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A semi-automatic deep learning
model based on biparametric
MRI scanning strategy to predict
bone metastases in newly
diagnosed prostate
cancer patients
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Wang Yangyang4, Du Mengying1, Xu Tonghui2*, Zhou Jingran1*

and Yang Feng1*

1Department of Radiology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine,
Xiangyang, China, 2Department of Radiology, The People’s Hospital of Zouping City, Zouping, China,
3Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts
and Science, Xiangyang, China, 4Department of Orthopedics, Xiangyang No. 1 People’s Hospital,
Jinzhou Medical University Union Training Base, Xiangyang, China
Objective: To develop a semi-automatic model integrating radiomics, deep

learning, and clinical features for Bone Metastasis (BM) prediction in prostate

cancer (PCa) patients using Biparametric MRI (bpMRI) images.

Methods: A retrospective study included 414 PCa patients (BM, n=136; NO-BM,

n=278) from two institutions (Center 1, n=318; Center 2, n=96) between January

2016 and December 2022. MRI scans were confirmed with BM status via PET-CT

or ECT pre-treatment. Tumor areas on bpMRI images were delineated as tumor’s

region of interest (ROI) using auto-delineation tumor models, evaluated with

Dice similarity coefficient (DSC). Samples were auto-sketched, refined, and used

to train the ResNet BM prediction model. Clinical, radiomics, and deep learning

data were synthesized into the ResNet-C model, evaluated using receiver

operating characteristic (ROC).

Results: The auto-segmentation model achieved a DSC of 0.607. Clinical BM

prediction’s internal validation had an accuracy (ACC) of 0.650 and area under

the curve (AUC) of 0.713; external cohort had an ACC of 0.668 and AUC of 0.757.

The deep learning model yielded an ACC of 0.875 and AUC of 0.907 for the

internal, and ACC of 0.833 and AUC of 0.862 for the external cohort. The

Radiomics model registered an ACC of 0.819 and AUC of 0.852 internally, and

ACC of 0.885 and AUC of 0.903 externally. ResNet-C demonstrated the highest

ACC of 0.902 and AUC of 0.934 for the internal, and ACC of 0.885 and AUC of

0.903 for the external cohort.
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Conclusion: The ResNet-C model, utilizing bpMRI scanning strategy, accurately

assesses bone metastasis (BM) status in newly diagnosed prostate cancer (PCa)

patients, facilitating precise treatment planning and improving patient prognoses.
KEYWORDS
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1 Introduction

Prostate cancer (PCa) ranks as the second most common cancer

in men globally (1). While endocrine therapy for PCa boasts a 5-

year and 10-year survival rate of 98% and 78% (2), the onset of bone

metastasis (BM) marks a decline in patient prognosis. BM can

trigger a range of skeletal complications, such as hypercalcemia,

pathological fractures, spinal compression, and bone pain, all of

which exacerbate prognosis and heighten mortality in advanced

cases (2, 3). Managing BM patients poses challenges for clinicians,

with only systemic palliative care options currently available (4).

Hence, precise BM prediction in PCa patients is crucial for

enhancing survival quality.

Research indicates that tailored interventions for bone

metastases can extend patient survival (5–9). However, the

European Urological Association (EUA) guidelines classify

patients with prostate-specific antigen (PSA) levels exceeding 10

ng/ml as high-risk for BM, yet their BM positive rate at follow-up is

a mere 7% (10). This hints at the inadequacy of clinical features as

BM risk predictors. Some retrospective studies have employed PSA-

dominant clinical risk prediction models to forecast the occurrence

of BM in PCa. However, the results of these studies exhibit

instability (AUC=0.68–0.88) (11–16), underscoring the need for a

reliable diagnostic method.

