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Background: This study aimed to establish and validate a prognostic model

based on immune-related genes (IRGPM) for predicting disease-free survival

(DFS) in patients with locally advanced rectal cancer (LARC) undergoing

neoadjuvant chemoradiotherapy, and to elucidate the immune profiles

associated with different prognostic outcomes.

Methods: Transcriptomic and clinical data were sourced from the Gene

Expression Omnibus (GEO) database and the West China Hospital database.

We focused on genes from the RNA immune-oncology panel. The elastic net

approach was employed to pinpoint immune-related genes significantly

impacting DFS. We developed the IRGPM for rectal cancer using the random

forest technique. Based on the IRGPM, we calculated prognostic risk scores to

categorize patients into high-risk and low-risk groups. Comparative analysis of

immune characteristics between these groups was conducted.

Results: In this study, 407 LARC samples were analyzed. The elastic net identified

a signature of 20 immune-related genes, forming the basis of the IRGPM. Kaplan

−Meier survival analysis revealed a lower 5-year DFS in the high-risk group

compared to the low-risk group. The receiver operating characteristic (ROC)

curve affirmed the model’s robust predictive capability. Validation of the model
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was performed in the GSE190826 cohort and our institution’s cohort. Gene

expression differences between high-risk and low-risk groups predominantly

related to cytokine−cytokine receptor interactions. Notably, the low-risk group

exhibited higher immune scores. Further analysis indicated a greater presence of

activated B cells, activated CD8 T cells, central memory CD8 T cells,

macrophages, T follicular helper cells, and type 2 helper cells in the low-risk

group. Additionally, immune checkpoint analysis revealed elevated PDCD1

expression in the low-risk group.

Conclusions: The IRGPM, developed through random forest and elastic net

methodologies, demonstrates potential in distinguishing DFS among LARC

patients receiving standard treatment. Notably, the low-risk group, as defined

by the IRGPM, showed enhanced activation of adaptive immune responses

within the tumor microenvironment.
KEYWORDS

artificial intelligence, prognostic model, immune related gene, rectal carcinoma,
neoadjuvant chemoradiotherapy
Introduction

Colorectal cancer is the third most common cancer and the

second leading cause of cancer-related mortality worldwide (1).

Locally advanced rectal cancer (LARC) constitutes up to 15%

of all colorectal cancer cases (2). For LARC, neoadjuvant

chemoradiotherapy (nCRT) followed by total mesorectal excision

(TME) and adjuvant chemotherapy is the standard treatment

recommended by the National Comprehensive Cancer Network

(NCCN) guidelines (3). However, rectal cancers are a widely

heterogeneous group. The prognosis of patients is different even

after the same standard treatment. Therefore, there is a strong need

to predict the prognosis of patients treated with the standard

strategy and to guide treatment alterations when necessary (4, 5).

Tumor behavior is controlled not only by the epithelial component

but also by the tumor immune microenvironment (TIME) (6). Several

studies have indicated that tumor-infiltrating lymphocytes are

predictive of the response to treatment and prognosis (7, 8). Thus,

the relationship between the TIME and treatment response/prognosis
c model; DFS, Disease-

GEO, Gene expression

Areas under the curve;

l mesorectal excision;

rk; TIME, The tumor

l; SVM, Support vector

ina Hospital, Sichuan

; DEGs, Differentially
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was explored to find biomarkers or to construct models that could

predict the response to treatment and prognosis (9). Along with this,

the TIME can be modified by radiotherapy (10). Some studies have

explored the correlation between the TIME and the clinical outcome of

rectal cancer patients treated with neoadjuvant radiotherapy by

immunohistochemical (IHC) methods (11). The results showed that

different tumor infiltrating cell subsets (CD3+ lymphocytes, CD4+

lymphocytes, CD8+ lymphocytes, etc.) or the expression level of PD-L1

were predictive factors of the treatment response or prognosis (11–14).

Due to the inconsistent results of IHC, it is hoped that further findings

could be derived from gene analysis. Qian et al. explored the

relationship between the gene expression profile and response to

nCRT in LARC, and they developed an immune gene predictive

model that could predict the response to nCRT by support vector

machine (SVM) (15). Therefore, the value of immune-related gene

signatures closely related to the TIME in predicting prognosis is

worth studying.

