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Variations in the tumor genome can result in allelic changes compared to the

reference profile of its homogenous body source on genetic markers. This brings

a challenge to source identification of tumor samples, such as clinically collected

pathological paraffin-embedded tissue and sections. In this study, a probabilistic

model was developed for calculating likelihood ratio (LR) to tackle this issue,

which utilizes short tandem repeat (STR) genotyping data. The core of the model

is to consider tumor tissue as a mixture of normal and tumor cells and introduce

the incidence of STR variants (j) and the percentage of normal cells (Mxn) as a

priori parameters when performing calculations. The relationship between LR

values and j or Mxn was also investigated. Analysis of tumor samples and

reference blood samples from 17 colorectal cancer patients showed that all

samples had Log10(LR) values greater than 1014. In the non-contributor test,

99.9% of the quartiles had Log10(LR) values less than 0. When the defense’s

hypothesis took into account the possibility that the tumor samples came from

the patient’s relatives, LR greater than 0 was still obtained. Furthermore, this study

revealed that LR values increased with decreasing j and increasing Mxn. Finally,

LR interval value was provided for each tumor sample by considering the

confidence interval of Mxn. The probabilistic model proposed in this paper

could deal with the possibility of tumor allele variability and offers an

evaluation of the strength of evidence for determining tumor origin in clinical

practice and forensic identification.
KEYWORDS

probabilistic model, likelihood ratio (LR), tumor source identification, short tandem
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1297135/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1297135/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1297135/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1297135&domain=pdf&date_stamp=2024-04-23
mailto:wangyufang@scu.edu.cn
mailto:zhangj@scu.edu.cn
https://doi.org/10.3389/fonc.2024.1297135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1297135
https://www.frontiersin.org/journals/oncology


Hu et al. 10.3389/fonc.2024.1297135
1 Introduction

Tumor tissue, especially formalin-fixed and paraffin-embedded

(FFPE) samples, may be the only source of biological material

available for individual identification or kinship analysis (1–6).

During tumorigenesis, variations are constantly occurring and

accumulating in the cell genome (7). Variants, such as deletions

and increases of alleles associated with multiple genetic markers,

have been observed in tumor tissues. These result in inconsistent

genotyping results compared to normal tissue or blood samples

from the same individual. In addition, the allele frequencies used in

identification statistical analysis typically do not take into account

the effects of disease states such as tumors. This poses a significant

obstacle in tumor source identification.

Several retrospective studies have examined the variation

pattern and rate of short tandem repeat (STR), a highly

polymorphic, easily detectable, and commonly utilized genetic

marker (8), and selected specific loci with low variation rates for

individual identification of tumor tissue (9–12). Poetsch et al.

classified the STR variants observed in tumor tissue into three

categories as follows: 1. the additional alleles (Aadd), 2. the new

alleles instead of somatic-derived alleles (Anew), and 3. partial or

complete loss of heterozygosity (pLOH/LOH), and provided criteria

to distinguish LOH from pLOH (13). The possibility of using

nuclear genomic SNPs (14, 15) and indels (16), along with

mitochondrial SNPs (5, 17) has also been investigated for tumor

source identification. However, the aforementioned retrospective

study analyzed the existing experimental data empirically. It

exclusively selected non-mutated loci for individual identification.

Nevertheless, this approach was constrained by the sample size and

lacked a statistical metric to quantify the strength of the evidence,

i.e., the genotyping profile makes the tumor sample originating

from the person of interest more or less probable. Furthermore, the

genetic marker indel, which is more significant in mutations, cannot

be used to identify the body origin of tumor tissue (16). This is also

the case for mitochondrial SNPs due to their heterogeneity.

In research focused on statistical methodologies for discerning

the individual origin of tumors, one strategy is to consider tumors as

a mixture of tumor cells and normal cells, and treat the two

components as independent individuals with a certain level of

“genetic relationship.” Based on this assumption, identity by state

(IBS) analysis was applied to perform body source identification of

tumor samples (18–20). However, these studies did not consider the

causes and patterns of STR variation in tumor cells and only

provided a conclusion that “cannot be excluded.” Additionally,

this approach was insufficient for assessing the strength of evidence

for DNA analysis of tumor samples.

