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SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of

substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It

is associated with ubiquitin-mediated degradation in the mammalian cell cycle

components and other target proteins involved in cell cycle progression, signal

transduction, and transcription. Being an oncogene in solid tumors and

hematological malignancies, it is frequently associated with drug resistance

and poor disease outcomes. In the current review, we discussed the novel role

of SKP2 in different hematological malignancies. Further, we performed a limited

in-silico analysis to establish the involvement of SKP2 in a few publicly available

cancer datasets. Interestingly, our study identified Skp2 expression to be altered

in a cancer-specific manner. While it was found to be overexpressed in several

cancer types, few cancer showed a down-regulation in SKP2. Our review

provides evidence for developing novel SKP2 inhibitors in hematological

malignancies. We also investigated the effect of SKP2 status on survival and

disease progression. In addition, the role of miRNA and its associated families in

regulating Skp2 expression was explored. Subsequently, we predicted common

miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we

discussed current approaches and future prospective approaches to target the

Skp2 gene by using different drugs andmiRNA-based therapeutics applications in

translational research.
KEYWORDS

AML, leukemia, hematological cancers, miRNA, Skp2, oncogene, in silico,

cancer genomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1288501/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1288501/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1288501/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1288501&domain=pdf&date_stamp=2024-03-15
mailto:subhradip.k@aiims.edu
https://doi.org/10.3389/fonc.2024.1288501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1288501
https://www.frontiersin.org/journals/oncology


William et al. 10.3389/fonc.2024.1288501
Introduction

Poly ubiquitination is the binding of numerous ubiquitin

molecules into the same target protein. Generally, the

polyubiquitination of proteins is induced by different signaling

molecules and co-operates for protein degradation by the

proteasomes. This post-translational modification process

(Polyubiquitination) regulates numerous cellular events, including

cell growth, proliferation, differentiation and apoptosis in

mammalian cells (1). Any deregulation in the ubiquitination

machinery and its components could disarrange the cellular

homeostasis and initiate the process of neoplastic transformation

in various cancers. The step by step action of the ubiquitin-

activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating

(E3) enzymes associated with the ubiquitin-proteasome system

(UPS), mediate ubiquitination by which they degrade targeted

substrate proteins (2).

The SKP1, CUL1, F-box protein (SCF) complex consists of

three core components that remain constant: RING-box 1 (RBX1),

a RING-finger protein responsible for recruiting the E2 ubiquitin-

conjugating enzyme; Cullin 1 (CUL1), acting as the scaffolding

protein; and S-phase kinase-associated protein 1 (SKP1), an

unchanging adaptor that links the core SCF complex with a

variable F-box protein and its corresponding target protein (3).

The specificity of the SCF complex for particular targets is

determined by F-box proteins, with each F-box protein

recognizing and binding a specific set of substrates. In humans,

there are a total of 69 F-box proteins, categorized into three families

based on their substrate recognition domains: (1) FBXW with

WD40 repeats; (2) FBXL with leucine-rich repeats (e.g., FBXL1,

also known as the S-phase kinase-associated protein 2 [SKP2]); and

(3) FBXO with other domains (4). To regulate the levels of specific

protein targets, each F-box protein recruits one of its substrates,

often phosphorylated, to the core SCF complex, facilitating

polyubiquitination and subsequent degradation by the 26S

proteasome (5). With a total of 69 distinct F-box genes, it

suggests the existence of up to 69 unique SCF complexes, each

responsible for regulating a diverse array of protein targets (4).

Few well-characterized F-box proteins regulate substrates which

are involved in cell cycle regulation, signal transduction, and

transcription (Table 1) (33). Among these, one of the E3 ligases
Abbreviations: SKP2, S-phase kinase-associated protein 2; CSC, Cancer Stem

Cell; ALDH, Aldehyde dehydrogenase; AML, Acute myeloid leukemia; CDK,

Cyclin dependent Kinase; SCF, Chemokine (C-X-C motif) ligand; DNMT, DNA

methyltransferase; FAO, Fatty Acid Oxidation; GBM, Glioblastoma multiforme;

HCC, Hepatocellular Carcinoma; PTEN, Phosphatase and tensin homolog; HIF,

Hypoxia-inducible factor; IFN-g, Interferon-gamma; TCGA, The Cancer

Genome Atlas; BRCA1, Monoclonal antibody; MDSC, Myeloid-derived

suppressor cells; BRCR-ABL, The breakpoint cluster region protein also known

as renal carcinoma antigen NY-REN-26; mTORC, Mammalian Target of

Rapamycin Complex; MAPK, Mitogen-activated protein Kinase; CUL1,

Cullin1; JAK, Janus kinase; TAM, Tumor-associated macrophages; TAN,

Tumor-associated neutrophils; TET, Ten-eleven translocation proteins; TGF b,

Transforming growth factor b; TNBC, Triple-negative breast cancer; TNF a,

Tumor necrosis factor a.
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called SKP2 (S-Phase Kinase Associated Protein 2 (~ 45kDa)), a

member of the F box family (34), is recognized as a pro-oncogene.

These F-box proteins are mostly composed of one of the four

subunits of ubiquitin-protein ligases complex named SCFs but do

not always recognize substrates in a phosphorylation-dependent

manner. In this complex of SCF’s, the F-box is referred to as a

subunit, which serves as the recognition site for protein substrates.

The N-terminal F-Box domain of the F-box binds to SKP1 and

thereby connects with the SCF complex. After that, C-terminal

Leucine-rich repeat (LRR) and WD40 repeats support substrate

binding. Association of SKP1-SKP2 is found in humans (35). SKP2

assembles to SCF-type E3 ubiquitin ligase complex along with

Cullin-1, Skp1, and Rbx1 (36–39). In addition, the requirement of
TABLE 1 SKP2 and its known substrates.

