) and

percentages, and continuous variables were expressed as mean value

± standard deviation (SD) or median ± inter-quartile range (IQR). c²
test was used to compare the clinical ultrasound characteristics between

patients in ccRCC and RAML groups. The diagnostic ability of the

ultrasound imaging model, ultrasonographic radiomics model,

comprehensive model, and CECT for ccRCC were assessed by the

receiver operating characteristic (ROC) curve, and the area under the

curve (AUC), sensitivity, specificity, and accuracy of three models and

CECT were calculated separately. The AUC values of different models

and CECT were compared by the Delong test. The performance of the
Frontiers in Oncology 04
three models was evaluated by the Calibration Curve. Clinical Decision

Curve Analysis was also applied to determine the net benefit of

patients. P<0.05 was considered statistically significant.
Results

Comparison of clinical ultrasound and
CECT characteristics

In this study, 302 small renal tumor patients, comprising 182

with ccRCC and 120 with RAML, were enrolled as the training and

internal validation cohorts. There were significant differences in the

distribution of gender, clinical symptoms, echo pattern, necrotic

cystic degeneration, blood flow signals, CT presence of bulk fat, and

homogeneity of enhancement, but no significant differences in age,

location, tumor boundaries, calcification, peak enhancement

degree, existent of fast-in and fast-out between the two groups

(P<0.05, Table 1; Figures 4–6).
FIGURE 1

Flowchart of inclusion and exclusion of the study population.
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FIGURE 2

The main procedure performed in this study comprised four steps: (A) ultrasound imaging and tumor segmentation, (B) image processing and
feature extraction, (C) feature selection, and (D) modeling, and Analysis.
FIGURE 3

The renal tumor edge was outlined as the region of interest by ITK-SNAP software.
Frontiers in Oncology frontiersin.org05
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TABLE 1 Clinical ultrasound and CECT characteristics of 302 small renal tumor patients.

ccRCC (n=182) RAML (n=120) c2 P

Gender

Male 105 (57.7%) 57 (47.5%)
3.021 0.082

Female 77 (42.3%) 63 (52.5%)

Age

<50 years old 43 (23.6%) 34 (28.3%)
0.843 0.358

≥50 years old 139 (76.4%) 86 (71.7%)

Clinical symptoms

Hematuria 29 (15.9%) 8 (6.7%)
5.777 0.016

No hematuria 153 (84.1%) 112 (93.3%)

Ultrasound characteristics

Location

Left kidney 101 (55.5%) 59 (49.2%)
1.162 0.281

Right kidney 81 (44.5%) 61 (50.8%)

Tumor boundaries

Clear 140 (76.9%) 95 (79.2%)
0.211 0.646

Unclear 42 (23.1%) 25 (20.8%)

Echo pattern

Hypoechoic 87 (47.8%) 31 (25.8%)

16.566 0.000Isoechoic 39 (21.4%) 28 (23.3%)

Hyperechoic 56 (30.8%) 61 (50.9%)

Calcification

Existent 38 (20.9%) 15 (12.5%)
3.509 0.061

Non-existent 144 (79.1%) 105 (87.5%)

Necrotic cystic degeneration

Existent 44 (24.2%) 9 (7.5%)
13.898 0.000

Non-existent 138 (75.8%) 111 (92.5%)

blood flow signals

Existent 102 (56.0%) 51 (42.5%)
5.307 0.021

Non-existent 80 (44.0%) 69 (57.5%)

CT and CECT characteristics

Presence of bulk fat

Existent 73 (40.1%) 76 (63.3%)
15.604 0.000

Non-existent 109 (59.9%) 44 (36.7%)

Peak enhancement degree

hyper- enhancement 116 (63.7%) 87 (72.5%)
2.521 0.112

iso-/hypo-enhancement 66 (36.3%) 33 (27.5%)

(Continued)
F
rontiers in Oncology
 06
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1298710
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2024.1298710
Selection of ultrasonographic
radiomics features

The Pyradiomics software package extracted 491 ultrasonographic

radiomics features. 9 ultrasonographic radiomics features were finally

retained after regression dimensionality reduction processing,

including 3 Shape, 1 GLRLM, 3 GLSZM, and 2 GLDM features.

