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Deciphering glycosylation-driven
prognostic insights and
therapeutic prospects in
glioblastoma through a
comprehensive regulatory model
Xingyi Jin, Zhuo Chen and Hang Zhao*

Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
The oncogenesis and development of glioblastoma multiforme have been linked

to glycosylation modifications, which are common post-translational protein

modifications. Abnormal glycosyltransferase development leads to irregular

glycosylation patterns, which hold clinical significance for GB prognosis. By

utilizing both single-cell and bulk data, we developed a scoring system to

assess glycosylation levels in GB. Moreover, a glycosylation-based signature

was created to predict GB outcomes and therapy responsiveness. The study

led to the development of an glyco-model incorporating nine key genes. This risk

assessment tool effectively stratified GB patients into two distinct groups.

Extensive validation through ROC analysis, RMST, and Kaplan-Meier (KM)

survival analysis emphasized the model’s robust predictive capabilities.

Additionally, a nomogram was constructed to predict survival rates at specific

time intervals. The research revealed substantial disparities in immune cell

infiltration between low-risk and high-risk groups, characterized by differences

in immune cell abundance and elevated immune scores. Notably, the glyco-

model predicted diverse responses to immune checkpoint inhibitors and drug

therapies, with high-risk groups exhibiting a preference for immune checkpoint

inhibitors and demonstrated superior responses to drug treatments.

Furthermore, the study identified two potential drug targets and utilized

Connectivity Map analysis to pinpoint promising therapeutic agents.

Clofarabine and YM155 were identified as potent candidates for the treatment

of high-risk GB. Our well-crafted glyco-model effectively discriminates patients

by calculating the risk score, accurately predicting GB outcomes, and

significantly enhancing prognostic assessment while identifying novel

immunotherapeutic and chemotherapeutic strategies for GB treatment.
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1 Introduction

Glioblastoma (GB) has evolved into a highly threatening and

deathly brain tumor, with an overall survival time of 15-17 months as

the median (1). GB is characterized by its rapid proliferation and

extensive vascularization, which is supported by the tumor’s aggressive

growth dynamics promoting angiogenesis (2). Immunotherapy is a

potential novel medication that increases anticancer immune

responses by controlling T cells’ stimulation and function activities

(3). Monoclonal antibodies targeting PD-1/PD-L1 or CTLA-4 have

been used in many clinical trials to induce long-lasting therapeutic

responses in some cancer patients (4). Therefore, it is of the utmost

importance to investigate new markers predicting immunotherapy

response and to build solid prognostic signatures for GB patients,

enabling the classification of patients and targeted therapy.

Glycosylation is a protein modification progress regulated by

glycosyltransferases (5). Several glycosylation modifications, such

as O-glycosylation, N-glycosylation, sialylation and fucosylation,

are significantly correlated to cancer; these alterations drive

multiple cancerous behavior patterns of tumors, including tumor

depersonalization, metastasis, and immune regulation (6). A poor

prognosis is predicted for glioma patients with the ST3GAL1-

associated O-linked sialylation, which also enriches increasing

cancer stages in the heterogeneous molecular classification (7).

The deregulation of FUT8 contributes to GB tumorigenesis and

provides unique insights into the role of fucosylation in receptor

tyrosine kinase activity and TMZ resistance (8). Therefore,

glycosylation is implicated in numerous aspects of GB

oncogenesis, progression, and immune regulation. Emerging data

have established those dynamic glycosylation alterations are

intimately connected with the course of tumors due to the

development of glycomics. Some literature suggests that protein

glycosylation is a viable event for diagnosing and tracking a variety

of malignancies (9). For example, low MGAT1 expression was

associated with liver cancer cell dedifferentiation, metastases, and

poor outcomes (10). In addition, Liu et al. found that high levels of

GALNT6 expression were correlated with decreased survival rates

and that GALNT6 promotes breast cancer metastasis through a2M
O-glycosylation (11). Identifying underlying glycosylation

biomarkers and expression abnormalities is essential to predict

diagnostics, outcomes, and treatment responses for malignancies.

For this reason, exploring the role of glycosylation regulators in

creating a GB risk prediction model is fascinating.

In the current investigation, we constructed the glyco-score

and assessed the GB samples on bulk and single-cell levels.

Then we established a glyco-model that predicts GB prognosis,

immunotherapy and chemotherapy responses. Survival time,

glycosyltransferase expression, tumor microenvironment,

immunotherapy response, and chemosensitivity significantly

correlate with risk score. Meanwhile, clinical experiments

demonstrated that the chosen glycosylation regulators are related

to the immunological status and malignant characteristics of GB.