Radiomics, introduced by Lambin in 2012 (17), shows potential

in predicting BM in PCa by quantitatively analyzing target regions

in images. Wang, Zhang et al. first used radiomics modeling for BM

prediction predictions with an attempted area under the curve

(AUC) value of 0.91 (18, 19). Numerous studies have unequivocally

affirmed the value of MRI in the diagnosis of prostate cancer,

markedly enhancing the accuracy of PCa diagnosis (20, 21). Yet,

recent evidence suggests that Dynamic Contrast Enhance (DCE)

sequences may not significantly impact clinical decision-making or

patient benefit (21–25). The biparametric magnetic resonance

imaging (bpMRI), as an emerging scanning strategy, showcases its

advantages primarily by simplifying the selection of imaging

parameters while retaining sufficient information for effective

medical diagnosis. It not only reduces the invasiveness and

potential risks of allergic reactions to patients but also brings

about higher socio-economic benefits. For patients with

contraindications to contrast agents (such as renal failure), it

offers more possibilities. Simultaneously, due to the alteration in
02
imaging sequences, novel predictive models are required to adapt to

this change (19). Leveraging artificial intelligence technologies such

as Deep learning (DL) to autonomously derive quantitative

representations from medical images is an evolving direction in

radiomic research (26–28). DL technology is gaining popularity as a

creative tool due to its hierarchical network structure, which

possesses a high capacity for memory and the ability to analyze

abstract features. This capability makes it feasible to identify tumor

regions. Concurrently, transfer learning and pre-trained DL

networks facilitate the execution of new tasks, enabling the

application of small datasets (25–27, 29, 30). DL methods based

on convolutional neural networks are an emerging approach for

predicting tumor metastasis with great potential (31–35). Until

now, no authoritative statement or consensus has suggested that DL

is inherently superior and replaces radiomics. Therefore, the

combination of DL with radiomic features may lead to

exceptional performance in predicting BM.

While using the mp-MRI imaging radiomics method to

differentiate between NO-BM and BM states has been examined

in several articles (18, 19), the development of predictive models

based on bpMRI images remains unexplored. In this study, we

endeavor to distinguish BM states in PCa patients non-invasively

using DL combined with Radiomics, exclusively employing

bpMRI images.
2 Materials and methods.

2.1 Patient information and clinical data

This study was conducted in accordance with the Helsinki

Declaration and was approved by the ethics committees of both

institutions. Due to retrospective study, the requirement for patient

informed consent was waived.

Center 1 collected 318 patients which, including 95 patients

with BM and 223 patients with PCa without BM (Non-BM

patients), divided into an internal test cohort, validation cohort,

and a training cohort according to a ratio of 3:1:6 between January

2016 and December 2022. The Center 2 collected data from 96

patients between March 2018 and December 2022, including 41 BM

patients and 55 Non-BM patients as an external test cohort.
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Inclusion criteria were as follows: (a) medical information is

complete; (b) PCa confirmation through radical surgery or puncture

biopsy; (c) BM status ascertained using bone scan or PET-CT (13);

(d) Image scanning time and diagnostic time not exceeding two

weeks. Exclusion criteria were: (a) Metastasis from other tumor sites;

(b) Undergoing surgical or hormonal therapy; (c) poor image quality.

Patient age and clinical symptoms were acquired from medical

histories. Clinical data encompassed: (a) Age; (b) PSA levels before

intervention therapy; (c) hematuria and Leukocyturia results; (d)

GS and ISUP classification; Immunohistochemistry and imaging

data. PET-CT or bone scans were employed to distinguish the

BM state.

Pathology sampling and grading involved sending patients for

pathological examination with 3–6 biopsy pieces via rectal ultrasound

puncture. GS and ISUP classifications were determined following

PCa diagnosis confirmation. The comprehensive screening procedure

is illustrated in Figure 1.
2.2 Experimental equipment

2.2.1 Imaging parameters
Images of patients within the first institution underwent scanning

using a 3.0T MRI (750 W 3 T; GE Medical Systems). Using an eight-

channel abdominal coil, imaging parameters included: T2-weighted

imaging (T2WI) Sequence type: FSE, TR: 2500–5400: msec, TE: 60–

120 msec, matrix: 512 × 512, slice thickness: 4 mm, FOV: 20 cm,

resolution:0.39 mm/pixel, flip angle: 90°. Diffusion-weighted imaging

(DWI): b: 0,800and 1400 s/mm2, TR: 5000–6000 msec, TE: 80–120

msec, matrix: 256 × 256, slice thickness: 4 mm, FOV: 20 cm,

resolution: 0.78 mm/pixel, flip angle: 90°.