Substrate Function Reference

E2A B/T Cell Development (6)

p27 Cell Cycle Control (7)

p21 Cell Cycle Control (8)

p57 Cell Cycle Control (9)

p130 Cell Cycle Control (9)

Cyclin D1 Cell Cycle Control (10)

Cyclin E Cell Cycle Control (11)

Cyclin A Cell Cycle Control (12)

RAG2 DNA Repair (13)

BRCA2 DNA Repair (14)

ORC1P DNA Replication (15)

CDT1 DNA Replication (16)

MKP1 ERK Signaling (17)

TAL1 Erythroid Differentiation (18)

E2F1 Gene Transcription (19)

MEF Gene Transcription (20)

TOB1 Gene Transcription (21)

MYC Gene Transcription (22)

MYB Gene Transcription (23)

FOXO1 Gene Transcription (24)

FOXO3A Gene Transcription (24)

RBL2 Gene Transcription (25)

MLL Gene Transcription (26)

UBP43 Interferon Signaling (27)

USP18 Interferon Signaling (28)

RASSF1A Microtubule Stabilizer (29)

SMAD4 Signal Transduction (30)

CDK9 Transcriptional Elongation (31)

HPV-E7 Viral Oncogenesis (32)
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cell cycle regulator CDK subunit 1 [CKS1] is important for CF

SKP2-mediated ubiquitinylation of p27 (7).

Skp2 gene plays a significant role in cell cycle progression and

cell survival through ubiquitin-mediated degradation of many

tumor suppressor proteins (p27, p21, p57, p130, FOXO1, BRCA2,

RASSF1A, TOB1), cell cycle regulatory proteins (Cyclin D & E,

E2F1, etc.) and oncogenes (c-MYC, MYB) (Figure 1) (40, 41). The

target interruption of SKP2 leads to the accumulation of Cdk

inhibitor p27, which leads to G1 phase cell cycle arrest. SKP2

mediates the degradation of p27 via ubiquitination through the 26S

proteasome pathway (42, 43). Additionally, proteins like RING E3

ligases, are essential for the interaction of the E2-conjugating

enzyme along with the SKP1adaptor protein (36). In addition,

scaffold and ring finger proteins like Rbx1 are also required to

target the substrate via its E3 ligase activity (36).
SKP2 in cancers

Higher expression of Skp2 is associated with tumor initiation

and progression (Table 2) (44). Concurrently, the level of SKP2

oscillates during the cell cycle and is controlled by both

transcriptional and post-transcriptional mechanisms. During cell

cycle regulation, low expression of Skp2 is observed in both G0/G1

and late M/early G1, while a high level of SKP2 is found during G1/

S transition, peaking at the S phase. Moreover, Cdk inhibitor p27 is

usually stable in G0/G1 phase and unstable in the G1/S phase (8,

45). Cyclin E and E2F-1 proteolysis are essential for their rapid

turnover during G1 to S phase progression, which directly increases

the abundance of SKP2 during this time (46). Further, p300

acetylates SKP2 in the Nuclear Localization Signal (NLS) region,

thereby mediates its localization in the cytoplasm, and enhances the

stability of SKP2 (Figure 2) (43).
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A high level of Skp2 and a low level of p27 expressions are

associated with poor prognosis in solid tumors. Similarly, an inverse

correlation between Skp2 and p27 gene expression is also frequently

found in hematological malignancies (47, 48). Thus an

overexpression of the Skp2 gene concomitantly decreases the

expression level of the p27 gene in diverse cancer types (Figure

3). However, the molecular mechanisms and the cause of p27 gene

loss and elevated levels of Skp2 gene expression are not wholly

investigated in all cancer types. To further support the significance

of SKP2, an in-vivo xenograft mice model exhibiting high

expression of the Skp2 gene was found to promote tumor growth

(46). Surprisingly, following depletion of the SKP2, tumor

development is dramatically reduced by inducing programmed

cell death and cell senescence (49). Furthermore, another study

on glioblastoma cells also demonstrated that depletion of SKP2

inhibits cancer progression via promoting cellular senescence (50).

Similarly, transgenic mouse models overexpressing Skp2 have

shown tumor growth in various tissues, but the cause of how

SKP2 triggers neoplastic transformation is elusive (51).

While gene amplification may result in an enhanced Skp2

expression in cancers, oncogenic signals could also contribute to

its elevated expression. Oncogenic alterations leading to higher

expression of JAK2V617F mutation, BCR-ABL, and Her2/Neu,

which further activates Jak/Stat, and PI3K/AKT signals thereby

inducing Skp2 gene expression in malignant cells (33, 52). However,

in the nucleus, BCR-ABL mediated transcription of Skp2 is

associated with PI3K/AKT/SP1 pathway and mTORC2 via mTOR

signaling pathways, implicating the modulation of p27 level

expression. Mainly through PI3-kinase signaling, the mTORC2

pathway elevates the Skp2 expression, thereby reducing the p27

expression and initiating cancer progression (53, 54). Furthermore,

p300 acetylates K68 and K71 residues of SKP2 during oncogenicity,

sustaining their stability and enhancing retention in the cytoplasm
FIGURE 1

SCFSKP2 complex. The SCFSKP2 complex plays a pivotal role in regulating cell cycle progression and maintaining cellular homeostasis. SKP2, an F-box
protein within the complex, acts as a substrate recognition component. It recognizes specific target substrates marking them for ubiquitination.
Once ubiquitinated, the tagged proteins are targeted for degradation by the 26S proteasome. The SCF complex serves as an E3 ubiquitin ligase,
facilitating the transfer of ubiquitin molecules to substrates. Ultimately, this polyubiquitination signals the proteasome to recognize and degrade the
marked proteins, regulating key cellular processes and ensuring proper cell cycle dynamics.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1288501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


William et al. 10.3389/fonc.2024.1288501
(43). SKP2 promotes cellular invasion and migration by

suppressing the tumor suppressor genes/protein expression and

regulates its downstream targets, such as p21, p27Kip1, and FOXO1

(55). Aberrant regulation of the SKP2/p27 axis has also been noted

in gastric cancer suppression, wherein MESP2 binds competitively

to TCF4 (56). In addition, high SKP2 endorses cancer progression

through the activation of various growth and survival-signaling

pathways, for example, PTEN, ARF, pRB, FOXO1, and high Her2/

Neu, etc. SKP2 acetylation and phosphorylation regulates its SCF E3
Frontiers in Oncology 04
ligase activity in the cytoplasm during cancer progression, and AKT

phosphorylates SKP2 at Ser72 during metastasis. The cytosolic

SKP2 activates AKT and PTEN loss, implicating SKP2

translocation from the nucleus to the cytosol through Ser72

phosphorylation and induces tumor growth (57). Additionally,

through neddylation, Cul-1 stabilizes the SKP2-SCF complex and

negatively regulates the SKP2-SCF complex, Cul-1 dissociates from

Cand1 by Cul1 neddylation and deneddylation of Cul1is mediated

by Cop9-signalosome (CSN) protein complex (58). However, a

complete SCF ligase activity is still largely unknown. Clinically, the

elevated expression of Skp2 is recognized as a poor prognostic

marker in many solid tumor cancers and hematological

malignancies (1). Concerning hematological malignancies, SKP2

being a crucial regulator of the cell cycle, plays a multifaceted role.