Machine learning (ML), a branch of artificial intelligence, has

had outstanding performance in disease diagnosis, prognosis

prediction, and treatment response assessment. In previous

studies, only the LASSO algorithm has been used to establish a

prognostic model in LARC (16, 17). Timo M. Deist et al. suggested

that random forest and elastic net logistic regression yield higher

discriminative performance for chemoradiotherapy outcome than

other classifier families (18). Thus, we planned to generate an

optimized predictor of outcome in rectal cancer patients with the

random forest and elastic net logistic regression methods in

this study.

In this study, we focused on immune genes in an RNA immune-

oncology panel and screened immune-related genes related to

prognosis. The aim of this study was to construct an immune-
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related gene prognostic model (IRGPM) with the random forest

and elastic net logistic regression methods for LARC patients

treated with nCRT. We further characterized the immune

microenvironment of patients with different prognostic risks. The

results showed that IRGPM, which was established by using the

random forest and elastic net methods, was a promising prognostic

biomarker for patients receiving neoadjuvant treatment. Lack of

effective immune infiltration in tumor microenvironment was

observed in the high risk group with poorer survival.
Materials and methods

Data acquisition and processing

A public database was queried for patients with LARC. Only

patients who received a standard strategy (neoadjuvant treatment

followed by TME and adjuvant chemotherapy) and had prognostic

data were selected. The gene expression data with matched clinical

information were obtained from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/), with accession numbers

GSE87211, GSE190826 and GSE119409. Patients with missing disease-

free survival (DFS) were excluded to reduce statistical bias in this

analysis. The GSE87211 dataset was used as the training cohort, and

the GSE190826 dataset was used as the validation cohort. These three

cohorts were all included in the immune analysis. Another validation

cohort was created from LARC patients at West China Hospital,

Sichuan University (WCHSC). Patients with LARC who underwent

standard nCRT treatment between January 2013 and January 2018

were recruited. The study was approved by the ethical committee of

WCHSC. An RNA immune-oncology panel was used to detect the

expression of 395 genes at the RNA level from formalin-fixed, paraffin-

embedded (FFPE) tumor specimens (details are provided in

Supplementary Table S1). The raw gene expression data in

GSE87211, GSE190826, GSE119409 and WCHSC were normalized

by using the rank-in algorithm (19).
Identification of prognosis-related genes

Univariable Cox regression analyses were applied to identify the

prognosis-related genes. Univariable Cox regression analysis was

performed to explore the potential confounders. We use three

hypothesis testing methods (Wald.test, Logrank.test and

likelyscore.test). Gene expression levels with p values less than

0.05 in the three hypothesis testing methods were considered

significant. Subsequently, we shall include prognostic variables

that exhibit statistical significance with p<0.05 from the univariate

analysis into the ensuing analysis.
Construction and validation of the
prognostic signature

After screening with univariable analyses, elastic net was

adopted to ascertain the optimal panel of prognostic genes (20).
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Compared with the LASSO algorithm used in previous studies, the

elastic net has two advantages. It can select more features than the

number of samples in the dataset, which is problematic when

dealing with high-dimensional data. Additionally, if data contain

a group of features that are highly correlated, the LASSO penalty is

going to randomly choose one feature from this group, whereas the

elastic net penalized model would tend to select all. The elastic net

penalty overcomes these problems by using a weighted combination

of the l_1 and l_2 penalties as represented by the following

mathematical formula in Equation 1:

b̂ = arɡmin(on
i=1 yi −op

j bjxij
� �2

+l1jjb jj1+l2jjbjj2Þ (1)

The IRGPM was established with random forest using the

Python package scikit-survival 0.17.2 on the GSE87211 cohort

(21, 22). The expression status of 20 selected prognostic-related

genes was used as the model input. The goal is to predict DFS time.