Images of patients within the second institution underwent

scanning using a 3.0T MRI system (Siemens Magnetom Verio 3.0T;

Siemens Healthcare). With an eight-channel abdominal coil, the
Frontiers in Oncology 03
imaging parameters were: T2WI Sequence type: TSE, TR: 5000–

8000 ms, TE: 80–100 ms,matrix: 320 x 320, slice thickness: 4 mm,

FOV: 20 cm, resolution: 0.63 mm/pixel, flip angle: 150°. DWI

imaging: b: 0,800 and 1400 s/mm2, TR: 3000–5500 ms, TE: 55–85

ms, matrix: 256 x 256, slice thickness: 4 mm, FOV: 20 cm,

resolution:0.78 mm/pixel, flip angle: 180°.
2.3 Experimental methods

2.3.1 Data processing and augmentation
Prior to the extraction of radiomics features, T2-weighted imaging

(T2WI) and diffusion-weighted imaging (DWI) were normalized using

the Z-score method. Image outliers were removed by applying the 3s
method (36). The tumor’s region of interest (ROI) on DWI (b: 1400 s/

mm2) and T2WI axial images was manually delineated layer by layer

by a radiologist with three years of experience, using the 3Dslicer

software (version 5.0.2). This delineation was conducted without prior

knowledge of the study’s objectives or the BM status, under the

supervision of a senior radiologist with 15 years of experience. The

ROI for the Apparent Diffusion Coefficient (ADC) sequence was

sourced directly from the DWI region.

For the development of auto-sketch models, all images were

normalized to a resolution of 224x224x64 using linear interpolation

methods, employing the SimpleITK package in Python (version

3.6.2). Due to the different tumor sizes, the ROI images of the tumor

regions in the T2WI and DWI sequences were resampled to a

resolution of 64x64x32 using the difference method. Pixel

consistency was ensured for training the ResNet tumor

classification model. Due to the limited patient sample size, the

number of images was increased by using data enhancement

strategies. These included random rotations of 90, 180, and 270

degrees around the Z-axis of the image pixels and random intensity

scaling and offsetting.
FIGURE 1

Diagram of the experimental inclusion-exclusion criteria.
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2.3.2 Automatic tumor outline model
UNETR model architecture was used to accurately identify

regions impacted by Prostate Cancer (PCa). As the top-performing

medical classification model of 2021 (37), UNETRmodel was trained

on image from Center 1 and validated by Center 2 image. DWI,

T2WI, and ADC images were trained through the three-channel

model structure, and Dice similarity coefficient (DSC) was used to

evaluate the model prediction efficiency. To optimize our training, we

implemented a learning rate scheduler and early stopping criteria,

which reduced the learning rate based on validation accuracy and

halted training when validation accuracy had not improved for 10

epochs, respectively.

2.3.3 BM prediction model
Radiomics features were extracted from T2WI, DWI, and ADC

sequences using pyradiomics. These features were then combined

using the XGboost algorithm to create radiomics models. In

choosing the structure of a DL model, four different 3D-ResNet

network structures, three learning rates, and five optimizers were

validated to identify the most effective DL model for predicting BM

status. The experimental results can be found in the Supplementary

Document. Tumor region images were obtained from the UNETR

model and then were used to train the ResNet model after

radiologist supervision and image enhancement. The validation

cohort ROI was utilized to update network parameters, and the

internal test cohort was used to assess the model’s performance. The

softmax function was employed to produce predictions from the

ResNet model. The model with the highest accuracy in the internal

test cohort was used to train stacking model (referenced in

Supplementary Tables 1, 2). DL features, obtained from the last

fully connected layer of all samples, were used to establish a
Frontiers in Oncology 04
composite model. Finally, The XGboost algorithm was utilized to

construct a composite ResNet model (ResNet-C) by integrating the

clinical, radiomics, and DL features of the training cohort and

validation cohort (Figure 2). The model efficiency was subsequently

validated through internal and external test cohorts.