SKP2 aberrations have been implicated in malignancies like acute

myeloid leukemia, chronic lymphocytic leukemia, T-cell acute

lymphoblastic leukemia, chronic myelogenous leukemia, multiple

myeloma, primary effusion lymphoma, Diffuse large B-cell

lymphoma, extranodal natural killer (NK)/T-cell lymphoma,

myeloproliferative diseases etc. (Figure 4), disrupting

hematopoietic differentiation and fostering genomic instability.

The following delineates the role of SKP2 in the above

mentioned malignancies.
SKP2 in acute myeloid leukemia

Skp2 expression is recognized as an independent prognostic

factor in AML. High expression of Skp2 is associated with shorter

disease-free survival and overall survival. Interestingly, siRNA

mediated knocking down of Skp2 in AML cell lines HL-60/A

resulted in cell cycle arrest reversing the multidrug resistance by

downregulating MRP gene expression (59). However, further

studies are required to showcase the cause of Mrp gene

modulation in AML. The RNAi-based disruption of anti-miR-

196b activity or pharmacologic inhibition of the Cks1-Skp2-

containing SCF E3-ubiquitin ligase complexes significantly

elevated the level of p27Kip1, which induces monocytic

differentiation (60), noticeable reduction of leukemogenic

potential, induced apoptosis and suppressing human AML

growth (48). SKP2 and p27Kip1 are localized in the cytoplasm

(61), which hints that an aberrant regulatory pathway is conducted

through SKP2-mediated p27Kip1 proteolysis in most AML cases

(62). On the other hand, SKP2 is positively correlated with

phosphorylated PTEN, suggesting that the pPTEN-SKP2 axis

might be a promising therapeutic target in AML (63).

AML is a complex heterogeneous disease with diverse

pathologies. There are conflicting reports on the Skp2 expression in

AML. While results from TCGA shows a downregulation of SKP2 in

AML (LAML), studies from other investigators reported an elevated

SKP2 in AML (63). A possible reason for this apparent conflicting

reports is due to the complex aetiology of AML. To improve the

predictive value and therapeutic specificity of the Skp2 gene in solid

and hematological malignancies, we analyzed the TCGA data (data

not shown). We performed different statistical analyses on diverse
frontiersin.o
TABLE 2 SKP2 expression profile across tumor samples (derived from
gepia2.cancer-pku.cn).

SKP2 Overexpressed Cancer SKP2
Underexpressed
Cancer

ACC – Adrenocortical Carcinoma KICH –

Kidney Chromophobe

BLCA – Bladder Urothelial Carcinoma LAML – Acute
Myeloid Leukemia

BRCA - Breast invasive carcinoma PRAD –

Prostate Adenocarcinoma

CESC - Cervical squamous cell carcinoma and
endocervical adenocarcinoma

THCA –

Thyroid Carcinoma

CHOL – Cholangiocarcinoma

COAD - Colon adenocarcinoma

DLBC - Diffuse Large B-cell Lymphoma

ESCA - Esophageal carcinoma

GBM - Glioblastoma multiforme

HNSC - Head and Neck squamous
cell carcinoma

KIRC - Kidney renal clear cell carcinoma

KIRP - Kidney renal papillary cell carcinoma

LGG - Brain Lower Grade Glioma

LIHC - Liver hepatocellular carcinoma

LUAD - Lung adenocarcinoma

LUSC - Lung squamous cell carcinoma

OV - Ovarian serous cystadenocarcinoma

PAAD - Pancreatic adenocarcinoma

PCPG - Pheochromocytoma and Paraganglioma

READ - Rectum adenocarcinoma

SARC – Sarcoma

SKCM - Skin Cutaneous Melanoma

STAD - Stomach adenocarcinoma

TGCT - Testicular Germ Cell Tumors

THYM – Thymoma

UCES - Uterine Corpus Endometrial Carcinoma

UCS - Uterine Carcinosarcoma
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populations. Our TCGA analysis relied on an online portal

exploration, and the data was generated with an interactive web-

portal (UALCAN tools (http://ualcan.path.uab.edu) through a

TCGA-level setup. The three different RNA-sequence gene

expression data and 31 different clinical cancer types’ data were

used for analysis, such as 1). Relative expression of the gene(s) across

tumor and normal samples, as well as in various tumor sub-groups

based on individual cancer stages over and under-expressed genes in
Frontiers in Oncology 05
individual cancer types, tumor grade, race, body weight, or other

clinical pathologic features 2) effect of gene expression level on patient

survival. Finally, we used 3) in silico validation studies for target genes

(derived from the GENT2 database). Results depict that leukemia

showed a marginally increased trend in Skp2 expression as compared

to lymphoma and Myeloma (Supplementary Table 1). Survival

analysis also revealed a poor DFS (disease-free survival) with high

Skp2 expression, as also seen in leukemia vs lymphoma.
FIGURE 2

Regulation of Skp2 gene expression. The expression of Skp2 is intricately regulated by various signaling pathways, showcasing its significance in
cellular homeostasis and proliferation. Key mitogenic signaling pathways like, Notch, PI3K/Akt and IKK, converges to SKP2 thereby modulating its
expression. The coding region of Skp2 contains functional domains essential for its function. The D-box is crucial for recognition by the anaphase-
promoting complex (APC/C), marking SKP2 for degradation during cell cycle progression. The NLS (nuclear localization signal) guides SKP2 into the
nucleus. The F-box domain is characteristic of SKP2’s role in the SCF complex, facilitating substrate recognition. Finally, the LRR (leucine-rich repeat)
domain contributes to protein-protein interactions, enabling SKP2 to engage with other components of the SCF complex and its target substrates,
orchestrating precise control over cell cycle checkpoints and cellular processes.
FIGURE 3

SKP2-p27 axis. The SKP2-p27 axis is a critical regulatory pathway governing cell cycle progression and proliferation. SKP2, a component of the SCF
complex, targets the cyclin-dependent kinase inhibitor p27 for ubiquitination and subsequent proteasomal degradation. This ubiquitin-mediated
destruction of p27 relieves its inhibitory effect on cell cycle progression, allowing cells to transition from G1 to S phase. Dysregulation of the SKP2-
p27 axis is implicated in various cancers (solid and, including hematological malignancies), emphasizing its pivotal role in maintaining proper cell
cycle control and highlighting its potential as a therapeutic targetin various malignancies.
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Regulation of Skp2 gene in other
hematological malignancies