We employed grid search to optimize the model’s hyperparameters

for best performance, adjusting the number of trees, maximum

depth, and minimum number of branch nodes with specific step

sizes. We evaluated the model’s general performance using a

stratified 10-fold cross-validation. For each patient, the model

assigns a prognostic risk score. Using the X-tile program, we

divided the patients into low-risk and high-risk groups. We then

compared the DFS of rectal cancer patients in these groups using

the Kaplan−Meier method and log-rank test with the survival R

package (23). Data from the GSE190826 cohort and WCHSC

cohort, were used to validate the prognostic risk model. Due to

the absence of DFS data, GSE119404 cohort is excluded from the

prognostic risk model validation.
Exploration of the molecular mechanisms
underlying the prognostic signature

The limma R software package was used to analyze differentially

expressed genes (DEGs) between the low- and high-risk groups

(24). We used the cluster Profiler R package to carry out gene set

enrichment analysis (GSEA) and to identify significantly enriched

pathways between the low- and high-risk groups (25). A P

value<0.05 and |log2Fold Change| > 0.58 were regarded as the

cutoff values for statistical significance.
Evaluation of the TIME

To determine the relationship between the IRGPM and the

TIME, we explored the abundance of immune cells and stromal

cells between different groups. The stromal score, immune score

and ESTIMATE score of each patient were calculated using

ESTIMATE method (26). Their differences were compared using

the Wilcoxon signed-rank test, and p<0.05 was considered to

indicate significance. Then, we calculated the infiltration values

for rectal cancer dataset samples based on 28 immune gene sets.

Using single-sample gene set enrichment analysis (ssGSEA), the

proportions of immune cells were quantified (27). The scores of
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immune cells in different groups are shown on multi-boxplots. We

also made comparisons of immune checkpoint activation between

the low- and high-risk groups by the ggpubr R package.
Statistical analysis

Most statistical analyses were performed using R software

(Version 4.1.3; R Foundation for Statistical Computing, Vienna,

Austria). The cutoff points for age ranges were determined using the

X-tile program (http://www.tissuearray.org/rimmlab/). The survival

rate was plotted using the Kaplan−Meier method and analyzed

using the log-rank test. P<0.05 was considered statistically

significant. Graphs related to R statistical analyses were drawn

using the ggplot2 package in R.
Results

Patient information

The detailed flow diagram of our study is shown in Figure 1. A

total of 407 LARC samples were used in this study. There were 180

LARC cases in the GSE87211 cohort that were used for prognostic

risk model training. The GSE190826 dataset with 86 LARC cases

and the WCHSC cohort with 75 LARC patients were used for

model validation. For immune infiltration analysis, a total of 332

LARC samples in three GEO cohorts (GSE87211, GSE190826 and

GSE119409) were included in the study. The detailed information

(age, gender, tumor stage and treatment method) of patients from

the GEO database and our hospital is shown in Table 1.
Prognostic risk model construction

To determine the independent prognostic genes, univariate Cox

regression analyses for DFS were performed. As shown in

Supplementary Table S3, 23 genes were identified and further

included in the next analysis. To obtain the optimal panel, elastic

net logistic regression was carried out on the candidate genes. We

screened a 20-gene signature with the best concordance index

(Figure 2A). Then, we constructed the optimized prognostic
Frontiers in Oncology 04
model by using the random forest method, which assigned each

sample a prognostic risk score based on the identified coefficient of

each gene (Figure 2B; details in Supplementary Table S4). To obtain

the optimized cutoff value for the prognostic risk score, we applied

the X-tile program to assess the statistical significance and avoid

arbitrary cut point selection. The patients were then divided into

high- and low-risk groups based on a cutoff value of 18.00. The

Kaplan−Meier curves showed that the low-risk group was

associated with a significantly longer median disease-free survival

(mDFS) than the high-risk group (unreached vs. 20 months; p<

0.0001; hazard ratio (HR), 0.05; 95% confidence interval (95% CI),

0.03–0.11; Figure 2C). As shown in Figure 2D, receiver operating

characteristic (ROC) analysis indicated that the areas under the

curve (AUCs) of the IRGPM for the training cohort reached 0.87,

0.94, and 0. 95 at 1, 3, and 5 years, respectively.
Validation of the prognostic risk model

The robustness of IRGPM was validated in two independent

cohorts of LARC patients with adequate information on genomic

expression profiles and survival. The patients in both cohorts were

classified into high- and low-risk groups in the same way as the

training cohort, with the optimal cut point determined in the

training cohort (details in Supplementary Table S4). As shown in

Figure 3A, for the GSE190826 cohort (n=86), low-risk patients (n =

76) had a better DFS than high-risk patients (n = 10) (mDFS,

unreached vs. 13 months; p< 0.0001; HR, 0.52; 95% CI, 0.28–0.95).