2.3.4 Statistical analysis
R (version 4.1.3) and Python (version 3.6.2) were used to conduct

statistical analysis and construct models. The Kolmogorov-Smirnov KS

test was used to assess the distribution of continuous variables. T-test and

Mann-Whitney U test (version 1.7.0)and multi-factor logistic regression

analysis were performed to compare the differences between two cohorts.

The adjusted p-value was calculated by the Benjamini-Hochberg

correction, and Chi-square test was used to analyze the categorical

variables. The 95% confidence interval (CI) of the AUC was

determined using the bootstrapping method (1000 intervals). From

these selected clinical features, we constructed a predictive model using

the XGboost algorithm. The receiver operating characteristic (ROC)

curve was used to visually demonstrate the prediction ability of ResNet,

Radiomics, and ResNet-C models. Delong test was to validate and

distinguish differences between the models.
3 Results

3.1 Clinical model

In our cohort, a mean age of 71.4 years was observed in BM

patients, marginally higher than the 70.9 years recorded for the

non-BM group; however, this difference was not statistically

significant (P=0.687). Additionally, a pronounced 78.3% of BM
FIGURE 2

Diagram of the deep learning model architecture. The flowchart shows the experimental design and the specific architecture of the deep
learning model.
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patients were noted to have Gleason scores of ≥8, in contrast to

46.8% in the non-BM counterparts. Notably, PSA levels exceeding

100 ng/ml were found in 44.1% of BM patients, compared to only

13.5% in the non-BM group. A significant difference in PSA levels

between BM and non-BM groups was observed. No significant

difference in hematuria and urine leukocyte levels was found

between the groups. Through univariate and multivariate

analyses, the GS score, ISUP score, and PSA were identified as

high-risk factors for predicting PCa’s BM.
3.2 Model performance

3.2.1 PCa segmentation model
The model progressively converged with the increase in training

epochs during the training process. The peak accuracy was achieved at

epoch 331, recording DSC of 0.607. Figures 3 and 4 display the High-

performing and low-performing samples of the model, respectively.
3.3 BM predictive model performance

In the clinical model, an accuracy (ACC) of 0.650 (95% CI

0.558–0.742) was observed in the internal test cohort and 0.668

(95% CI 0.584–0.782) in the external test cohort. Area Under the

Curve (AUC) values of 0.713 (95% CI 0.641–0.785) and 0.757 (95%

CI 0.661–0.853) were recorded for these cohorts, respectively. For

the Radiomics model, an ACC of 0.857 (95% CI 0.796–0.918) was

achieved in the internal test cohort and 0.819 (95% CI 0.773–0.865)

in the external test cohort. The AUC values were 0.899 (95% CI

0.852–0.946) and 0.852 (95% CI 0.791–0.913) for the internal and

external test cohorts, respectively.
Frontiers in Oncology 05
Our model was trained using data from the training cohort, and

its predictive performance was evaluated with the internal

validation cohort. To determine the most effective baseline model,

48 combinations were explored (detailed results are available in the

Supplementary Material). In the internal validation cohort, ResNet

101 (Adam, LR=0.001) emerged as the top performer, achieving an

ACC of 0.875 (95% CI 0.818–0.932) for the internal test cohort and

0.833 (95% CI 0.791–0.875) for the external test cohort.

Corresponding AUC values of 0.907 (95% CI 0.860–0.954) and

0.862 (95% CI 0.799–0.925) were recorded.