SKP2 in Chronic Lymphocytic
Leukemia (CLL)

Chronic Lymphocytic Leukemia (CLL) is the most commonly

diagnosed leukemia in the Western world. CLL, also named B cell

malignancy, is characterized by indolent lymph proliferative

disorder, where immature B cells expressing CD5+, CD19, CD23,

and CD20 B-cells progressively accumulate in the peripheral blood,

bone marrow and lymph nodes (64). During the last decades,

modern therapeutic approaches significantly improved to induce

CLL apoptosis at various levels, but CLL remains incurable due to

its drug resistance/relapse. Interestingly, the significantly higher

expression [mean of 3 fold-protein] of a cell cycle inhibitor, p27,

was detected in CLL tonsil and peripheral blood B lymphocyte

samples as compared to healthy B cells. Besides, the expression of

Myc is relatively low in CLL in comparison with normal healthy B

cells. The inversely correlated MYC and p27 in CLL, and the larger

set of CLL in cohort patient studies clearly demonstrated that the

Skp2 gene is involved in p27 degradation. In a similar report, high

Skp2 expression correlated with highMyc and low p27 expression in

most of the CLL cases. On the other hand, low SKP2 samples

showed high p27, and the mean MYC protein levels were

significantly higher than high SKP2 levels in comparison with

Tonsil and CLL. These findings demonstrated that through the
Frontiers in Oncology 06
MYC-SKP2-p27 axis pathway, MYC induces p27 degradation via

upregulating the Skp2 gene in CLL (45).
SKP2 in T-cell acute
lymphoblastic leukemia

T-cell acute lymphoblastic leukemia malignancy is a subtype of

leukemia arising from thymocytes. In fact, T-ALL constitutes

around 12-15% of newly diagnosed cases of ALL in pediatric

patients, notable for its distinctive clinical and biological

characteristics (65). Based on the current modern combination

therapy, long-term therapies are needed to be improved, especially

with aged group patients. The molecular mechanism of different

gene functions in T-ALL is complex, including the chromosomal

translocation of c-Myc, Hox 11, Tal1, and Lmo, with the T-cell

receptor locus (66, 67). High prevalence activation of mutated

Notch signaling pathway emerged as an important genetic

component for T-ALL pathogenesis. Interestingly, in T-ALL

Notch, signaling pathways are found to regulate the Skp2

expression and its protein target substrate p27. In T-ALL cells,

the interaction of NOTCH 1 intracellular domain (ICD) with the

Skp2 promoter triggers Skp2 expression levels and reduces p27Kip1

levels. The pharmacological agents blocking NOTCH signaling

pathways reduce the expression of SKP2, and accumulate the

p27Kip1, subsequently leading to G1 cell cycle arrest. Overall,

NOTCH/SKP2/p27Kip1 axis might contribute to the pathogenesis

of T-ALL (68).
FIGURE 4

Involvement of SKP2 in hematological malignanices. SKP2, a critical player in hematological malignancies, features prominently in various cancers
including acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and T-cell acute lymphoblastic leukemia (T-ALL), chronic
myelogenous leukemia (CML), multiple myeloma, primary effusion lymphoma (PEL), and diffuse large B-cell lymphoma (DLBCL), Extranodal natural
killer (NK)/T-cell lymphoma and myeloproliferative diseases. Mediated through diverse pathways such as PI3K/Akt, NFkB, and MYC, overexpression of
SKP2 is often correlated with aggressive disease and poor outcomes, highlighting its significance in cancer biology and emphasizing the need for
targeted therapeutic interventions.
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SKP2 in Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia (CML) is the type of leukemia

cancer subtype where dysregulation of myeloid cell growth in the

bone marrow leads to the accumulation of undifferentiated white

blood cells in the blood. CML is characterized by the translocation

of BCR/ABL1 genes- chromosome t(9, 22)(q34;q11. 2). Almost 95%

of CML patients have BCR/ABL translocation in the chromosomes

(69). This translocation elevates the transcription level of SKP2

expression. SKP2-mediated p27Kip1 dysregulation has been

observed in many types of cancers, and proteasome inhibitor BTZ

reduces the expression of Skp2 in CML (70). On the other hand, the

inverse relationship between SKP2 and p27Kip1 has been noticed

after the gene silencing of Skp2 in CML (69, 71).
SKP2 in multiple myeloma

Multiple myeloma (MM) malignancy develops due to

uncontrolled plasma cell proliferation and relapses in most

patients, which remains a challenge for modern chemotherapeutic

treatments. Interestingly, Myristoylated alanine-rich C-kinase

substrate (MARCKS) overexpression plays an essential role in

drug resistance in MM. Activated MARCKS (p-MACKS)

modulates the SKP2/p27-signaling axis. SKP2 mediates E2F1-

induced cell proliferation and cell cycle progression through the

reduction of p27Kip1. MARCKS activation by siRNA/drug

(enzastaurin) reduces the MM resistance cell growth and induces

apoptosis. The current study demonstrated that targeting

MARCKS-mediated SKP2 will be a more helpful therapy against

MM resistance. Furthermore, cyclin-dependent kinases regulatory

subunit 1 (CKS1, encoded in humans by the CKSB1 gene), cell cycle

protein regulates p27Kip1, and p21CIP1 depends on Skp2

expression. Similar to the above study, SKP2/p27Kip1, and

CKSB1 were also found to be inversely correlated in MM cell

lines (46).
SKP2 in primary effusion lymphoma

Primary effusion lymphoma (PEL) is a rare, aggressive,

immune-compromised type B cell lymphoma. It is associated

with human herpesvirus type-8 infection, which commonly

occurs in malignant effusions of the body cavities. In PEL, the

LANA-2 gene (KSHV latent gene vIRF-3), binds to SKP2 and

regulates c-MYC-dependent gene transcription by recruiting c-

Myconin, its promoter regulatory region (72). Since c-MYC is a

proto-oncogene, it regulates cell proliferation and survival in

cancers. High expression of vIRF-3 induces the c-MYC

ubiquitylation, plays a critical role in c-MYC mediated

transcription, and stabilizes the c-MYC protein, leading to c-

MYC-induced KSHV combined lymphomagenesis. Numerous

studies have found that targeting SKP2 by proteasome inhibitor

(MEG1320) or knocking down Skp2, stabilizes the p27Kip1, thereby

triggering the mitochondrial-induced cell death by the caspase-
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dependent pathway (73). Interestingly, a plant compound Apigenin,

also down-regulates the SKP2, stabilizes the p27Kip1 expression,

and induces apoptosis in PEL cells (74).
Diffuse large B-cell lymphoma (DLBCL)