It has been shown that the DNA of tumor tissue exhibits a

mixed composition, which contains the normal cell population and

abnormal cellular subclones arising from the branching

evolutionary growth pattern of the tumor (21). Alterations in

chromosome number and structure, as well as numerous changes

at the genomic level, can be observed in these abnormal cells (7, 22)

so that the different STR variants described above were observed

when these variations were reflected on the STR profiles. In this

case, the frequency of the tumor-derived alleles is no longer equal to
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the generally used population allele frequency, and this change is

associated with the incidence of STR variants. The goal of this study

was to develop a probabilistic model for tumor source identification

that incorporates the incidence of STR variants and provides a

measure of the evidence strength.

The likelihood ratio (LR) provides a numerical value that

indicates the relative strength of the evidence for the prosecution’s

hypothesis (typically that the evidence came from the person of

interest) compared to the defense’s hypothesis (that the evidence is

from an unrelated source) (23). In the present study, we attempted to

apply a probabilistic modeling strategy for traditional STR profile to

tackle the challenge of genomic variation in tumor identification and

provide metrics for evaluating the strength of evidence. We

innovatively introduce the incidence of STR variants (j) and the

percentage of normal cells (Mxn) as the a priori parameters into the

tumor source identification pipeline, which leads to a reasonable and

effective LR calculation.
2 Materials and methods

2.1 Sample collection

Colorectal tumor tissue from 17 patients were collected and

fixed in 10% neutral-buffered formalin solution for 48–72 h. The

tumor samples were treated routinely with xylene transparency

following progressive ethanol dehydration, then paraffin embedding

to make FFPE samples. Hematoxylin- and eosin-stained slides were

reviewed. A pathological diagnosis and the percentage of tumor

cells Mxt (24) for each slide were provided. The percentage

represented the proportion of tumor cells to the total cell area

observed under the microscope. Determination was reached

through a consensus of two pathologists with over a decade of

experience in molecular pathology (25). Based on this, the

percentage of normal cells Mxn was calculated as 1-Mxt.

Peripheral blood from the corresponding patients was collected as

reference samples. The tumor samples were designated as “HTFD”,

while the blood samples were labeled as “HBD”.
2.2 DNA extraction, PCR amplification, and
STR typing

Five 10-μm serial sections were obtained for all FFPE samples

with the first two to three sections discarded. DNA extraction for

both FFPE sections and blood samples was performed using the

QIAamp® DNA Mini Kit (QIAGEN, Germany) according to the

manufacturer’s instructions. All samples were quantified

fluorescently using the Qubit® dsDNA HS Assay kit (Invitrogen,

USA). A total of 34 DNA samples were diluted to 1 ng/ml with
nuclease-free water as templates. STR-targeted amplification was

performed in a total volume of 5 ml using the GlobalFiler™ PCR

Amplification Kit (Applied Biosystems, USA). The standard

protocol of 29 cycles was used on a Veriti™ 96-Well thermal

cycler (Applied Biosystems, USA). Negative controls were always

included in the same batch for amplification.
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Then, 1 ml of PCR products was mixed with 8.9 ml of Hi-Di
formamide (Applied Biosystems, USA) and 0.1 ml of SIZ-500 (AGCU,
China) DNA-size standard. Amplicon separation and peak height

signal acquisition were carried out on a 3500 Genetic Analyzer

(Applied Biosystems, USA) using a 36-cm capillary and POP-4

polymer (Applied Biosystems, USA) with an injection voltage of 1.2

kV and an injection time of 5 s. Data analysis was conducted using

GeneMapper ID-X 1.5 software (Applied Biosystems, USA). The AT

value was 175 RFU, and locus-specific stutter filtering was performed

according to the manufacturer’s instructions, while all other analysis

methods were set by default. The data were exported in text format

and contained details regarding allele typing and peak height.

To ensure reproducible and credible results, STR typing would

be repeated if the genotyping results between the reference sample

and the tumor tissue are inconsistent.
2.3 Theoretical considerations

DNA profiles generated from tumor tissue were always DNA

mixture profiles because solid tumor tissue is composed of not only

tumor cells but also tumor-associated normal epithelial and stromal

cells, immune cells, and vascular cells (26). The following mutually

exclusive assumptions was made to assess the strength of the evidence

that the tumor tissue came from a potentially known individual:
Fron
Hp.: The tumor tissue is composed of normal cells and their

tumor cells from a known individual.