The clinical feature model was then combined with ResNet 101

and radiomics feature to develop the ResNet-C model which model

posted an ACC of 0.902 (95% CI 0.867–0.937) in the internal test

cohort and 0.885 (95% CI 0.832–0.938) in the external test cohort.

The AUC values were 0.934 (95% CI 0.906–0.963) for the internal

and 0.903 (95% CI 0.864–0.942) for the external test cohorts,

respectively. In the final analysis, Delong validation was used to

compare the clinical, ResNet 101, radiomics, and ResNet-C models.

The results indicated that the diagnostic efficacy of the Clinic model

differs significantly from the other models (refer to Figure 5, Table 1).
4 Discussion

Accurate assessment of BM status is crucial, as the status of BM

is a decisive factor for undertaking radical prostatectomy and a key

determinant affecting patient prognosis. However, conducting PET-

CT/bone scan examinations for all newly diagnosed PCa patients is

impractical. Therefore, the development of a convenient and

accurate method to identify BM status and provide newly

diagnosed patients with precise, personalized BM prediction

models is a key objective in current clinical research. This aims to
A1 A2

B1 B2

FIGURE 3

Illustration of the worse effective automatic delineation. In this figure, (A1) represents the manual delineation region, while (A2) showcases its 3D
shape. (B1) denotes the automatically recognized region, and (B2) displays its 3D form. Notably, the automatic delineation model struggled to
accurately identify and circumvent the bleeding foci.
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prevent patients eligible for surgical intervention from missing their

opportunity for surgery and to assist patients with BM in receiving

timely anti-metastasis treatment for their benefit. Recent studies in

radiomics and DL suggest that integrated learning with multimodal

MRI can facilitate the assessment of a patient’s tumor metastatic

status (31–33). Nonetheless, previous studies rarely reported on

predicting BM status in PCa using radiomics and DL methods. In

our study, to meet the demands of individualized treatment, we

developed a more precise model based on bp-MRI scanning

strategy. Our stacked model differentiated BM status in internal

and external test cohorts with an average AUC value of 0.903–0.934.

Additionally, this scanning strategy, reducing contrast agent
Frontiers in Oncology 06
involvement, is also applicable to patients with contraindications

to contrast agents and those with hepatic or renal insufficiency. In

this study, we also sought an end-to-end approach to simplify the

application of the model in terms of time and manpower costs.

The BM proportions in newly diagnosed PCa patients in our

study was 32.8%, higher than the 10% reported in related studies

(38). This is due to the fact that patients undergoing PET-CT and

bone scan examinations were predominantly high-risk or suspected

of having a metastatic status, with inclusion criteria leading to a

higher BM detection rate. However, this distortion in BM

proportions does not impact the quality of MRI imaging, which is

critical for establishing our bp-MRI-based predictive model.
A1 A2

B1 B2

FIGURE 4

Depiction of the better effective automatic delineation. Here, (A1) signifies the manual delineation region, and (A2) presents its 3D shape.
(B1) highlights the automatically recognized region, and (B2) reveals its 3D configuration. The automatic delineation model adeptly identified the
tumor region in this instance.
A B

FIGURE 5

ROC curves for the clinical model. The deep learning model and the integrated model in the internal test cohort (A) and the external test cohort (B).
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Currently, PSA levels are widely used in clinical practice to screen

patients at high risk for BM, with some studies indicating a higher

risk of BM in populations with high PSA (12–15, 19). Therefore, our

study also considers the research value of related indicators.
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Univariate and multivariate logistic regression analyses showed

significant statistical differences in GS score, PSA, and ISUP

grading (P < 0.05, Table 2), consistent with previous research.

However, modeling analysis of clinical features did not provide
TABLE 1 Predictive model performance effectiveness.