Our comprehensive analysis of glycosylation patterns offers

promising avenues for GB diagnosis and therapy choice,

facilitating a more tailored treatment strategy. By identifying
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specific glycosylation signatures, we aim to predict patient

outcomes and therapy responses more accurately, which is critical

in the context of personalized medicine for GB.
2 Materials and methods

2.1 Data acquisition

We meticulously collected gene profiles, mutational landscapes,

and clinical data from the TCGA database, which served as our

training set. To ensure a robust dataset, we excluded any samples

lacking complete survival information. For validation purposes,

additional datasets were retrieved from the CGGA and GlioVis

databases, rigorously adhering to similar criteria for data

completeness and reliability (12, 13).
2.2 Single-cell data processing and analysis

Single-cell data of GB was downloaded from the GEO database

under the accession number GSE162631. We removed the genes

that were not expressed in every case (counts = 0), then normalized

the gene expression matrix using the “SCTransform” function in the

Seurat R package. Moreover, we performed the PCA and UMAP

analysis and classified the cells using the FindNeighbors and

FindClusters functions. Doublets were filtered using the

DoubletFinder R package. Cells with > 15% mitochondrial genes

or gene number< 500 were also removed. After quality control,

about 100 thousand cells were subjected to cell-type annotation

using the Celltypist package in Python.
2.3 Functional enrichments

The GO and KEGG databases were employed to conduct fully

functioning activity and pathway analysis involving the differential

expression glycosylation regulators between glioma tumors and normal

tissues using the Enrichplot package in R (14, 15). Moreover, using the

clusterProfiler algorithm (16), GSEA was used to evaluate the functions

between the two risk subgroups. Statistical significance was considered

to exist when the FDR< 0.05 after 1,000 permutations.
2.4 Establishment of glyco-score

A total of 223 glycosylation regulators were retrieved from the

GlycoGene DataBase (GGDB). To explore the glycosylation affections

on GB, we performed the differential analysis between the GB and

normal tissues in the GTEx-TCGA dataset. The differentially

expressed genes were shown in the heatmap, and the gene

correlation was analyzed using the igraph package. The glyco-score

was assessed based on the differentially expressed glycosylation

regulators using the ssGSEA and Ucell algorithms in bulk and

single-cell data, respectively (17, 18).
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2.5 Development and validation of
glyco-signature

To determine predictive glycosylation regulators, a univariate

Cox regression analysis was conducted on differentially expressed

glycosylation regulators in a training set to choose nine

glycosylation regulators associated with the GB outcomes. For

Cox regression analysis for GB prognosis, the OS of GB patients

was examined and computed. Additionally, the lasso regression was

leveraged to extract glycosylation regulators and construct a glyco-

model for gauging the outcome of GB patients. The mathematical

methodology was utilized to ascertain the risk rating:

riskscore =o
n

i=1
(b i � Expi)

Where n is the glycosylation regulator counts; Exp is the

glycosylation gene profile; b indicates the multi-Cox coefficient.

Patients were then classified into different risk subgroups according

to their risk scores. Moreover, the external sets were used to examine

the generality of the risk characteristic. Using R v4.2 and Kaplan–Meier

(KM) survival analysis, the variation in outcome between the two risk

subgroups was determined to be statistically significant (P< 0.05).
2.6 Assessing risk model reliability and
generating nomogram

Prognosis analysis assessed the difference between glyco-model

and common characteristics, including age, gender, and grades. In

the forest plots, P-values and HR were displayed. A nomogram was

established using a glyco-model and selected characters in the rms R

package to assess three-time points’OS in GB patients. To assess the

reliability of our glyco-model, we integrated it with demographic

and clinical factors using multivariable Cox regression analyses to

develop a comprehensive nomogram. This tool projects 1-, 3-, and

5-year survival probabilities for GB patients, employing calibration

plots and AUC curves to evaluate predictive accuracy.
2.7 Analysis of immune infiltration

The ssGSEA algorithm was employed to calculate 20 critical

pathways using the gsva R package (19), and CIBERSORT was

leveraged to specify the cells in the tumor microenvironment (TME)

(20). We further quantified the stromal score, immunological score,

and tumor purity using the ESTIMATE algorithm (21).
2.8 Estimation of drug target

We acquired comprehensive target data for 6,125 compounds from

the Drug Repurposing Hub (https://clue.io/repurposing) and got 2,249

unique drug targets following the elimination of duplicates (22). To

isolate genes amenable to targeting, holding potential for therapeutic

implications in high-risk GB patients, we initially conducted Spearman

correlation analysis. This assessment involved correlating gene
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expression of targetable genes with risk scores. Any gene exhibiting a

correlation coefficient exceeding 0.25 (with a significance level of P<

0.05) was identified as a candidate drug target associated with an

unfavorable prognosis. Subsequently, we determined the risk score for

brain cell lines from the CCLE project. We then undertook a

correlation analysis between the CERES score and risk score,

utilizing these specific cell lines. CERES represents a method used to

estimate gene dependency while compensating for the impact of copy-

number variations. The Avana dataset applies this methodology to

calculate CERES scores for every gene and cell line (23). A lower

CERES score for a particular gene suggests an increased likelihood of its

dependency on a given cancer cell line. Hence, genes displaying a

correlation coefficient below -0.2 (with P< 0.05) were categorized as

drug targets linked to poor prognosis dependence. Consequently,

therapeutic drug targets suitable for high-risk score GBs

encompassed those identified through both aforementioned analyses.
2.9 Chemotherapeutic response prediction