Hd : The tumor tissue is composed of normal cells and their

tumor cells from a random unrelated individual.
The LR was determined by:

LR   =  
P(E ∣Hp)

P(E ∣Hd)
2.3.1 Basic assumption
Assumption 1. The STR-CE peak height data generated from

tumor samples, which was the object of modeling in this research,

also follow the gamma distribution.

During the PCR procedure for DNA, the copy number of the

targeted fragment increased with the number of cycles in a binomial

distribution (27). Since the peak height detected by the Genetic

Analyzer is a measure of the copy number of the PCR end product,

it is also subject to stochastic effects throughout the PCR process.

Therefore, the peak height data generated from the tumor tissue

complies with this principle and follow the gamma distribution (28).

Y   e ɡamma
1
w2 ,mw

2
� �

where m is the peak height expectation, and w is the coefficient

of variation of the peak height (29). The sum of peak heights for

each autosomal locus of individual plots was fitted to gamma using

maximum likelihood estimation, and quantile–quantile (Q-Q) plots

were drawn to confirm the fit of the data to the gamma distribution.
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Assumption 2. The height contributions of different cell

populations are independent.

Tumor cells are derived from normal cells by mutation, which

could generate endogenous mitogenic signals resulting in

independent proliferation (30). As a result of ongoing genetic

mutations that occurred in tumor cell populations derived from a

founder cell, intratumor heterogeneity and different subclones, each

of which is a rather stable, homologous cell population with

identical genetic composition and independent of each other, are

produced according to the clonal evolution model (21).

Assumption 3. STR locusM was independent of each other and

in a state of linkage disequilibrium (31).

Assumption 4. Alleles of the specific locus Am = a1, a2,…, aif g  
are independent of each other.

The allele frequencies in this research were derived from a

population survey of Southwest Han Chinese individuals (32).

Therefore, given the assumptions H and the parameters m w, the
probability of observing the profile E can be written as:

p(E ∣H) =  
YM

m=1oɡm∈  Gm
p(ɡm ∣H) ∗ p(ym ∣ ɡm, m,w)

where gm is the set of genotypes for different cell populations

and one of the different genotype combinations Gm at locus m.

2.3.2 Number of contributors
Usually, normal cells are in genomic concordance and can be

considered as a homogeneous cell population. However, there may

be two or more subclones of abnormal cells. Due to variations in

the tumor genome, an STR genetic marker may be present in these

subclones with different alleles. Thus, a tumor tissue sample may

have a mixed genotype from two or more different cell

populations, i.e., a normal cell population and K − 1 tumor

subclones, where K is the total number of cell populations. In

this study, the maximum allele count (MAC) method was used to

estimate the minimum number of the cell populations

corresponding to the number of contributors in tumor tissue.

The formula used to determine the minimum number of

contributors was as follows:

kmin =
2,   Lmax < 3

ceiling Lmax
2 ,   Lmax ≥ 3

(

where ceiling x denoted rounding up by x and Lmax denotes the

maximum number of alleles among loci. Based on the above, the

two hypothetical propositions could be expressed as follows:
Hp : The tumor tissue is composed of normal cells and their K–

1 tumor subclonal cell populations from known individuals.

Hd : The tumor tissue is composed of normal cells and their K–

1 tumor subclonal cell populations from random,

unrelated individual.
2.3.3 STR variation model
Assumption 5. Genotypes among cell populations are

independent given the incidence of STR variants (j).
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In previous research, STR variants in tumor tissue showed the

emergence of new alleles and the loss of alleles compared to normal

reference samples. In the present study, the incidence of STR

variants was assumed to be j. When the tumor-derived allele was

inconsistent with the allele of normal cell after genotype

combination at locus m, the frequency of the tumor allele was

determined by multiplying the population frequency of the somatic

allele by the jm value. The calculation formula was as follows:

P(ɡm ∣H  ,jm) = P(ɡn ∣H  ) ∗
YK−1

k=1 P(ɡt,k ∣H  ,jm)

where gn is the genotype of the normal cell population, and

gt,k is the genotype of the k-th tumor subclones. The origin of

variation in each allele of the gt,k, as well as all possible

scenarios, were considered. More details can be found in

Supplementary Tables 1–3.