Model Accuracy AUC Delong test*

Internal
test cohort

External
test cohort

Internal
test cohort

External test
cohort

Internal
test cohort

External
test cohort

ResNet-C 0.902
(0.867,0.937)

0.885
(0.832,0.938)

0.934
(0.906,0.963)

0.903
(0.864,0.942)

0.006 0.010

ResNet101 0.875
(0.818,0.932)

0.833
(0.791,0.875)

0.907
(0.860,0.954)

0.862
(0.799,0.925)

0.011 0.015

Radiomics 0.852
(0.791,0.913)

0.813
(0.767,0.859)

0.899
(0.852,0.946)

0.852
(0.791,0.913)

0.024 0.035

Clinic 0.650
(0.558,0.742)

0.668
(0.584,0.782)

0.713
(0.641,0.785)

0.757
(0.661,0.853)

– –
*DeLong test is performed with Clinic as the benchmark, and the 95% confidence interval is listed for AUC and ACC, respectively.
TABLE 2 Characteristics of patients in the training and test cohort.

BM Non-BM Univariable P Multivariable analysis

(n=136) (n=278) Odds ratio P

Age 71.4* 70.9* 0.786 NA 0.989

Gleason <0.001 0.348 0.004

6 2
(1.4%)

60
(21.6%)

7 28
(20.6%)

90
(32.4%)

≥8 106
(77.9%)

128
(46.0%)

PSA 169.59* 55.16* <0.001 1.003 0.005

<10 17
(12.5%)

47
(16.9%)

10–100 59
(43.4%)

194
(69.8%)

>100 60
(44.1%)

37
(13.3%)

ISUP <0.001 4.45 <0.001

≤3 30
(22.0%)

150
(54.0%)

4 45
(33.1%)

65
(23.4%)

5 61
(44.9%)

63
(22.7%)

Urine

hematuria 39
(28.6%)

71
(25.5%)

0.498 NA 0.060

Leukocyt-uria 54
(39.7%)

93
(33.6%)

0.212 NA 0.859
P-value is derived from the univariable association analyses between the clinicopathologic variables and Bone status. The data marked with * are averaged.
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optimum accuracy. This limitation may be attributed to the

unreliability of PSA and GS scores in measuring tumor behavior,

as well as the susceptibility of PSA measurements to external

influences such as prostatitis, age, endocrine, or metabolic

disorders. Additionally, GS scores calculated based on cytological

puncture measurements may lead to significant errors (11).

Radiomics research based on high-throughput data and the

advancements in convolutional neural network-based DL have

provided new insights into accurately predicting the biological

behavior of tumors (39). Traditional radiomics methods have

achieved significant success in this field. Radiomics offers the

potential for non-invasive prediction of tumor biological

behavior, Wang and Zhang, among others (18, 19), proposed a

DCE-MRI BM prediction model using radiomics, achieving an

impressive AUC of 0.91. Compared to previous studies, our

research has several notable advantages: the imaging strategy of

bpMRI limits the utility of existing models. In contrast, our model,

based on the bp-MRI scanning strategy, did not perform DCE

sequence feature analysis, expanding the model’s audience.

Additionally, previous studies did not consider the abstract

feature information offered by convolutional neural networks.

Deep neural networks can capture nonlinear, interrelated spatial

structural features within the target area through convolution and

pooling, as well as analyze relationships between distant pixels, all of

which are key to accurately predicting BM. The AUC of the ResNet

101 model was 0.907 and 0.862. Thirdly, we conducted ensemble

learning of radiomics and DL features, establishing a combined

prediction model, ResNet-C, using the XGboost algorithm. The

AUCs for Centers 1 and 2 were 0.934 and 0.903, respectively.

Machine learning algorithms, compared to linear models, can

accurately process nonlinear features. Lastly, our study underwent

multicenter validation, providing higher reliability. The DeLong test

(all p < 0.05) indicated that MRI image models and clinical risk

models have different diagnostic efficacies, proving the necessity of

stacking different modal models.

Radiomics and DL have achieved encouraging results, but the

analysis of tumor regions largely depends on manual delineation.