Diffuse large B-cell lymphoma (DLBCL) is a sub-type of B-cell

cancer. In adults, 30-40% of Non-Hodgkin’s Lymphomas are

DLBCL, thereby portraying DLBCL as the most common type of

Non-Hodgkin Lymphona (75). One of the biggest challenges of

DLBCL is that there is a relapse recorded in more than 50% of

patients succeeding treatment with increased mortality (76). The

cause of DLBCL resistance is still unclear. However, numerous

studies demonstrate that dysregulation of oncogenic/tumor

suppressor gene regulation and impairment of repair pathways

contribute to developing DLBCL relapse. Interestingly, SKP2 is

highly observed in DLBCL, which is significantly correlated with the

worst clinical outcome compared to low SKP2-expressing patients.

Further, high Skp2 in patients displayed a poor prognosis and less

survival. High Skp2 correlated with Ki-67 but not with p27,

demonstrating SKP2 as an independent prognostic marker of

clinical outcome (77). Bortezomib (BTZ) treatment reduces SKP2

via escalation of p27Kip1protein, including XIAP, cIAP1, and

survivin, implicating the SKP2/p27Kip1 signaling pathway in

DLBCL pathogenesis (78). Unfortunately, in other studies,

Rituximab via the CHOP-mediated pathway did not provide

beneficial outcomes for DLBCL patients with high Skp2 and low

p27 expression (79).
SKP2 in extranodal NK/T-cell lymphoma

Extranodal natural killer (NK)/T-cell lymphoma (ENKL) is a

rare, aggressive type of malignancy in the lymph nodes besides GI

tract, skin, and testis. ENKL shows poor survival among patients.

The ENKT is often associated with Epstein–Barr virus (EBV)

infection. The expression of Skp2 levels is significantly increased,

and an inverse correlation between SKP2 and p27Kip1 was

observed with patients infected with EBV and phenotype of SKP

+/p27– in ENKL (80). Overall these studies suggest that SKP2 plays

a major role in the pathogenesis of ENKL carcinogenesis mediated

through EBV (80, 81).
Role of SKP2 in myeloproliferative
diseases (MPD)

BCR-ABL induces MPD via impaired cell cycle regulation by

destabilization of p27, which inhibits cyclin-dependent kinases

(CDK). In contrast, BCR-ABL inhibition induces p27 and reduces

Skp2, which leads to G1 arrest (33). A similar regulation pattern was

also observed where leukemic cells were transformed by FLT3-ITD,

JAK2V617F, and TEL-PDGFRb, which suggests that SKP2/p27

passage may act as a common target for leukemogenic tyrosine

kinases. The in vivo mice transplanted with BCR-ABL–infected
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SKP2_/_marrow resulted in myeloproliferative syndrome with an

increased survival rate compared with recipients of BCR-ABL-

expressing SKP2-/- marrow (33). At the same time, in the

SKP2-/_model, the nuclear p27 expression is higher than SKP2-/-

counterparts, demonstrating that leukemogenesis attenuation is

regulated by high p27 levels in both MPD and CML (33, 82). The

mutation of JAK2V617F commonly occurs in MPD, but in the case

of its subset of polycythemia vera, homozygous JAK2V617F

mutation is common. Therefore, mitotic recombination and

duplication of the mutant allele are developed in MPD/CML.

JAK2V617F mutation modulates the Skp2 expression through

STAT3/STAT5 transcription factors on the SKP2 promoter

regulatory region (52). Therefore, inhibiting SCF-SKP2 for p27

stabilization recognition may be more beneficial for a therapeutic

approach in MPD/CML and other hematological malignancies.
Role of SKP2 in hematopoietic
stem cells

The hematopoiesis process is a crucial step in producing diverse

blood cells. This process undergoes long-term HSCs (LT-HSCs)

and short-term HSCs (ST-HSCs), compartments that are the

primary sources of hematopoiesis. LT-HSCs self-renewal

themselves in order to maintain HSC pool and differentiate into

multipotent progenitors, and they can further differentiate into

lymphoid progenitors and myeloid progenitors, which produce

mature blood cells, whereas ST-HSCs have limited self-renewal

ability to differentiate into multipotent progenitors (69, 82).

However, the mechanism of HSCs quiescence is largely unknown,

and re-entering the cell cycle by HSCs is very crucial. Interestingly,

SKP2 is involved in regulating HSC quiescence, pool size, self-

renewal capability, etc. (83). In HSCs, the SKP2 deletion stabilizes

the CKIs p21Cip1, p27Kip2, P57Kip2, and p130, increasing

proliferation and reducing the stem cell self-renewal capability

(83). SKP2 targets SKI inhibitors that inhibit cell cycle

progre s s ion f rom G1 to S phase (68 , 84 ) . Due to

myelosuppression and post-transplantation occurrences, high

expression of Skp2 is associated with neoplastic transformation,

including HSC and its progenitors. High expression of Skp2

sufficiently provides hematopoietic stress.