The j value varied across different loci within the same type of

tumor. In colorectal cancer, the range of j for 19 STR loci is [7.75%,

43.41%] (9). To evaluate the effect of j and Mxn as a priori

parameters on the calculated values of LR, the following two

experiments were set up:

Experiment 1. The maximum likelihood values were obtained

by taking 21 values each in the confidence interval of [Mxn ± 10%]

and the range of j to form a 21 × 21 combination of a priori

parameter matrix under Hp and Hd, and then LR was calculated.

Experiment 2. The maximum likelihood values were obtained

by taking 21 values each in the confidence interval of [Mxn ± 10%]

while j took the incidence of variants at the corresponding loci. If

the locus was not included in the reference (9), the value was

substituted with the average value.
2.3.4 Degradation model
Tumor tissue was fixed with formaldehyde during FFPE sample

preparation. Formaldehyde-mediated hydroxymethylation of the

imino and amino groups of the DNA molecule would result in

irreversible denaturation of the DNA molecule and cross-linking of

DNA and proteins to prevent protease digestion of the tissue and

obstructing nucleic acid extraction. Due to methylene cross-linked

bridges between biomolecules, DNA would become more brittle

and prone to random breaks when subjected to shear force (33).

DNA enzymes also play a role in this process (34). Consequently,

the STR profile of FFPE samples showed a “ski-slope-like” profile

where the peak height declined with increasing molecular fragment

size (35), thus FFPE samples were considered as one of the typical

DNA degradation samples in the forensic field (36).

In this study, a degradation model was employed, which was

developed based on the research of Tvedebrink et al. (37): the

probability of breakage between any two bases in a sequence was

uniform. Subsequently, a log-linear model was employed to

describe the correlation between the average peak height H and

the average fragment size bp at the locus M. After this, the initially

estimated degradation coefficients could be obtain using the least

squares method. An assessment can then be conducted to

determine whether to incorporate degradation parameters in the

model. Finally, the parameter of the gamma model could be scaled
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with the expression e
bpm,a−90

100 for allele a at maker m to account for

degradation if needed (38).

2.3.5 Other parameters
Because the sample source was tissue cells and the PCR input

template amount was 1 ng/ml, the total peak height of each allele in

different profiles, including Aadd, was much higher than the

analysis threshold. However, most of the drop-in events had

lower peak heights. This meant that the probability of high peaks

being drop-in events was significantly reduced (39). At the same

time, the negative control of the same batch without allelic calling

could indicate a minimal probability of drop-in and contamination

(40). Stutter was filtered by the appropriate locus threshold

according to the kit protocol. Therefore, to avoid making the

model more complex, neither the drop-in parameter nor the

stutter parameter was introduced in this study. Furthermore,

when the value of K exceeded 2, indicating the presence of more

than one subclone of tumor cells, it became necessary to estimate

the proportion of the tumor cell population (Mxt1,2,3… ), and the

variable satisfied the following formula:

1 −Mxn =  oK
k=1Mxtk

Thus, the probability of observing the profile E can be written as

follows:

p(E ∣H) =  
YM

m=1ogm∈  Gm
p(ɡm ∣H,jm) ∗ p(ym ∣ ɡm,Mx ,m,w , e)

where jm and Mxn are a priori parameters that are derived

without optimization parameter search.
2.4 Hd true test

The non-contributor test was performed to verify the specificity

of the LR results (41). The profiles of 1,000 unrelated individuals

were randomly generated according to the above frequency table

(32), which included 21 autosomal STR loci in the Globalfiler™ kit,

and then was adopted as person of interest to calculate LR. The a

priori parameter Mxn was divided into five groups, which were the

maximum, minimum, and quartile values in the range of the Mxn

interval, and each group included 200 unrelated individuals for the

non-contributor test.
2.5 Relatedness consideration

As mentioned above, there is a kinship-like genetic relationship

between normal cells and tumor cells. To validate whether the

model can distinguish the origin of tumor tissue between a true

contributor or a close relative of the contributor, this study also

performed the analysis of simulated related individuals, including

the parent–offspring (PO) and the full-sibling (FS) relationships,

while keeping the rest of the model constant.

He r e , t h e f o l l ow ing two Hd propo s i t i on s hav e

been implemented:
frontiersin.org

https://doi.org/10.3389/fonc.2024.1297135
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2024.1297135

Fron
HdPO : The tumor tissue is composed of normal cells and their

K-1 tumor subclonal cell populations from a known

individual’s PO.