ROC analysis indicated that the AUCs of the IRGPM for the

GSE190826 validation cohort were 0.79, 0.64, and 0.63 at 1, 3,

and 5 years, respectively (Figure 3B). Consistently, in the SUWCH

cohort (n=75), low-risk patients (n = 66) also had a better DFS than

high-risk patients (n = 9) (mDFS, unreached vs. 22 months; p =

0.0031; HR, 0.29; 95% CI, 0.12–0.69; Figure 3C), and the AUCs for

the prognostic risk model were 0.64, 0.66, and 0.64 at 1, 3, and 5

years, respectively (Figure 3D).
Differential expression analysis

The expression profiles of LARC patients with high prognostic

risk scores were compared with those of patients with low risk
FIGURE 1

Flowchart of the study. A total of 407 LARC samples were used in this study. A training cohort (GSE87211) including 180 LARCs was used to identify a
prognostic-risk class. Validation was then performed in 2 independent datasets. Immune analysis was performed in three cohorts of them.
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B
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A

FIGURE 2

Construction of prognostic risk model. (A) The orange vertical line indicates the optimal value (c-index = 0.74), which was identified by tenfold
cross-validation; (B) The random forest coefficient profiles of the 20 candidate genes; (C) Kaplan–Meier curve of DFS for patients with high and low
prognostic risk scores in the training cohort; (D) Receiver operating characteristic (ROC) curve analysis for clinical benefit to preoperative
chemoradiotherapy prediction. Area under the curve (AUC) estimation for the 20-gene signature in the training cohort.
TABLE 1 Cohorts’ information in the study.

Dataset GSE87211 GSE190826 GSE119409 SUWCH

Institution National Cancer
Institute, USA

Georg Speyer
Haus, Germany

Peking University Cancer Hospital &
Institute, China

Sichuan university, West China
Hospital, China

No. of patients 180 86 66 75

Sex Female:54
Male:126

Unknown Unknown Female:32(42.7%)
Male:43(57.3%)

Age ≤65:73(40.5%)
>65:107(59.5%)

Unknown ≤65:20(33.3%)
>65:45(75%)
Unknown:1(1.7%)

≤65:24(32%)
>65:51(68%)

Clinical stage before
neoadjuvant treatment*

II:59
III:117
IV:2
Unknown:2

II:6
III:57
Unknown:3

Unknown II:9
III:66

Pathological stage after surgery* pCR:68
I:17
II:47
III:45
IV:3

Unknown Unknown pCR:7
I:12
II:23
III:33

Treatment nCRT nCRT nCRT nCRT or SCRT
F
rontiers in Oncology
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nCRT, neoadjuvant chemoradiotherapy; SCRT, neoadjuvant short course radiotherapy. *The staging is based on the 8th edition of the TNM staging system for colorectal cancer, as established
by AJCC.
More detail are provided in Supplementary Table S2.
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scores to identify DEGs. The DEGs related to prognostic risk status

for each cohort are listed in detail in Supplementary Table S5 and

visualized in volcano plots (Figure 4). In the GSE87211 cohort, a

total of 54 upregulated genes and 169 downregulated genes were

identified in the high-risk group compared with the low-risk group

(Figure 4A). Functional enrichment analysis showed that the DEGs

were significantly associated with 19 GO terms and 9 KEGG

pathways (details in Supplementary Table S6). GO enrichment

analysis of biological processes was conducted for the DEGs,

which demonstrated that receptor ligand activity, signaling

receptor activity, cytokine activity growth factor activity and

CXCR chemokine receptor binding were the most frequently

enriched biological process terms in the high-risk group

(Figure 4B). The top enriched KEGG pathways by the DEGs in

GSE87211 were also related to cytokine−cytokine receptor

interactions (Figure 4C). In the GSE119409 cohort, 616 DEGs

were identified, with 443 unregulated and 173 downregulated

genes (Figure 4D). The functional annotation results showed that

the DEGs were significantly associated with 13 GO terms and 30

KEGG pathways (Supplementary Table S6). The DEGs were mostly

enriched in the GO terms MHC protein complex binding, immune

receptor activity, MHC class II protein complex binding, and MHC

class II receptor activity (Figure 4E). In addition, the most enriched
Frontiers in Oncology 06
immune-related KEGG pathways were cytokine−cytokine receptor