Extracting tumor information from MRI multiple sequences and

multiple planes using manual methods is a time-consuming task.

Accurate segmentation of images aids in advancing the application

of radiomic models in clinical settings. Moreover, the automatic

recognition of tumor regions is a crucial component of an end-to-

end model. Therefore, this study has made some attempts in this

area. After validation with an external test cohort, our established

tumor segmentation model yielded a DSC value of 0.607. This

indicates that the model can only be semi-automated; while it can

more accurately locate tumors, the precise determination of tumor

extent and boundaries still requires manual intervention by

radiologists. Our initial goal was full automation, but the model

struggles to differentiate PCa from other abnormalities (such as

inflammation and hemorrhage), challenges that may stem from
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overlapping signal characteristics between lesions and PCa. To

ensure accuracy in tumor regions, radiologists must also examine

these differences. Deep learning networks are commonly referred to

as “black box” structures due to their complex and often non-

transparent nature. Therefore the Grad-CAM technique is

employed to attempt to uncover and interpret the decision-

making process of convolutional neural networks. This is

achieved through the analysis of the feature weight maps of the

final convolutional layer. In observing the ResNet model, it was

noted that the decision-making process relies on the tumor margin

areas (Figure 6). We posit that this reliance may be attributed to the

interactions between the microenvironment of the active tumor

cells at the periphery and the surrounding normal tissue (40).

The results of our study’s model, validated through internal and

external verification sets, demonstrate significant potential. However,

the establishment of end-to-end models also presents numerous

challenges. Concerns regarding data privacy and security, coupled

with insufficient interpretability leading to difficulties for physicians

in understanding the model’s decision-making process, pose

substantial obstacles. Additionally, the validation and adaptability

testing in real clinical settings demands considerable time and

resources. Furthermore, issues related to regulatory compliance,

physician acceptance, and model usability are critical. Successful

integration of the medical end-to-end model into clinical practice

necessitates interdisciplinary collaboration and continuous

improvement of model performance. The visualization application of

the model requires the design of a software platform, and we are

actively collaborating with software companies to seamlessly integrate

the model into software modules embedded in the medical record

diagnostic system, ultimately benefiting patients.

Despite promising findings, our study has limitations. Firstly, the

DL and radiomics models were established using retrospective data.

Prospective data from more clinical trials in the future will improve

the clinical evidence of our models. Secondly, differences in

examination equipment might affect the model’s performance. In

the external test cohort, a deeper network model, ResNet152, showed

better diagnostic performance (see Supplementary Tables 1, 2), We

believe this is attributed to deeper model architectures, which aid in

better understanding the inherent relationships between different

regions of the tumor and assist the model in extracting more

discriminative abstract features from the imaging data, necessitating

an expansion of the number of centers in future research to confirm

this phenomenon. Additionally, our study neglected 1.5T images, due

to the challenge of accurately delineating tumor regions on T1

sequence images, the exploration of the value of T1 sequence

images has been omitted in this study. Due to the limited sample

size, this study analyzed images of delineated tumor regions.

However, this introduces a drawback: normalizing tumor sizes

during training prevents our model from assessing the correlation

between tumor size and bone metastasis. In fact, with a sufficiently

large training set, CNNs may not require highly accurate tumor
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masks as input. Therefore, our future research goal is to broaden the

sample scope, and increase its scale and diversity, thus further

enhancing the performance of our model.

In summary, we have developed an integrated learning model

using bp-MRI images to accurately predict the BM status of PCa

patients. For PCa patients, this model can assist urologists in

deciding whether there is an opportunity for radical surgery,

which is positively significant for the patient’s treatment approach

and prognosis.
5 Conclusions

Our study combined clinical parameters with prostate bpMRI,

offering clinicians a non-invasive tool to inform treatment decisions

for prostate patients. Additionally, we developed an automatic

tumor delineation model to streamline the process and augment

efficiency, increasing its potential for clinical adoption.
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