Two extensive pharmacogenomic datasets, namely CTRP and

PRISM, offer expansive drug screening and molecular data

spanning numerous cancer cell lines. This extensive dataset

facilitates precise prognostication of drug response in clinical

samples. Distinct differential expression analyses were conducted

both between bulk samples and cell lines and between the samples

and cell lines, respectively.

For the task of predicting drug responses, a plethora of machine

learning (ML) methods have been documented, encompassing

multivariate linear regression, support vector machine (SVM),

random forests (RF), and k-nearest neighbors (KNN). Among the

array of ML methods, linear regression techniques, such as ridge

regression and elastic net, have demonstrated consistent and robust

performance across diverse contexts (24). Therefore, the present

study employed the ridge regression model encapsulated within the

pRRophetic package. This model, which has demonstrated

reliability across multiple studies, was employed to forecast drug

responses for clinical samples (25, 26). Training of the predictive

model relied on expression profiles and drug response data derived

from solid Cancer Cell Lines (CCLs), with the exclusion of

hematopoietic and lymphoid tissue-derived CCLs. The predictive

model exhibited satisfactory performance assessed through default

10-fold cross-validation, facilitating the estimation of drug

responses for clinical samples based on refined expression profiles.
2.10 Connectivity map analysis

As a supplementary approach, the analysis of the Connectivity

Map (CMap) was conducted to explore the potential therapeutic utility

of candidate agents in GB (27). Initially, a comparative analysis of gene

expression was executed between samples from tumor and normal

tissue. Subsequently, the top 300 genes exhibiting the most pronounced

fold changes (including 150 up-regulated genes and 150 down-

regulated genes) were submitted to the dedicated CMap website,

accessible at https://clue.io/query. The gene expression signatures
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utilized by this platform are sourced from a combination of CMap v1

and the Library of Integrated Network-Based Cellular Signatures

(LINCS) database. Remarkably, the CMap analysis incorporates a

comprehensive selection of 2,429 compounds. The outcome of this

analysis generated a distinct connectivity score for each perturbation,

calibrated on a standardized scale that ranges from -100 to 100.

Significantly, a negative score indicates a gene expression pattern

linked to a specific perturbation that runs contrary to the disease-

specific expression pattern. This implies the potential therapeutic

efficacy of the respective perturbation within the context of the disease.
2.11 Clinical sample collection and
patient stratification

This study employed human specimens obtained from a cohort

of 20 patients diagnosed with GB. These specimens were procured

from patients undergoing surgical procedures at China-Japan

Union Hospital. All collected materials were subjected to HE

staining, following established protocols. Notably, two distinct

pathologists independently conducted the diagnostic assessments.

Total RNA was extracted using the Trizol method (Invitrogen),

which is widely recognized for its efficiency. The quantitative real-

time PCR (qRT-PCR) was conducted using the One-Step qPCR Kit

(Invitrogen) and the CFX Connect™ Real-Time System (BIO-RAD),

strictly following the protocols provided by the manufacturers. For

data analysis, we used the 2-DDCq method, normalizing gene

expression levels to GAPDH as a reference. This normalization is

critical for ensuring consistency across samples. Based on these gene

expression levels, patients were stratified into low-risk and high-risk

groups using a threshold calculated from the glyco-model’s equation,

which helps in predicting patient outcomes more accurately.
2.12 Histological evaluation

To prepare glioma tissue sections for immunohistochemistry

(IHC), we deparaffinized and rehydrated the sections in a series of

gradient ethanol and recovered them by heating the slides at 100°

C citrate buffer for 1 hour. Then, the slices were incubated with the

primary antibodies and HRP-conjugated secondary antibodies in

sequence. DAB Peroxidase Substrate Kit was used to visualize the

antigen-antibody combination. The IHC images were acquired

utilizing a microscope. Immunohistochemistry was performed

using antibodies against CD3 (ab16669, Abcam), CD57

(ab82749, Abcam), CD163 (ab79056, Abcam) and FOXP3

(ab20034, Abcam).
3 Results

3.1 Potential role of glycosylation
regulators in GB

Of 223 glycosylation regulators, 100 genes were abnormally

expressed in GB patients compared with the normal tissues,
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indicating a significant variation in biological processes between