interactions and chemokine signaling pathways (Figure 4F).
GSEA of the DEGs

GSEA identified a number of KEGG pathways enriched in

distinct prognostic risk subgroups (Supplementary Table S7).

Typically, immune-associated pathways were highly active in the

low-risk group, including antigen processing and presentation

pathways, the hematopoietic cell lineage pathway, JAK–STAT

signaling, T and B-cell receptor signaling, cytokine–cytokine

receptor interactions, natural killer cell-mediated cytotoxicity and

the intestinal immune network for IgA production (Figures 5A, B). In

addition, we identified cancer-associated pathways that were

hyperactivated in the low-risk group, including NOTCH signaling

(Figure 5B). This suggests that the activities of these cancer-associated

pathways are positively associated with LARC immunity. We also

analyzed 13 immune-associated gene sets that represented diverse

immune functions and pathways (Supplementary Table S8). The

ssGSEA score was used to quantify the activity or enrichment levels of

immune functions and pathways in the cancer samples. The gene sets

of the low-risk samples were enriched in APC coinhibition, CCR,
B

C D

A

FIGURE 3

The utility of prognostic risk model in predicting the clinical outcomes of patients with LARC receiving neoadjuvant treatment. (A) Kaplan–Meier
survival analysis of DFS among patients within each of the two indicated subgroups in the GSE190826; (B) The ROC curve analysis and AUC for the
performance of prognostic model in the external validation set GSE190826; (C) Kaplan–Meier survival analysis of DFS in the SUWCH; (D) ROC curve
and AUC in SUWCH cohorts.
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checkpoint, cytolytic activity, inflammation promotion, T-cell

coinhibition, T-cell costimulation, type I IFN response and HLA

(Figures 5C–E).
Immune characteristics of different
IRGPM subgroups

Given that the expression of immune genes is closely related to

prognosis, it is necessary to investigate the role of the TIME in

different groups. We compared the ESTIMATE scores, stromal

scores, and immune scores between the high-risk group and the
Frontiers in Oncology 07
low-risk group. Although no significant differences were found in

the GSE87211 cohort (Supplementary Table S9), low-risk patients

had higher immune scores than high-risk patients in the

GSE190826 cohort (Figure 6A), and the GSE119409 results

showed that low-risk patients had higher ESTIMATE and

immune scores than high-risk patients (Figure 6C). We then

investigated 28 immune-associated gene sets that represented

diverse immune cell types, and the ssGSEA score was used to

quantify the activity or enrichment levels of immune cells. The low-

risk group had higher levels of activated B cells, activated CD8 T

cells, central memory CD8 T cells, effector memory CD8 T cells,

gamma delta T cells, immature B cells, MDSCs, monocytes, type 1
B C

D E

A

FIGURE 5

GSEA plot of immune-related and cancer-associated pathways in comparisons between the prognostic high and low risk groups in GSE87211
(A) and GSE190826 (B).Comparations of 13 immune-related pathways expression between high and low risk groups in GSE87211 (C), GSE190826
(D) and GSE119409 (E) cohorts. APC, Antigen-presenting cells; CCR, Chemokine receptors; IFN, interferon. *p<0.05; **p<0.01; ns, not significantly.
B C

D E F

A

FIGURE 4

Differential expression analysis. Volcano plot of differentially expressed genes (DEGs) (A), and the Gene Ontology (GO) enrichment (B) and KEGG
enrichment (C) in GSE87211 cohort. DEGs identified (D), and its GO enrichment (E) and KEGG enrichment (F) of identified DEGs in
GSE119409 cohort.
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helper cells and type 17 helper cells in GSE190826 (Figure 6B).