On the other hand, depletion of SKP2 reduces HSC mitotic

activity and enhances HSC quiescence, increasing pool size and

maintenance (83). The depleted SKP2 results in HSC impairment

during myeloablative stress because of their inability to enter the cell

cycle, thereby protecting HSC regeneration. SKP2 negatively

regulates cyclin D1, which might be responsible for SKP2

maintenance of HSC quiescence, pool size, and self-renewal

capability (9, 85, 86). SKP2 acts as a critical regulator for HSC

quiescence and self-renewal capability and gives a novel paradigm

for HSCs. SKP2 maintains the HSC homing and residence in the

endosteal niche. SKP2 deficiency reduces the expression of b-

catenin and its target genes. Since SKP2 maintains homing of

HSC succeeding the post-transplantation, SKP2 might be helpful

as a predictive marker for monitoring transplantation efficiency
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(87). Depleted Skp2 expression enhances the sensitivity of HSCs and

CMLs to chemotherapeutic drugs and triggers the long-term HSC

reconstitution ability (9). Therefore, targeting SKP2 increases BM

transplantation efficiency and sensitizes the cancer cell or CSC

against chemotherapy. These model studies clearly demonstrate

that future SKP2 targeting-based therapy will be an efficient

approach against different cancer types, including HMs.
Relationship between microRNAs and
Skp2 gene

MicroRNAs are small non-coding RNAs (10-24nts), and it

regulate gene expression at the posttranscriptional level and play

a critical role in cancer development (88). Mounting evidence

displays the significant roles between miRNAs and Skp2 gene

expression. MicroRNA-186 regulates Skp2 expression in pituitary

tumors, induces p27Kip1-mediated cell cycle deregulation, and

modulates cell proliferation. Similarly, human esophageal

squamous carcinoma reduces cell proliferation and induces

apoptosis (89, 90). In ovarian cancer, the expression of miR-30a-

5p is low, but overexpression of miR-30a-5p reduces migration,

invasion, and metastasis by posttranscriptional down-regulating

SKP2 gene expression (91). Since the miR-34a is downregulated

in prostate cancer, overexpressing miR-34a downregulates RhoA

and suppresses the c-Myc-SKP2 -Miz1 transcriptional assembly

complex c-Myc-pTEFB complex that elongates transcription of

numerous genes and affects the cellular function (92).

Nevertheless, the reason for Skp2 down-regulation through mir-

34 has not been completely investigated yet in human renal

carcinoma cells and prostate cancer (92). SKP2 mRNA is

predicted to be a target of mir-7, but unfortunately,

overexpressing miR-7 only reduces the SKP2 protein level but not

at the transcriptional level. The SKP2-miR-7 mediated G1/S phase

transition increases p27kip1 and reduces all G1 cell cycle indicators,

such as Cks1, Cdk1/2, and CyclinD1/3, which suggests that

overexpression of miR-7 arrests the CHO cell growth at G1 phase

during cell undergoes stress (93, 94). miR-340 targets SKP2, inhibits

non-small cell lung cancer tumor cell proliferation and induces

apoptosis by targeting multiple negative regulators of p27 (95).

Overexpressing miR-21-5p, miR-26-5p, and miR-30-5p in MCF-7

and tamoxifen-resistant MCF-7 cell lines showed marked reduction

of SKP2 mRNA expression level (96). miR-203 targets SKP2 and

regulates cell cycle and self-renewal in the hematopoietic stem cells

and leukemia cells (97). Tumor suppressor miR-340 represses, the

Skp2 expression, inhibits tumor cell proliferation, migration, and

invasion, and induces apoptosis in hepatocellular carcinoma (95).

miR-26, miR-182, miR-340, and miR-506 share the 3’UTR of both

SKP2 and PCNX and suppress their expression in non-small cell

lung cancer (NSCLC) (98). Ectopic expression of miR-21 down-

regulates the SKP2 in ovarian cancer cells (60). Apart from

miRNAs, the long noncoding RNA meg3 and miR-3163 also

coordinately repress the Skp2 expression at the translation level

and inhibit NSCLC cell growth, reducing NSCLC cell growth (99).

miR-138 mimics or EZH2 inhibitor combined with a proteasome
frontiersin.org

https://doi.org/10.3389/fonc.2024.1288501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


William et al. 10.3389/fonc.2024.1288501
inhibitor, bortezomib-cavalcade, significantly reduces the MM

tumors in a xenograft model by targeting RBPMS (100). To

identify the SKP2 targeting miRNAs, we predicted through

“TargetScan”, “MicroT-CDS” and “miRDB”: databases, where we

found the seven most common miRNAs:` hsa-miR-21-5p, hsa-

miR-590-5p, hsa-miR-26a-5p, hsa-miR-1297, hsa-miR-26b-5p,

hsa-miR-30d-5p, hsa-miR-30a-5p (data not shown).
Possible role of SKP2 on drug
resistance in hematological
malignancies–HM

In HM, the patients undergoing chemotherapy don’t respond to

drugs. The molecular mechanism behind cancer/tumor cell’s

resistance to chemotherapy is elusive. Surprisingly, overexpression

of Skp2 is associated with resistance and sensitization after pre-

operative doxorubicin-based chemotherapeutically could aid in

cancer cell death and successful chemotherapy in primary breast

cancer patients (101, 102). SKP2 positively regulates the MAD2 via

the p27-CDKs-E2F1 signaling pathway (103). Inhibition of SKP2

sensitizes paclitaxel-treated A549 and NCI-H1299 cells (103). SKP2

knockdown and/or inhibition sensitized the paclitaxel resistance

prostate cancer cells, suggesting that SKP2 inhibitors might be the

potential drugs against SKP2 upregulated cancers. Based on the

SKP2 status in CML, USP10 inhibition significantly reduced the

imatinib-sensitive and imatinib-resistant CML cell proliferation

(71). Compound A (CpdA) interferes with SCF(SKP2) ligase by

preventing the incorporation of SKP2 and induces G (1)/S cell-cycle

arrest, SCF(SKP2)- and p27-dependent apoptosis, subsequently

inducing p21 accumulation and other SCF(SKP2) substrates

without affecting heat-shock protein response in MM (104).

These studies indicate that SCF-SKP2 targeting agents may

probably overcome the multidrug resistance mechanism and

chemo-sensitize the MM cells (104). Furthermore, in breast

cancer, SKP2 reactivates AKT-mediated resistance to PI3K

inhibitors. Depletion of SKP2 reduces tumor growth in xenograft

mice models (54). This study demonstrated that SKP2 plays a

significant role in tumor progression and drug resistance. In lung

cancer, small molecular inhibitors downregulated SKP2 and

sensitized the lung cancer cells to paclitaxel. SKP2 has also been

noted in stabilizing Mcl-1, conferring radioresistance in colorectal

cancers (105).