the GB patients and healthy individuals. Heatmap demonstrated the

landscape of 100 differential genes between the two groups. Therein,

we observed that 8 genes were downregulated in GMB patients,

while 92 genes were dramatically increased in GB relative to the

normal cases (Figure 1A). To systemically explore the relationship

among the 100 differential genes, we classified them into four

clusters and constructed the correlation network. We detected a

strong association of 100 genes, for instance, in cluster A, EXT2 and

POFUT1 are highly synergistic (r = 0.798), whereas GAL3ST4 and

ST8SIA3 from cluster B are antagonistic (r = -0.562). Moreover, we

observed the highest association between ALG11 and POMK

(r = 0.802) and the remarkably converse correlation between

GALNT13 and HS3ST3B1 (r = -0.581) (Figure 1B).

To delineate the communication of glycosylation with GB, we

estimated the glyco-score for every GB patient using the ssGSEA

algorithm established from the differential glycosylation regulators.

We found that the glyco-score was dramatically higher in GB than in

normal cases, validated in the other three datasets (Rembrandt, Gil,

and CGGA.mRNAseq_325) (Figures 1C-F). Furthermore, functional

investigations were employed to determine the physiological activities

of glycosylation regulator-associated differentially expressed genes. In

Figure 1G, a distribution chart illustrates the top 10 enriched GO

terms of the molecular mechanism for glycosylation regulators. These

concepts were linked with glycosylation, glycoprotein biosynthesis,

and glycoproteinmetabolism. As shown in Figure 1H, KEGG analysis

revealed that glycosylation regulators were abundant in O-glycan

biosynthesis, glycosaminoglycan biosynthesis, and N-Glycan

biosynthesis. These results implied that the mutual effect of the

differential glycosylation regulators might be the significant reason

for triggering GB.

Since TME is involved in tumor formation, we evaluated the

relationship between the glyco-score and immune infiltration

(Figure 1I). We found a strong positive correlation of glyco-score

with M2 macrophages but a negative association with CD 8+ T cells

(Figures 1J, K), indicating the antagonistic effects of glyco-score in

shaping the hot TME of GB.
3.2 Evaluation of glyco-score at the
single-cell level

To deeply explore the TME variation between GB and normal

individuals, we analyzed single-cell data from GB patients in-depth.

After quality control, we got 99132 cells from the GB and adjacent

tissue (Figure 2A). We then classified them into 20 clusters and

annotated 10 types of cells using the Celltypist algorithm

(Figures 2B, C), such as endothelial cells, fibroblasts,

macrophages, plasma cells, T cells, B cells, monocytes, DC, ILC,

and mono-mac. Cell infiltration analysis demonstrated a variety of

variations between the two groups (Figure 2D). The representative

markers of each cell type are shown in Figure 2E. We next assessed

the glyco-score in the single-cell level leveraging the Ucell algorithm

and observed a higher level of glyco-score in GB relative to the

adjacent tissue, especially in macrophages and DC cells, which

followed the bulk-seq results (Figures 2F, G).
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Due to the largest proportion of macrophages in the TME of

GB, we estimated the glyco-score in distinct macrophage subsets.

We then filled out the macrophages and worked over again. Five

subtypes of macrophages were identified, including alveolars,

intermediate, erythrophagocytic, intestinal, and macrophages

(Figure 2H). We observed that glyco-score significantly diversity

among each macrophage subset (Figure 2I).
3.3 Construction and assessment of
glyco-model

We applied Cox regression analysis to determine that 82

glycosylation regulators with differential expression were linked
Frontiers in Oncology 05
with GB prognosis (p< 0.05). Lasso regression was used to screen

out significant genes. Based on the glioma cases in the TCGA

dataset, 25 chosen glycosylation regulators were further analyzed to

predict the risk model (Figures 3A, B). To strengthen the rigor of

the prediction signature, we randomly divided the TCGA training

set into an internal training set and an internal testing set. Then we

validated the model using three independent external testing sets.

After training our model, we screened nine glycosylation regulators

to generate the predictive model as shown in the following formula:

riskscore = ALG3� 0:042 + B3GNT5� 0:261 +

C1GALT1C1� 0:205�CHST15� 0:411�
GALNT9� 0:025 + HS3ST3B1� 0:349 +

MFNG� 0:421�NDST4� 0:117 + SLC35A2� 0:248
A

B

C D

E F

G H

I J

K

FIGURE 1

Functional enrichment and prognostic characters of glycosylation regulators. (A) Heatmap showing the 100 differential glycosylation genes in
glioma. (B) Interactive correlation of top 50 glycosylation genes. (C-F) Distribution of glyco-score in four datasets, GTEx-TCGA (C), Rembrandt
(D), CGGA.mRNAseq_325 (D) and Gill (F). (G) GO enrichment of differential glycosylation regulators. (H) KEGG analysis of differential glycosylation
regulators. (I) Correlation of glyco-score with immune cell inflictions. (J) Representative positive correlation: M2 macrophage. (K) Representative
negative correlation: CD8+ T cells. ****P < 0.0001.
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We categorized glioma cases into risk subtypes for survival