HdFS : The tumor tissue is composed of normal cells and their

K-1 tumor subclonal cell populations from a known

individual’s FS.
The above pipeline was implemented using a Python script that

is publicly available on GitHub (https://github.com/HYH-yuhan/

TumorID). Through this pipeline, LR could be calculated for each

tumor tissue STR profile and the corresponding reference.
3 Result

3.1 Sample overview

The pathologica l type of a l l tumor samples was

adenocarcinoma. As shown in Table 1, the percentage of tumor

cells under HE staining was >30% in each of them. The highest

incidence of Aadd was observed among the three mutation types

that would result in STR genotype alteration, while no Anew was

observed. Specifical ly, the sample HTFD5719 showed

heterozygosity at five loci, whereas its reference HBD5719 was
tiers in Oncology 05
originally homozygous. Five loci displayed three alleles, and two loci

exhibited five alleles. The maximum number of alleles for the

remaining samples with Aadd was three.
3.2 Fitting results of peak height
and degradation

In the Q-Q plot of the peak height for the sample HTFD0166

(Figure 1), the scatter was basically distributed along the y = x line

indicating that the observed peak height exhibited a strong

correspondence with the gamma distribution. The Q-Q plots of

the other samples are shown in Supplementary Figure 1, and

displayed similar distribution characteristics are as depicted

in Figure 1.

The degradation slope, representing P(No   breakage   between  

a   given   base   pair), of 17 profiles was initially fitted with a log-

linear model. The probability of degradation per base pair, denoted

by P(deg), was equal to (1 − degradation   slope). The P(deg) for 17

profiles ranged from 0.001517 to 0.005735 according to Table 1. As

described in (42), the probability of intact fragments available for

amplification is approximately 25%–75% at 200 bp. Therefore, the

incorporation of the degradation parameter e is needed to be

considered in subsequent studies.
TABLE 1 Microscopic details and STR profile information of all 17 tumor tissue samples.

Sample name Mxt* Number of
alternated

loci

Aadd Anew LOH Degradation slope

HTFD 0166 60% 1 1 0 0 0.996152

HTFD 0471 50% 3 1 0 2 0.996633

HTFD 1504 60% 0 0 0 0 0.997766

HTFD 1611 30% 1 1 0 0 0.994265

HTFD 2408 70% 3 1 0 2 0.996342

HTFD 3418 80% 5 1 0 4 0.995502

HTFD 4084 40% 2 2 0 0 0.997634

HTFD 4107 70% 1 1 0 0 0.997137

HTFD 4336 60% 1 1 0 0 0.996315

HTFD 5200 80% 0 0 0 0 0.995292

HTFD 5211 70% 0 0 0 0 0.995772

HTFD 5719 60% 12 12 0 0 0.995084

HTFD 6566 40% 0 0 0 0 0.998483

HTFD 6722 60% 0 0 0 0 0.994964

HTFD 6815 90% 0 0 0 0 0.994535

HTFD 7709 80% 3 0 0 3 0.994679

HTFD 9601 80% 0 0 0 0 0.995879
*Mxt, the percentage of tumor cells, is determined visually from professional pathologists.
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3.3 LR results

3.3.1 Experiment 1
A total of 441 LR values were calculated for each DNA profile

of the FFPE sample. The dependence of LR values on the a priori
Frontiers in Oncology 06
parameters Mxn and j in HTFD0166 was analyzed (Figure 2A).

The maximum value of LR could be calculated when Mxn was

the smallest and j was the largest. Conversely, the minimum

value of LR could be obtained when Mxn was the largest and j
was the smallest. Log10 (LR) increased with increased Mxn or

decreased j, and there exists a linear correlation between the

variables. A linear fit through R showed that, for example, when

j = 0:0775, Log10(LR) = (10:62886 ± 0:31009)Mxn + (24:09593 ±

0:12545), Pearson’s r was 0.99201, and adjusted R2 was 0.98325

(Figure 2B). In another situation, when Mxn = 0:5, Log10(LR) =

( − 14:1771 ± 0:08309)j + (30:4574 ± 0:02307), Pearson’s r was

−0.99967, and adjusted R2 was 0.99931 (Figure 2C). Among all

17 profiles, adjusted R2 and Pearson’s r for the linear fits of Log10
(LR) to j were between [0.9003, 0.9999] and [0.9513, 0.9999],

respectively. For the same fits to Mxn, they were between [0.9674,

1.000] and [−1.000, −0.9844], respectively. Both showed a strong

linear correlation (43). For more details, refer to Supplementary

Figure 2 and Supplementary Tables 4–20.