Spearman correlation heatmap of radiomics features is shown

in Figure 7.
Diagnostic efficacy of predictive models

In the internal validation cohort, AUC, sensitivity, specificity, and

accuracy of the clinical ultrasound imaging model, ultrasonographic

radiomics model, comprehensive model, and CECT for ccRCC

diagnostic prediction were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,

61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%,

91.1%, respectively. In the external validation cohort, AUC,

sensitivity, specificity, and accuracy of the three models and CECT

were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%; 0.90,

85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively
Frontiers in Oncology 07
(Figure 8; Table 2). In the internal validation cohort, the DeLong test

demonstrated no significant difference in AUC between the clinical

ultrasound imaging model and ultrasonographic radiomics model

(Z=-1.287, P=0.198), whereas the comprehensive model was superior

to the ultrasonographic radiomics model (Z=4. 394, P<0.001) and

clinical ultrasound imaging model (Z=4. 732, P<0.001). Moreover,

there was no significant difference in AUC between the

comprehensive model and CECT (Z=-0.252, P=0.801). The

Calibration curve indicated a better performance of the

comprehensive model (Figure 9), while Decision Curve Analysis

showed a superior clinical utility of the comprehensive

model (Figure 10).
Discussion

The clinical symptoms are usually untypical in patients with

small ccRCC. Many patients are discovered incidentally during

radiologic examinations (10, 11). It is also more complex

considering clinical decision-making (12–14), including a

variety of interventions available for these patients: renal tumor

biopsy, partial nephrectomy, radical nephrectomy, thermal
TABLE 1 Continued

ccRCC (n=182) RAML (n=120) c2 P

Homogeneity of enhancement

homogeneous 78 (42.9%) 69 (57.5%)
6.207 0.013

inhomogeneous 104 (57.1%) 51 (42.5%)

Fast-in and fast-out

Existent 103 (56.6%) 62 (51.7%)
0.708 0.400

Non-existent 79 (43.4%) 58 (48.3%)
P-values indicate comparisons between ccRCC and RAML groups.
ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-enhanced CT.
FIGURE 4

A 74-year-old man with a 1.9 × 1.4cm RAML. (A) Ultrasound demonstrated a mildly hyperechoic mass located in the middle pole of the right kidney
(arrow). (B) CECT: the mass showed inhomogeneous hyperenhancement (arrow).
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ablation, and follow-up monitoring (6, 15, 16). Therefore, the

evaluation of imaging features of renal tumors has gradually

evolved from morphological presentation to criteria based on

histological features and molecular typing features (17, 18).

Radiomics can quantitatively assess the heterogeneity of tumors

and can be applied to differentiate renal carcinoma from RAML,

assess the biological behavior of tumors, and predict the risk of

recurrence or survival (19–21). Several studies have reported

radiomics models establ ished by CT or MR images ,

demonstrating their utility in identifying benign and malignant

renal tumors and predicting pathological grading (22–25).

However, reports on the establishment of radiomics models of

ultrasound, the most convenient imaging examination for

screening renal tumors, are rather rare.

In this study, the sensitivity of the internal validation cohort of

the clinical ultrasound imaging model for the prediction of ccRCC
Frontiers in Oncology 08
was 76.7% and the accuracy was 70.0%. Although there were

statistically significant differences in gender, clinical symptoms,

echo pattern, necrotic cystic degeneration, and blood flow signals

between patients in the ccRCC group and RAML group, 30.0% of

small renal carcinomas were still misdiagnosed in this model. The

reason may be that patients with small ccRCC do not have the

specificity of clinical presentation and have a complex and varied

pathohistological structure. Whereas ccRCC and fpRAML may

exhibit some similar ultrasound characteristics (26, 27). The

comprehensive model showed superior ability in predicting

ccRCC, with 91% of sensitivity and 77% of specificity. The

model extracted 491 ultrasonographic radiomics features, which

were processed by regression dimensionality reduction, and finally

retained 9 stable ultrasonographic radiomics features. Among

them, Shape features described the morphological information

of renal tumors. Major axis length, Mesh volume, and Sphericity
FIGURE 6

A 64-year-old man with a 3.2 × 2.8cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows).
FIGURE 5

A 43-year-old man with a 3.5 × 3.4cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows).
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described the similarity of renal tumor morphology to the

standard sphere. Renal tumors in the RAML group had a

smaller long-axis length and were closer to spherical than those

in the ccRCC group. GLSZM was a count of the number of groups

of interconnected neighboring pixels or voxels with the same gray

level form the basis for the matrix (28). GLRLM provided

information about the spatial distribution of runs of consecutive

pixels with the same gray level, assessing the percentage of pixels

or voxels within the ROI that are part of the runs and therefore

reflect graininess (29). GLDM was also a count matrix that holds
Frontiers in Oncology 09
information about the number of “dependent” pixels and the

number of occurrences of all pixels in the image. All the above

three features belonged to texture features, which suggested that

the tumors in the ccRCC group had poor texture consistency and a

significant effect of non-periodic or speckled texture in ultrasound

images compared to those in the RAML group. These findings

indicated higher tumor heterogeneity in ccRCC. Compared with

the RAML group, tumors in the ccRCC group had more irregular

morphology, wider image signal distribution, and rougher texture

features. So, combining ultrasonographic radiomics features and
BA

FIGURE 8

ROC curves of clinical ultrasound imaging model, ultrasonographic radiomics model,. and comprehensive model in the internal (A) and external
(B) validation cohort.
FIGURE 7