status and time. We proved that patients from the high risk

presented a considerably more proportion of deceased individuals

than the low-risk subgroup. The external cohorts were categorized

using the same risk signature as the training cohort. Additionally,

the higher-score patients had worse outcomes and distinct gene

expression profiles. KM plots demonstrated that the lower-score

patients lived longer than the higher ones (Figure 3C). The heatmap

depicts the expression characteristics of the nine chosen

glycosylation regulators (Figure 3D).
3.4 Assessment of glyco-model

To adapt the glyco-model for clinical application, we estimated

the risk score with outcome in both univariate and multivariate

analyses performed using TCGA data (p< 0.05) (Figures 4A, B),
Frontiers in Oncology 06
indicating that the risk model was reliable for GB prognosis. A

nomogram was developed to estimate survival probability precisely

and accurately at 1-, 3-, and 5-year, considering both the glyco-

model and some standard features (Figure 4C). Calibration analysis

verified the authenticity of nomograms in the indicated time,

proving it was highly congruent with real survival time

(Figure 4D). We further evaluated the glyco-model using the

time-dependent ROC method. Survival AUCs were 0.86 (1-year),

0.91 (3-year), and 0.88 (5-year), respectively (Figure 4E). More

so than age (AUC = 0.83), sex (AUC = 0.51), and clinical grade

(AUC = 0.82), risk score (AUC = 091) AUC was a strong

predictor (Figure 4F).

Next, we reviewed the literature and chose five current GB

risk models for comparison with our novel model (28–32).

Our model shows remarkable advantages over other models in C-

index (Figure 4G) and restricted mean survival time (RMST)

analysis (Figure 4H).
A B C

D E

F G H I

FIGURE 2

Landscape of glyco-score in single-cell sequence. (A) Cell distribution in tumor vs normal tissues. (B) Distribution of cell cluster. (C) Distribution of
cell annotation. (D) Cell proportions in tumor vs. normal tissue. (E) Representative immune marker in each cell type. (F) Distribution of glyco-score.
(G) Glyco-score correlates immune cell types. (H) Distribution of cell annotation in macrophage subtypes. (I) Glyco-score correlates with
macrophage subtypes. ****P < 0.0001.
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3.5 Significance of glyco-model to clinical
features and functional deviations

The heatmap plot illustrates the pattern of the nine

glycosylation regulators and the clinicopathological variables

(Figure 5A). Further analyses showed that the glyco-model

positively predicts the age, OS status, and clinicopathological

grade (Figure 5B), as indicated. We also observed positive

correlations between six genes and the risk score, whereas

negative correlations existed between three genes and the

score (Figure 5C).

To investigate the dysfunctions between the two subgroups,

GSEA was applied. We observed that adaptive immune response, B

cell-mediated immunity, immunoglobulin-mediated immune

response, lymphocyte-mediated immunity, and autoimmune

thyroid disease were enriched in the higher subgroup. Moreover,

positive regulation of T cell activation, regulation of leukocyte cell-

cell adhesion, regulation of lymphocyte activation, and AMPK

signaling pathway had inhibited activity in the lower subgroup

(Figures 5D, E). We then conducted PCA using the entire genes

(Figure 5F), glycosylation regulators (Figure 5G), and nine chosen

glycosylation regulators from the model (Figure 5H). The outcome
Frontiers in Oncology 07
suggested that the expression patterns of the nine chosen

glycosylation regulators effectively distinguished between the

two subgroups.
3.6 Glyco-model correlates the tumor
environment and responses to
immunotherapy for GBs

The CIBERSORT was used to calculate the 22 immune cell

fractions, and ssGSEA was used to validate the score of 20

associated pathways in the two subgroups (Figures 6A, B). The

lower-risk subtypes showed a greater abundance of the TEM cells,

including activated DC cells, Eosinophils, and some types of B and

T cells, but lower infiltration of M2 macrophages and Tregs.

Meanwhile, 17 pathways were considerably variated between the

two risk subtypes. Moreover, a significant correlation between the

risk score and the proportion of immune cells was also observed

(Figure 6C). We also confirmed the immune infiltration in glioma

samples using immune cell markers (Figure 6D). We observed

that high-risk patients had greater Tregs, tumor-associated

macrophages, and NK cells but fewer T cells.
A B

C

D

FIGURE 3

Construction and validation of glyco-model. (A, B) Lasso regression was used to screen out significant genes. (C) KM survival curve in the training
sets and the testing sets. (D) Risk plot distribution, survival status, and relative expression of risk factors in the training and testing sets.
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The ESTIMATE algorithm was leveraged to evaluate three scores

and tumor purity. Three scores were dramatically higher in the higher

risk score subtype, whereas tumor purity was lower in the lower ones,

indicating immunotherapy may be less practical (Figure 6E).