3.3.2 Experiment 2
The Log10(LR) value was linearly increased with Mxn in each of

the samples (Figure 3). The maximum average of Log10(LR) was

27.6370 with sample HTFD1611, which had the largest Mxn in

Table 1; the minimum average of Log10(LR) was 17.2624 belonging

to HTFD6815, which had the smallest Mxn. All Log10(LR) values

were much larger than 1, which significantly supported the

prosecution’s hypothesis that the tumor tissue was composed of

normal cells and their K − 1 tumor subclonal cell populations from

known individuals.
A B

C

FIGURE 2

LR values of sample HTFD0166 from Experiment 1. (A) LR results obtained within the parameters of gradient j and Mxn, LRmax = 1029.3; LRmin = 1017.4.
(B) When j was fixed, Log10 (LR) varied linearly with Mxn. This graph was illustrated with j = 0.0775. (C) When Mxn was fixed, Log10 (LR) varied linearly
with j. This graph was illustrated with Mxn = 0.5 as an example.
FIGURE 1

Q-Q plot of peak height derived from the DNA profile of
sample HTFD0166.
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3.4 Hd true test results

The 99.9% of the Log10(LR) values for the non-contributor tests of

all samples was less than 0 (Figure 4A), which did not support the

prosecution’s hypothesis. In addition, the LR values of the non-

contributor test tended to decline as Mxn increased, as illustrated in

Figure 4B for sample HTFD0166. The Hd true test results for all

samples are shown in Supplementary Figure 3, where the

four nonoutlier data points in the box plot were above 0. That is, LR =

1:6082=1:7161=1:2141 for sample HTFD6816 whenMxn = 0:01, and

LR = 1:0948 for sample HTFD5200 when Mxn = 0:1. In Experiment

2, these two samples had the lowest Log10(LR) among all results.
3.5 LR results considering kinships

When relatedness to known individuals was considered under

Hd, LR became smaller in different degrees, but still greater than 1,
Frontiers in Oncology 07
which did not support the hypothesis that the individual related to

the true contributor was a contributor. The Log10(LR) calculated for

the true contributor > Log10(LR)PO   > Log10(LR)FS. Meanwhile, as

the Log10(LR) increased Log10(LR)PO and Log10(LR)FS of the

corresponding groups showed an increasing trend (Figure 5).
4 Discussion

In the current study, we constructed a probabilistic method

based on the gamma model and an LR computational framework

that takes into account STR variants in tumor cells. To the best of

our knowledge, this is the first study to introduce a mixed DNA and

probabilistic approach for tumor source identification. High LRs

greater than 1014 were obtained for all samples distinguishing the

true contributor from random unrelated individuals and potential

relatives of contributors. In addition, the quantitative strength-of-

evidence indicator provided a more scientific solution for tumor

source identification. Adopting the confidence interval ofMxn could

result in the calculation of a conservative statistic. However, the

following issues need to be considered.
4.1 Effect of tumor genomic variants on
the STR profile

Cancer cel ls undergo multiple genetic hits during

tumorigenesis, including somatic point mutations, copy number

variants, gene deletions, gene rearrangements, and translocations

(7). These variants are the source of the abnormal STR profiles

observed in tumor tissue. First, point mutations in the primer

binding region can result in null alleles of the STR. Second, gene

deletions or loss of heterozygosity (LOH) can cause somatic loss of

wild-type alleles in many hereditary cancer syndromes. Knudson’s

two-hit hypothesis for LOH suggests that one copy of the tumor-

suppressor gene is inactivated by mutation, and the other copy

undergoes mitotic recombination/gene conversion or deletion, the
A B

FIGURE 4

Hd true test results. (A) Log10 (LR) value of the non-contributor test for all 17 samples, while the gray dots indicate the mean Log10 (LR) values for the
true contributor in Experiment 2. (B) Distribution of Log10 (LR) values for the non-contributor test of sample HTFD0166 separated by the percentage
of normal cells (Mxn).
FIGURE 3

Log10 (LR) values of all 17 tumor tissue samples.
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former leading to copy number losses (CNL-LOH) and the latter to

copy number neutral losses (CNN-LOH) (44). In addition, the

chromosomal region of LOH contains the location of some loci in

commercial STR kits (45), which is reflected by the loss of alleles in

the STR profile, and the precise mechanism of the allele loss

is unknown.