In numerous malignancies, high SKP2 prevents apoptosis in a

p53-dependent manner and promotes tumor progression and drug

resistance (106). Combining SKP2 inhibitor C25 with

bromocriptine sensitized the prolactinoma cells and induced

apoptosis (107, 108). In multiple myeloma combinations of

DT204, BTZ prevailed over drug resistance and induced

apoptosis in proteasome inhibitors resistance cells. Both in vitro

and in vivo model results strongly suggest that a combination of

novel drug SCF-SKP2 inhibitor (DT204) and BTZ triggered

synergistic anti-myeloma activity in the xenograft myeloma

mouse model. Thus, targeting SCF-SKP2 by an SKP2 inhibitor

combined with BTZ is a novel strategy to overcome drug resistance
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in MM. In addition, SKP2 inhibitor DT204 enhances the efficacy of

BTZ-based therapies in multiple myeloma patients who are already

BTZ-resistant (109). Proteosomal degradation of SKP2 also

facilitates suppression of breast cancer growth by inducing

autophagic cell death via F-box protein FBX041 (110). We

previously showed that inhibition of pMARCKS potentiates BTZ-

induced upregulation of p27 and p21 and downregulation of SKP2

(46). From a therapeutic perspective, it is noteworthy that targeting

MARCKS can induce cell-cycle arrest and enhance apoptosis via

E2F-1/SKP2/P27 axis in resistant MM cells (94). Therefore,

identifying the molecular mechanism of drug resistance in HM is

essential in the future. SCF-SKP2 inhibitors are the most widely

used drugs to target the Ub++ proteasome system more precisely

than PIs pharmacologically.
Role of epigenetic modifiers in
drug resistance

SKP2 is a key regulatory protein involved in controlling cell

cycle progression and the degradation of specific target proteins

(111). It plays a crucial role in maintaining normal cell growth and

proliferation (111). However, dysregulation of SKP2 has been

implicated in various cancers, including leukemia, and is also

associated with drug resistance (109). Overexpression of Skp2 in

leukemia cells can contribute to drug resistance through several

mechanisms (112). SKP2-mediated degradation of pro-apoptotic

proteins may decrease the ability of cells to undergo apoptosis in

response to chemotherapy (112). Enhanced cell cycle progression

driven by SKP2 can lead to faster tumor cell growth, making it more

challenging for drugs to keep pace with cell division (111, 113).

SKP2 may influence DNA repair mechanisms, potentially reducing

the effectiveness of DNA-damaging chemotherapeutic agents (114,

115). It is a critical player in regulating cell cycle progression and

protein degradation, and its activity is intricately linked to

epigenetic processes involving heritable changes in gene

expression and chromatin structure without alterations in the

DNA sequence (116). SKP2 can influence epigenetic regulation in

multiple ways.
Regulation of epigenetic modifiers

SKP2 can target specific proteins for ubiquitin-mediated

degradation. Some of these target proteins include epigenetic

modifiers such as histone deacetylases (HDACs) and histone

methyltransferases (84, 117). By controlling the levels of these

epigenetic modifiers, SKP2 can indirectly impact the acetylation

and methylation status of histones, leading to changes in chromatin

structure and gene expression (118). SKP2-mediated degradation of

certain epigenetic regulators can affect chromatin remodeling

complexes. Alterations in chromatin structure can lead to changes

in gene accessibility, potentially impacting gene expression patterns.

SKP2 can interact with various transcription factors and co-factors

involved in epigenetic regulation (22, 119). These interactions can

modulate the activity of transcription factors, influencing their
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ability to bind to specific genomic regions and regulate gene

expression (Figure 5).
Epigenetic effects on Skp2 expression

Conversely, epigenetic modifications, such as DNAmethylation

and histone modifications, can also regulate the expression of Skp2.

Aberrant epigenetic changes may result in dysregulated Skp2

expression, contributing to altered cell cycle control and

tumorigenesis. Epigenetic modifications can directly impact the

expression of genes that are targets of SKP2-mediated degradation.

Altered epigenetic regulation of these genes may influence their

susceptibility to SKP2-dependent degradation (22). Dysregulation

of Skp2 and its interaction with epigenetic processes are associated

with various diseases, including cancer (1). Aberrant Skp2

expression and epigenetic alterations can contribute to

tumorigenesis, metastasis, and drug resistance (1, 120, 121).

Understanding the interplay between SKP2 and epigenetics is

critical for unraveling the complexities of cancer biology and

other diseases. Targeting SKP2 and its associated epigenetic

processes may hold promise for developing novel therapeutic

strategies, especially in the context of cancers where Skp2 is

dysregulated and contributes to disease progression. Additionally,

research in this field continues to uncover the intricate mechanisms

through which SKP2 and epigenetics intersect, providing insights

into potential therapeutic targets and diagnostic markers. The

regulation of SKP2 by epigenetic mechanisms plays a significant
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role in controlling its expression levels and activity. In the case of

SKP2, several epigenetic mechanisms can in turn influence

its expression.

The Skp2 gene promoter is reported to be hypermethylated in

some cancer types, decreasing SKP2 expression (122). Reduced Skp2

expression due to DNA methylation can contribute to cell cycle

dysregulation and impact cancer progression (122). There is also a

cancer-grade specific methylation. Results from TCGA depict that

leukemia showed a marginally increased trend in Skp2 expression

compared to leukemia and myeloma. Survival analysis also revealed

a poor DFS (disease-free survival) with high Skp2 expression, as also

seen in leukemia vs lymphoma (63, 123).

Histone modifications, including acetylation and methylation of

histone proteins, can influence chromatin structure and gene

accessibility. While histone H3 lysine 4 (H3K4) methylation is

linked to gene activation, H3K9 and H3K27 methylation are

associated with gene repression. Epigenetic changes in histone

modifications near the Skp2 gene are reported to modulate its

transcriptional activity (124). In addition to histone

modifications, specific miRNAs can target and degrade SKP2

mRNA or inhibit its translation, reducing SKP2 protein levels.

Changes in miRNA expression profiles in cancer or other diseases

can influence Skp2 expression through post-transcriptional

regulation as discussed before (125, 126). lncRNAs have been

identified as regulators of Skp2 expression, either by promoting

its transcription or by destabilizing SKP2 mRNA (127).

Epigenetic changes can also influence the recruitment and

activity of chromatin remodeling complexes that alter chromatin
FIGURE 5

Host cell epigenetic modifications by SKP2. SKP2, beyond its canonical role in cell cycle regulation, influences host cell epigenetics through diverse
mechanisms. Elevated SKP2 levels correlate with altered DNA methylation patterns and histone modifications, impacting gene expression. SKP2
promotes the degradation of key epigenetic regulators, disrupting the balance between chromatin modifications and transcriptional control. These
modifications contribute to the development and progression of various diseases, including hematological malignancies. On the other hand, the
expression of SKP2 is fine-tuned by a complex interplay of different miRNA and lnCNRA leading to its suppression or overexpression in different
cancer types.
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structure and gene accessibility. These complexes can either

promote or inhibit the transcription of the Skp2 gene by

modulating the chromatin landscape around its promoter region.