Moreover, tumor TIDE and dysfunction, but not exclusion, were

significantly more prevalent in the lower risk score subtype

(Figure 6F). On the side, individuals with higher TIDE and low-

risk scores had the most favorable outcomes (Figure 6G).

Based on IMvigor210 cohorts (33), we discovered that anti-PD-

L1 therapeutic response was adversely correlated with risk score

(Figure 7A). KM plot showed that the lower risk score subtype from

the IMvigor210 cohort demonstrated a better outcome for anti-PD-

L1 treatment (Figure 7B). Moreover, the combination of TMB and

risk score showed better than one of them (Figure 7C). The risk

score was also lower in the CR/PR group relative to the SD/PD

group. (Figure 7D). These results showed that a positive reaction

to anti-PD-L1 treatment might result in a favorable outcome

for the low-risk subgroup. We then employed the SubMAP

algorithm to predict the anti-PD1/CTLA4 response probability of

immunotherapeutic strategy between the two risk subgroups. The

findings suggested that PD-1 treatment could be more effective in

the lower-risk population (Figure 7E). However, there was no

significant alteration between the two risk subgroups in anti-
Frontiers in Oncology 08
CTLA4 responsiveness. We further evaluated the seven steps of

the immune cycle and observed substantial variations between the

two types (34) (Figure 7F). The risk score was adversely linked with

the degree of expression of immune inhibitors PD1, PD-L1,

HAVCR2, LAG3, and CTLA-4 (Figure 7G). In addition, the low-

risk subgroup was more likely to respond to monoclonal antibody

therapy, such as PD-1, PD-L1, and CTLA-4 (Figure 7H).
3.7 Discovery of potential drugs for high
glyco-model GBs

Genes exhibiting a robust positive correlation with the risk score

could potentially hold therapeutic implications for individuals with

elevated risk scores (35). Nevertheless, the majority of human

proteins remain challenging to target due to their lack of distinct

active sites amenable to binding with small molecule compounds, or

due to their cellular localization that restricts accessibility for

biological agents. As a result, the pursuit of potentially druggable

therapeutic targets for GB patients grappling with dismal prognoses

was initiated. In this endeavor, a compilation of target information

encompassing 6,125 compounds was amassed. This was followed by a

two-tiered analytical process aimed at unveiling prospective targets.
A B

C D E

F G H

FIGURE 4

Prognostic characters of glyco-model. (A) The univariate Cox regression analyses the risk score and other clinical factors. (B) The multivariate Cox
regression analyses of the risk score and other clinical factors. (C) Nomogram was used to predict 1-, 3-, and 5-year OS of GB. (D) Calibration curves
were used to demonstrate the nomogram−predicted and observed OS of GB patients. (E) ROC curve indicating the AUC at 1-, 3-, and 5-year for the
risk score. (F) ROC curve demonstrating the AUC of risk score and other clinical factors. (G) Barplot demonstrating the C-index of six risk signatures.
(H) RMST for each of the six models.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1288820
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jin et al. 10.3389/fonc.2024.1288820
Initially, we computed the correlation coefficient between the

expression levels of druggable genes and risk score. This preliminary

step yielded 607 gene targets, each marked by a correlation coefficient

exceeding 0.25 (with a significance threshold of P< 0.05). Subsequently,

we embarked on a parallel analysis by conducting a correlation study

between the CERES score and risk score. This was predicated on

glioma cancer cell lines. This supplementary analysis unveiled an

additional 85 targets, distinctly associated with unfavorable prognosis

(characterized by Spearman’s r< -0.2 and P< 0.05). Intriguingly, six

genes—ARPC4, CPA2, MAP3K6, MET, MMP25, and WEE1—

consistently emerged through both analytical approaches (Figure 8A).
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The CTRP and PRISM datasets encompass comprehensive gene

expression profiles and drug sensitivity data across a multitude of

CCLs, forming an ideal foundation for constructing a predictive

model for drug response. Two distinct methodologies were

employed to identify candidate agents displaying elevated drug

sensitivity in patients with high-risk scores. These analyses were

executed employing drug response data derived from both the

CTRP and PRISM datasets.