Similarly, the low-risk group in GSE119409 had higher levels of

activated B cells, activated CD8 T cells, CD56 bright natural killer

cells, MDSCs, T follicular helper cells and type 2 helper cells

(Figure 6D). The low-risk group had higher levels of activated

CD4 T cells and type 2 helper cells in the GSE87211 cohort

(Supplementary Table S9).

We further investigated the expression of immune-activity-

related genes, including CD8A, CXCL10, CXCL9, GZMA,

GZMB, IFNG, PRF1, TBX2, and TNF. We found that the

expression levels of CD8A,GZMA and GZMB were higher in

the low-risk group than in the high-risk group (Figures 7A, B).
Frontiers in Oncology 08
In addition, we examined the expression of immune checkpoint

genes related to the treatment response to immune checkpoint

inhibitors in the two distinct subgroups. The expression status of

seven genes previously identified as targets of immune

checkpoint inhibitors were evaluated: CD274, CTLA4, LAG3,

PDCD1, TIGIT, IDO1 and HAVCR2. The low-risk group had

higher levels of PDCD1 than the high-risk group in

GSE190826 (Figure 7C).

Based on the above analyses, we find that patients in low risk

group had distinct TIME characterization compared with high risk

group. Low risk group was characterized by adaptive immune cell

infiltration and immune activation.
B

C

A

FIGURE 7

Immune-activation-relevant genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, and TNF) and immune-checkpoint-relevant genes
(IDO1, CD274, HAVCR2, PDCD1, CTLA4, TIGIT and LAG3) expressed in high and low prognostic risk subgroups. The statistical difference of two
groups was compared through the Kruskal-Wallis test. *p< 0.05; **p< 0.01. ns, not significantly.
B

C D

A

FIGURE 6

The Landscape of Immuno-cell Infiltration in the TME of LARC. The comparation of estimate, immune and stromal scores of high and low risk
groups in GSE190826 (A) and GSE119409 cohort (C). The expression of tumor-infiltrating immune cells in two subgroups in GSE190826 (B) and
GSE119409 (D) cohort. The statistical difference of two groups was compared through the Kruskal-Wallis test and student-t test. *p< 0.05; **p<
0.01. ns, not significantly.
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Discussion

Due to the heterogeneity of tumors, even after standard

treatment, including neoadjuvant chemoradiotherapy, over 30% of

patients experience recurrence within 5 years (28). Consequently, it is

an urgent task to develop reliable biomarkers that could identify

patients with a high risk of recurrence after the standard treatment

method. Then, intensive or different treatment schemes, as well as

different monitoring schemes, can be appropriately selected for these

patients. A previous study reported that immune-related genes can be

used to predict the response to neoadjuvant therapy (15). However,

the relationship between immune-related genes and the long-term

prognosis (DFS) of LARC patients receiving neoadjuvant treatment

followed by TME and adjuvant chemotherapy is currently unclear.

We used a machine learning strategy to identify a 20-immune-gene

signature that can predict the prognosis of LARC patients after

nCRT. The prognostic model showed excellent discrimination for

the individualized prediction of DFS and had an AUC of 0.95 for the

prediction of DFS at 5 years.

The predictive model constructed in this study demonstrates

robust predictive performance (AUCs of 0.94 in this study) (29–31).

The good performance could be partly explained by the use of different

machine learning classification algorithms in our study. Compared

with the LASSO Cox regression analysis used in previous studies, the

elastic net used in this study can select more features. Additionally,

when data contain a group of features that are highly correlated, the

elastic net penalized model tends to select all features, and the LASSO

penalty randomly chooses one feature from this group. Therefore, the

elastic net is more likely to choose the optimal panel for constructing a

prognostic model. A previous study also showed that random forest

and elastic net logistic regression were better than other studied

classifiers (decision tree, neural network, and SVM) in treatment

response prediction (18). In this study, with immune-related genes

selected by elastic net, we applied random forest to construct the

prognostic classifier of LARC. As demonstrated in the Supplementary

Table S11, consistent with previous study outcomes, the model

constructed via random forest exhibited superior performance.