Furthermore, as a type of microsatellite, the tandem repeat

structure of STR also has the potential to generate new alleles due to

the strand-slippage replication in tumor cells with vigorous growth

and defective DNA repair mechanisms (22, 46). This phenomenon

is also used to detect microsatellite instability (MSI) to evaluate

tumor hypermutability (9).
4.2 Reasonableness of the STR
variation model

In addition to the diversity of mutations that occur in the

genomes of tumor cells, neoplasms arise from a single somatic cell

of origin (47) and undergo a clonal evolution to form distinct

subclones (21). The genomes of these subclones will possess the

same or different variants, but still have regions identical to the

genome of the original normal cells. This underlying theory

provides a theoretical foundation for using the probabilistic

strategy in this study to deal with the variation or invariance of

tumor alleles.

As tumors develop, the genome becomes increasingly unstable,

and the likelihood of mutations during cell proliferation and

differentiation increases significantly with each generation. Thus,

the developmental expansion of tumors is a branching clonal

structure rather than a linear clonal evolution (21, 48). According

to computer simulations, each subclone represents a relatively

stable, homologous population of cells (49). Such subclonal
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characteristics of tumor tissue implies that a tumor cell subclone

may be represented by an unknown contributor in the probabilistic

model. It also implicates that dynamics of each stage of tumor

evolution cannot be accurately predicted, i.e., the probability that a

particular allele will be altered and the type of mutation that will

occur. Therefore, the cumulative mutations in a cell’s genome as an

overall probability was considered to describe the likelihood of

allelic variants as well as the potential for all alleles in tumor cells to

mutate. That is, the probability of gain or loss of an allele depends

on the corresponding STR variant, which is derived from empirical

statistics of the incidence of STR variations (j).
Another consideration for using the empirical variant incidence

is that new or missing alleles arising from tumor mutations are

usually associated with the source allele. Furthermore, the variant

rate is a conditional probability based on the assumption that the

origin of the tumor-derived alleles is determined, and it serves as a

substitute for the frequency of the tumor allele in the population

within our model. Given the inability to ascertain the specific

subclone in which the variant allele is present, the possibility of

each allele being variant at all loci was taken into account.
4.3 Consideration of j and Mxn

Specifically, two types of variations in the STR profile were

observed. One is the loss of alleles, which can result from the

dropout of normal cells in a trace state or from the loss of

heterozygous of tumor cells. Any allele dropout occurring in

normal cells was considered for conservativeness because if the

sensitivity of the detection platform was insufficient, normal cellular

alleles in trace amounts would not be detected (19). Heterozygous

loss of every tumor cell alleles at all loci was also taken into account,

as the region of LOH has been continuously discovered with
FIGURE 5

Log10 (LR) value while accounting for kinship between contributors. The gray dots indicate the mean Log10 (LR) values for true contributors in
Experiment 2, and the green box plot represents the results of Log10 (LR) for the PO group and the yellow for the FS group.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1297135
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2024.1297135
advances in detection technology and bioinformatics (50). In this

model, the probability of LOH was considered within a given

genotype combination. The other situation is the presence of

additional alleles, which is the appearance of abnormally long or

short microsatellites on the profile. The possibility for simultaneous

variation arising from a pair of alleles was taken into account when

examining the inconsistency between tumor cell and normal cell

genotypes during the process of genotypic permutations. As a

result, the result tends to be conservative. In short, the incidence

of STR variants (j) was considered for each allele at all loci

for conservation.

The genetic alterations in carcinomas are chromosome specific

(51), and previous studies have found that these loci had different

degrees of mutation. For example, TPOX had a low mutation rate in

a wide range of tumors (9–11). Therefore, different STR variation

probabilities were assigned to each locus based on the population

survey results. However, it has been observed that certain loci

exhibited varying rates of mutation across different types of

cancer. The mutation rates tend to rise in more aggressive forms

of cancer (10) and has been shown to be associated with the

population average heterozygosity and variability of the repeat

number of microsatellite loci (52). The samples and model

parameters utilized in this study were limited to primary

colorectal cancer tumors, whereas further research is required to

validate the findings on tumors of various types and from diverse

population backgrounds.