In the initial step, a comparative analysis of differential drug

response was undertaken between the high-risk score (top decile)

and low-risk score (bottom decile) groups. The objective was to
A B

C

D

E

F G H

FIGURE 5

Clinicopathological characteristics of glyco-model. (A) Heatmap demonstrating the distribution of clinical factors (age, gender, and stage) and
relative expression of nine glycosylation regulators in the two risk subgroups. (B) The scatter diagram of risk score and age, survival status and grade.
(C) Relative expression of nine glycosylation regulators between the two risk subgroups. (D) Representative GO enrichment between the two risk
subgroups. (E) Representative KEGG enrichment between the two risk subgroups. (F) PCA for all gene expression profiles. (G) PCA for all
glycosylation regulators expression profiles. (H) PCA for nine glycosylation regulators expression profile. ****P < 0.001.
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identify compounds demonstrating lower estimated AUC values

within the high-risk score group (with a log2 fold change > 0.2).

Subsequently, a Spearman correlation analysis was conducted

between AUC values and risk scores. This facilitated the selection

of compounds showcasing a negative correlation coefficient

(Spearman’s r< -0.30 for CTRP or -0.35 for PRISM). Through

this approach, a total of six compounds derived from CTRP

(including clofarabine, SB743921, tanespimycin, methotrexate,
Frontiers in Oncology 10
and paclitaxel) and four compounds derived from PRISM

(including dolastatin10, YM155, LY2606368, and vincristine)

emerged. Importantly, all these compounds exhibited reduced

estimated AUC values within the high-risk score group and a

negative correlation with risk score as demonstrated in Figure 8B.

Despite the observation that the identified 10 candidate

compounds displayed heightened drug sensitivity in high-risk

score patients, it is crucial to acknowledge that these analyses in
A B

C D

E

F G

FIGURE 6

Correlation between immune infiltration and glyco-model. (A) Differential immune infiltration of 22 immune cell fractions between the two risk
subgroups. (B) Pathway activities between the two risk subgroups. (C) The association of 22 immune cell types with the risk score.
(D) Representative IHC images of immune cell markers between the two risk subgroups. *P< 0.05, **P< 0.01, ***P< 0.001, n.s, not significant.
(E) Correlation of risk score with tumor microenvironment. (F) TIDE, T cell dysfunction, and exclusion between the two risk subgroups. (G) Survival
analysis of patients with different combinations of risk scores and TIDE in TCGA cohort. ****P < 0.0001.
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isolation do not substantiate the therapeutic efficacy of these

compounds in the context of GB. Consequently, an array of

multifaceted analyses was subsequently undertaken to delve into

the therapeutic potential of these compounds within GB. Firstly, the

CMap analysis was employed to identify compounds whose gene

expression patterns ran counter to those specific to GB

(characterized by increased gene expression in tumor tissues yet

attenuated by treatment with particular compounds). Notably, two

compounds—clofarabine, and YM-155—secured CMap scores

below -80. This inference suggests the potential therapeutic

impact of these compounds in GB. Secondly, a thorough

literature review was undertaken on PubMed to ascertain

experimental and clinical evidence about the efficacy of candidate

compounds in GB treatment. The cumulative outcomes of these

analyses were depicted in Figure 8C.

Overall, on a broad scale, clofarabine and YM-155 exhibited

robust in vitro and silico evidence, positioning them as the most

promising therapeutic contenders for GB patients with elevated

risk scores.
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4 Discussion

GB is hard to combat, and its prognosis varies based on the

molecular subtypes. To evaluate the prognosis of GB, there

is a critical need for unique and effective techniques. This

work effectively constructed a risk signature based on nine

glycosylation regulators screened: ALG3, B3GNT5, C1GALT1C1,

CHST15, GALNT9, HS3ST3B1, MFNG, NDST4, and SLC35A2.

We also showed that patients from high-risk subgroups based on

target glycosyltransferases are strongly related to a shorter OS, a

poorer immunological impact, and greater chemosensitivity than

the lower subgroup. Glycosyltransferases are a vast group of

enzymes that regulate glycosylation and promote tumor

development and metastasis. In this work, each of the nine

glycosyltransferases in our model has unique properties and roles.

Glycosylation-related regulators are highly effective diagnostic

tools for early cancer diagnosis, grade identification, and therapy

methods. Mohamed et al., for instance, developed a glyco-model by

evaluating glycosylation regulators’ expression patterns that may be
A B C D

E F

G

H

FIGURE 7

Association of risk score to the tumor microenvironment and response to immune checkpoint inhibitors. (A) Risk score distribution for different anti-
PD-L1 clinical responses in the IMvigor210 cohort. (B) Survival analysis of risk score in the IMvigor210 cohort. (C) ROC curve of the risk score in the
IMvigor210 cohort. (D) The relative proportion to anti-PD-L1 immunotherapy in the IMvigor210 cohort. *P< 0.05, ***P< 0.001. (E) Putative
immunotherapy response between the two risk subgroups. (F) Differential immune cycle processes between the two risk subgroups. (G) Differential
expression of six immunosuppressive molecules between the two risk subgroups. (H) Four subtypes of IPS values between the two risk subgroups.
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used to distinguish pancreatic cancer subtypes (36). Additionally,

the expression of glycosylation regulators may aid the detection of

CTCs in cancer patients’ blood samples utilizing PCR (11).