Spearman correlation heatmap of renal tumor ultrasonographic radiomics features. The color indicates a correlation: the darker the color, the higher
the correlation (red indicates a positive correlation, and blue indicates a negative correlation).
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BA

FIGURE 9

Calibration curves of the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model in the internal (A) and
external (B) validation cohort.
TABLE 2 Comparison of the predictive efficacy of clinical ultrasound imaging model, ultrasonographic radiomics model, comprehensive model, and
CECT in the internal and external validation cohorts.

Model AUC (95%CI) Sensitivity Specificity Accuracy

Internal validation cohort (n=90) Clinical ultrasound imaging model 0.75 (0.70-0.81) 76.7% 60.0% 70.0%

Ultrasonographic radiomics model 0.80 (0.75-0.85) 85.6% 61.7% 76.0%

Comprehensive model 0.88 (0.84-0.93) 90.6% 76.7% 85.0%

CECT 0.90 (0.84-0.98) 92.6% 88.9% 91.1%

External validation cohort (n=69) Clinical ultrasound imaging model 0.73 (0.66-0.79) 67.5% 69.1% 68.3%

Ultrasonographic radiomics model 0.89 (0.85-0.93) 86.7% 80.0% 83.5%

Comprehensive model 0.90 (0.86-0.94) 85.0% 85.5% 85.2%

CECT 0.91 (0.87-0.95) 94.6% 88.3% 91.3%
F
rontiers in Oncology
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FIGURE 10

Decision curve analysis of clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model in the internal (A) and
external (B) validation cohort.
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clinical ultrasound imaging features, the comprehensive model

showed better diagnostic efficacy. The comprehensive model

improved the sensitivity and accuracy of ccRCC prediction to

90.6% and 85.0%, which was similar to previous studies (20, 30–

32). Our study suggested that ultrasonographic radiomics features

could compensate for the shortcomings of clinical ultrasound

imaging features and improve the predictive efficacy of small

ccRCC. The Calibration Curve and Decision Curve Analysis of the

three models also validated that the comprehensive model had a

higher net benefit and a better performance in predicting patients

with small ccRCC.

Our study had several improvements compared with the

previous radiomics studies. Firstly, we compared the diagnostic

efficacy between ultrasonographic radiomics models and CECT.

Both of the these methods have high diagnostic efficiency and there

was no significant difference between the comprehensive model and

CECT. Moreover, an external validation cohort was used to assess

the diagnostic performance of different models. The AUC of the

comprehensive model was 0.90 in the external validation cohort,

demonstrating a good predictive ability and robustness on new data.

Thus, the comprehensive model based on ultrasonographic

radiomics and clinical ultrasound imaging features could provide

a convenient, inexpensive, and radiation-free examination for small

ccRCC patients.

In this study, we applied a “multivariate filtering” feature

selection method, the MRMR algorithm, to maximize the

correlation between the imaging features and the prediction

target as far as possible. Meanwhile, the correlation between the

individual features was minimized as far as possible, with the help

of high computational speed and high discriminative power.

Features were selected from multiple perspectives to minimize

information loss in our study, thus avoiding overfitting or

underfitting of the predictive model. Moreover, we used the

same ratio to divide the training and validation cohort in both

ccRCC and RAML, to ensure the stability of the prediction results.

Finally, we chose random forests to build the model classifiers to

ensure high overfitting resistance and stability.

There are several limitations in this study. Firstly, the cases in

this retrospective study are only from three medical institutions,

and the results of the study may be subject to selection bias.

Secondly, the ultrasound and CECT images in this study are from

different diagnostic apparatuses, and there may be heterogeneity in

the study images. In addition, the manual segmentation of outlining

the ROI may reduce the reproducibility of this study. In the future,

we will verify the stability of the results through multicenter

prospective studies.

In conclusion, It is feasible to establish a diagnostic prediction

model by ultrasonographic radiomics features in ccRCC and RAML

with a maximum diameter of ≤4 cm, and we find that

ultrasonographic radiomics features have great potential in

identifying tumor heterogeneity in these patients. The

comprehensive model showed a superior diagnostic ability in

identifying ccRCC, which was similar to that of CECT, providing

valuable information for clinicians to make personalized

treatment decisions.
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