Estimating the percentage of cancer cells in a solid tumor

sample, denoted by “tumor purity,” which is the same as Mxt, has

been an active research topic. Published studies have evaluated

tumor purity assays using complex and expensive genome-wide

(53), exome (54), or transcriptome data (55). Patel et al. reviewed

several algorithms for estimating tumor purity. However, none of

the computational approaches for estimating tumor purity achieved

the status of being universally accepted as the “gold standard.” The

most consistent analysis was between two pathologists using light

microscopy (24). In this study, the microscopic analysis for tumor

cell proportion is utilized for convenience. Given the inherent bias

associated with manual estimation, LR interval values were

calculated within the dynamic range of Mxn. This approach

enhances the credibility and validity of the obtained results. In

the future, there is potential for the concurrent estimation of tumor

purity and individual identification using large-scale sequencing

data, which remains to be explored.

It should be noted that we attempt to use the k-value to describe

copy number variation for simplicity. However, the current k-value

estimation relies solely on qualitative information and cannot use

the peak height influenced by copy number. This results in an

underestimation of the k value, and further investigation is required

to determine its impact on LR results.
4.4 The robustness of the model

The results of Experiment 1 showed that there was a significant

liner correlation between Log10(LR) and Mxn/j among 17 tumor

samples. When the reference was the true contributor, the model
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observed an increase in LR as the proportion of normal cells grew

larger. This can be attributed to the gradual increase of the

genotyping weight associated with normal cells. Conversely, in

the non-contributor test, LR increased with increasing Mxn as the

weighting of the false contributor genotype decreased. Additionally,

LR increased with increasing j due to the sum of all genotype

combination probabilities under Hd becoming larger than the

genotype probability under Hp. The above results demonstrate the

rationality of the model.

The efficacy of the model was evidenced by the results obtained

from Experiment 2. LR calculation for 17 samples was much higher

than 1, strongly supporting tumor samples derived from known

individuals. Moreover, Log10(LR) remained linearly related to Mxn

for each sample. The LR appeared to decrease as the percentage of

normal cells decreased. However, the correlation still needs to be

verified with a large number of samples.

The 99.9% of the Log10(LR) was less than 0 for the non-

contributor tests. Although there were some results that were

slightly greater than zero, as observed when Mxn reached its

minimum value, this outcome is acceptable given the

comparatively small LR of the corresponding sample for true

contributor and the randomness of generating individual non-

contributor. This manifests the specificity of the model to exclude

irrelevant individuals through quantitative measurements.

Alleles of tumor cells are mutated from the somatic cell. The

number of alleles shared with the latter should be greater than that

of parent–offspring pairs or full-sibling pairs and equal to or slightly

less than that of monozygotic twins (18). Relatedness was evaluated

under Hd to investigate whether individuals sharing some alleles

with true contributors would be identified as contributors after

model calculations. The result implies that the genotype probability

is limited due to the additional information that the unknown

individual is related to a specific known individual, which leads to

the reduction of the LR while maintaining all values greater than 1.

As a result, the LR value supports that the tumor tissue originated

from a true contributor. In summary, the model rejects the

hypothesis that the sample originates from individuals who are

unrelated, parent–offspring pairs, or full-sibling pairs. Instead, it

supports the hypothesis that the true contributor is the source of

the sample.

Furthermore, the precision of the calculations was confirmed

through the repetition of the analysis on both true contributors and

non-contributors yielding consistent results (data not shown). The

accuracy of the optimizer employed in this study was validated, and

the consistent LR was obtained by comparing the outcomes of a

two-person DNA mixture profile generated in vitro using our

scripts and the Euroformix software. See Supplementary Table 21

for details.
5 Conclusion

When comparing the STR profile of a tumor sample with a

reference sample from the same individual, the genetic markers

were no longer consistent. Using a probabilistic model to deal with

the possibility of such alterations can provide a quantitative solution
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for their homology determination in clinical practice or forensic

filed. In the present study, we attempt to provide a strength of

evidence value that can be used for comparison and open up the

prospect of using tumor samples for personal identification.
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