Although various glycosylation regulators demonstrated adequate

and satisfactory consequences in the risk model, no notable features

may suggest the presence of CTCs in the blood (37). Therefore, their

clinical applicability requires further development. However, the

predictive utility of glycosylation regulators has been studied before

(38, 39), usually just by looking at a single gene rather than a set of

genes together, as we did in the GB.

Moreover, there has been little bioinformatics-based research

on the prognostics of GB connected with the glycosyltransferase

gene. The glycosylation-based model was able to differentiate

between the risk subgroups in our elaborate work. The lower risk

subgroup was significantly correlated with longer OS compared to

the higher ones, indicating that our model may accurately predict

the outcomes of GB patients.

We then identified the clinical characteristics and prediction of

GB. The importance of glycosylation in modulating immune-related

function and anticancer immunity is growing. The essential

glycosyltransferase, such as selectins, singles, and galectins, are

crucial regulators of the immune response in tumor spread (40).
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Numerous immune response-related signals were abundant in the

higher-risk score patients. The immunological and stromal scores

were significantly higher in the high-risk patients, although tumor

purity was considerably elevated in the lower-score patients. Wang

et al. found that the glycosyltransferase gene ADRB1 is a significant

immunotherapy biomarker among gene mutations (41).

Additionally, we found that tumor glycosylation was

significantly correlated with the expression of immunological

checkpoints. Current research indicated the higher expression of

PD1/PD-L1, the more sensitive to immunosuppressive therapy.

Similar to our results, the group with a low score was more

responsive to anti-PD-1/PDL1 treatment in the IMvigor210

cohort. We found that the low-risk subset of GB patients may

respond better to PD-1 therapy. Nonetheless, the two risk subtypes

failed to respond to CTLA4 immunotherapy. The high-score group

also showed greater drug sensitivity than the lower ones. Hence, we

found significant differences in the prediction of chemotherapy

response. We expect the risk score to differentiate between the two

risk groupings and provide more accurate predictions about the

efficacy of anti-PD1 or anti-PD-L1 immunotherapy treatments.

One hypothesis about the effectiveness of ICI for GB is that

therapy is more likely to assist those with a low-risk score.
A

B C

FIGURE 8

Prediction of potential drugs for high risk GB patients. (A) The volcano plot visually portrays the outcomes of Spearman’s correlation analysis,
wherein r > 0.25 and P< 0.05 are depicted as vivid red dots. Subsequent scatter plots illustrate the correlations between the risk score and the gene
abundance of identified drug targets. Analogously, Spearman’s correlation outcomes, illustrated by blue dots, signify negative associations (P< 0.05
and r< -0.2). These scatter plots depict the relationships between the risk score and the CERES score of the designated drug targets. (B) Compound
correlation analysis and boxplot: On the left, Spearman’s correlation analysis showcases the interrelation of five compounds extracted from the
CTRP dataset (top left), and the four compounds procured from the PRISM dataset (bottom left). The corresponding boxplot on the right succinctly
illustrates the contrast in estimated Area Under the Curve (AUC) values across the distinct compounds within the two groups. (C) The diagram
encapsulates a comprehensive overview, encompassing the clinical status, empirical evidence, mRNA expression levels, and CMap scores for the
nine agents sourced from CTRP and the four agents derived from PRISM, respectively. ***P < 0.001.
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However, specific issues still need to be resolved in the present

research. Firstly, this is retrospective research primarily created using

bioinformatics analysis of TCGA information and IMvigor210.

Validation of the clinical predictive validity of this well-established

glyco-signature is still absent. In the future, adequate external

verifications should be conducted. Second, we solely validated the

immune cell infiltration of the GB samples using the IHC test. These

validated results were insufficient to account for all anticipated

consequences. These glycosylation regulators’ multiple functions

and essential mechanisms in GB oncogenesis, development, and

prognosis remain deciphered. To corroborate the risk score model’s

originality, future prospective studies evaluating a large and

multicenter population may be advantageous.
5 Conclusion

To sum up, we mined the TCGA database for nine glycosylation

regulators and used them to build a functional glyco-model. The

immunosuppression and prognosis of the high-risk category were

shown to be worse. Immune cell invasion, the tumor-immune cycle,

the ICI response, and chemosensitivity in GB are all interconnected

with this glyco-model. Investigating glycosylation regulators levels

in GB patients might improve our understanding of TME and aim

for the design of more efficient therapy protocols. The prognosis for

treating GB can be significantly enhanced by integrating our glyco-

model with the standard gold techniques.
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