To explore whether the immunological biomarkers at the RNA

level could predict the prognosis of rectal cancer, an RNA immune-

oncology panel was selected because it covered the signaling pathways

of immunological system activation, tumor immune response, immune

cell differentiation, immune regulation, tumor antigens, antigen

presentation, and so on (32, 33). Previous studies have shown that it

is possible to efficiently and accurately investigate, analyze and identify

prognostic markers related to immune factors in the tumor

microenvironment with an RNA immune-oncology panel (33, 34).

Thus, an RNA immune-oncology panel was used to identify

biomarkers in this study. In addition to the gene expression data

from the database, we also detected the expression of 395 genes in the

RNA immune-oncology panel at the RNA level from FFPE tumor

specimens at WCHSC. The data originating from our institution were

included in the validation cohort. Kaplan−Meier survival analysis

showed poorer 5-year DFS in the high-risk group than in the low-

risk group, and the ROC curve suggested good model prediction

(AUC=0.64 at 5 years). This further proved that the developed

prognostic risk model had good predictive power.
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The immune gene signature in the prognostic model consisted of

20 genes, of which 11 genes were associated with T-cell immunity.

TNFSF9, CD1C and CD209 play an important role in presenting

antigens for T cells (35–37). ICOS, CD247, CD80, CD40LG and

GZMB are associated with T-cell activation (38). ICOS, CD247 and

CD80 belong to the CD28 family, which is critical for controlling the

adaptive arm of the immune response (39). It is suggested that

immunity has an effect on prognosis. CXCL10 is an interferon-

stimulated chemokine that attracts T cells (15). IL12A and IRF4 are

associated with T-cell differentiation (40). Five of 20 genes were

shown to be predictive in rectal cancer in previous studies. CXCL10,

IL12A, CD247 and ITGB1 were identified as predictive markers for

the response to neoadjuvant treatment in rectal cancer in previous

studies (15, 41–45). Tumor IRS1 expression was related to the

survival of rectal cancer patients (46).

To further understand the immunologic properties of

subgroups classified according to the prognostic model, we

studied the characteristics of the TIME of the different subgroups.

Through the ESTIMATE algorithm, we found that the immune

score in the low-risk group was significantly higher than that in the

high-risk group, suggesting that the infiltration of immune cells was

significantly different between the two groups. Our data revealed a

significant difference in the distribution of some immune cells

between the high-risk group and the low-risk group in the

GSE119409 and GSE190826 cohorts. In the low-risk group,

activated B cells, activated CD8 T cells, central memory CD8 T

cells, macrophages, T follicular helper cells, and type 2 helper cells

were significantly increased compared with those in the high-risk

group. This is consistent with the current understanding that the

presence of abundant immune cells in TIME was associated with

good prognosis (47). A previous study indicated that the presence of

B cells was associated with successful tumor regression following

nCRT in LARC (48). Shinji e et al. reported that a high density of

CD8+ T cells in tumors in baseline biopsy samples was associated

with a good response to treatment (7). It was revealed that

macrophages, T follicular helper cells, and type 2 helper cells

were related to the prognosis of rectal cancer patients (49).

However, these results could not be confirmed in GSE87211. The

inconsistencies might be due to tumor heterogeneity, different

detection methods and the complexity of the TIME.

There were several limitations in our study that should be

acknowledged. Our study was based on publicly available datasets,

and it was not possible to obtain complete clinical information and

demographic data for each patient. In addition, the potential

mechanisms, molecular interactions and clinical applications of

the prognostic genes of rectal cancer need to be further explored.

The association between better TRG and favorable clinical

outcomes continues to be a matter of debate (50). In this study,

uncertainty remains regarding the relationship between the low-risk

group characterized by a high immunoscore and TRG 0-1. Due to

the absence of TRG staging data in the included database, we did

not investigate the potential correlation between the low-risk group

and favorable TRG regression in this study. Nevertheless, the

exploration of predictive models for TRG remains critically

important, and we plan to conduct further research in this

domain in the future.
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Conclusions

In conclusion, this study developed a prognostic risk prediction

model by analyzing immune-related genes and using the random

forest and elastic net methods. The IRGPM has good prediction

accuracy and provides a good stratification strategy for further

trials. Different groups separated by IRGPM had distinct TIME

characterization. These findings suggest that the immune response

might play a vital role in the prognosis of chemoradiotherapy.
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