Epigenetic regulation of Skp2 is particularly relevant in cancer,

where dysregulated Skp2 expression can contribute to uncontrolled

cell proliferation and tumorigenesis (112). Understanding the

epigenetic modifications that affect SKP2 and their functional

consequences is essential for developing targeted therapies that

can restore normal SKP2 regulation in cancer cells. Additionally,

research in this area continues to uncover the intricate details of

SKP2 epigenetic regulation and its implications in various diseases.

SKP2 can also promote immune evasion in cancer by regulating

immune checkpoint molecules, immune response pathways, Treg

function, antigen presentation, and the overall immune

microenvironment (127). Understanding the role of SKP2 in

immune evasion is crucial for developing strategies to enhance

immune responses against cancer cells and improve the efficacy of

immunotherapies (1). Targeting SKP2 or its downstream signaling

pathways may represent a potential approach to mitigate immune

evasion and enhance the immune system’s ability to recognize and

eliminate cancer cells.
Future prospective of SKP2 inhibitors
in HMs

Based on several reports, downregulation of Skp2 induces the

p27, promotes apoptosis, and sensitizes different types of cancers.

However, further research is necessary to combat challenging tasks

to identify the compound/inhibitors that are selectively employed

for targeting the protein-protein interaction that holds the E3ligase

together. Recently, the following inhibitors were developed against

SKP2, named Bortezomib [FDA approved], Prodigiosin, Arsenic

trioxide, Apigenin, curcumin, NSC689857, NSC681152, C1, C2,
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C16, C20, Compound A, Compound ZL25, and preclinical research

compounds (Figure 6; Table 3) (8, 37, 74, 94, 109, 137, 162, 163).

BTZ, or pharmacological commercial name PS-341,/Valcade

specifically, reversibly inhibits the 26S proteasome, an enzyme

complex for regulating protein degradation under a controlled

fashion. BTZ comprises of a peptide-like backbone and a

boronate group, of which the latter exhibits a stronger binding

affinity to the active site threonine, resulting in increased potency

and selectivity toward the proteasome (164). In cancers,

proteasomes’ inhibition leads to the building up of the protein

substrates required for the cell cycle and apoptosis. Interestingly,

BTZ suppresses the expression of Skp2 and increases the p27Kip1

expression in many types of cancers, and it has also been proven to

significantly improve xenograft cancer cells in mice models.

Furthermore, when BTZ combines with cisplatin, it suppresses

cell proliferation and induces apoptosis by declining SKP2 and

aiding in the accumulation of p27 expression. Recent studies denote

combining a novel SKP2 inhibitor DT204 and BTZ synergistically

induced anti-myeloma activity and sensitized drug resistance in

MM. The antiproliferative effect of BTZ in CML implies that

proteasomal inhibitors are highly potent, thus suggesting that it

might be beneficial for a strategic intervention for CML (109).

Considering natural products, Apigenin (4 ′ , 5 , 7-

trihydroxyflavone) is a natural plant product commonly found in

dietary flavonoids found in various fruit and vegetables. Hussain

et al. demonstrated that Apigenin triggers apoptosis in Primary

effusion lymphoma (PEL) cells, suppressing the activation of AKT/

PKB pathway via downregulating Skp2, hypo-phosphorylation of

Rb, and accumulating p27Kip1 expression levels, which suggest that

Apigenin may possibly have future therapeutic potential in PEL

(74). Curcumin induces cell death by inhibiting PI3-Kinase/AKT

Pathway in B-Precursor Acute Lymphoblastic Leukemia.

In addition, the pursuit of novel anti-HM therapeutic strategies

does not just restrict to SKP2 inhibition, but also remains through
FIGURE 6

Targeting SKP2 for cancer therapy. Targeting SKP2 is emerging as a promising strategy for hematological malignancy. Inhibition of Cullin neddylation
with MLN4924 disrupts SCF complex activity, leading to SKP2 degradation. CdpA hinders the SKP1-SKP2 interaction, while SMIP004 directly
suppresses SKP2 expression. Compounds like SKPins disrupt SKP2-CKS1 or SKP2-p27 interactions, impeding cell cycle progression. Furthermore,
targeting CDK inhibitors or using proteasome inhibitors like bortezomib prevents SKP2-mediated degradation of key proteins. These multifaceted
approaches highlight the potential of SKP2 as a therapeutic target, offering diverse strategies to intervene in cancer progression and enhance
treatment outcome.
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selective inhibition of the ubiquitination–proteasome axis. To

enhance specificity and selectivity in targeting, a promising

avenue involves the focus on the E2–E3 complex (165, 166),

given that the E2–E3 interaction imparts a high level of specificity

and selectivity to the response by influencing specific ubiquitin

bonds. Similarly, targeting the substrate binding domains of E3s

offers a valuable opportunity. Inhibiting the interaction between a

specific E3 and its target enhances specificity while minimizing off-

target and side effects, potentially due to the limited impact on

cellular events. As protein–protein interactions influence the

specificity and selectivity of E3s, a deeper understanding of the

three-dimensional structure of E3 enzymes through approaches like

crystallography and cryo-electron microscopy will provide insights

for developing novel inhibition strategies. Notably, Proteolysis

Targeting Chimeras (PROTACs) (167) and molecular glues (168)

represent effective approaches for promoting ubiquitination-

mediated degradation of specific proteins, thereby contributing to

increased substrate specificity.

Additionally, advancements in targeted drug delivery involve

the use of cell membrane-coated nanoparticles (CNPs) and

exosomes (169). CNPs, with their synthetic core containing

anticancer drugs covered by a naturally derived cell membrane,

offer a potential tool for precise delivery to disease sites. While

promising, the translation of these strategies to clinical applications

necessitates further technical improvements. Microenvironment-

responsive drug-delivery systems based on nanoparticles and

exosomes hold potential for guiding the release of SKP2/SCF

component inhibitors in HM-specific microenvironments.
TABLE 3 SKP2 inhibitors in hematological malignancies and
solid tumors.

Tumor Type Compound Reference

Hematological Malignancies

T cell Leukemia SZL-P1-41 (128)

SKPin C1 (128)

Myeloid Leukemia Linichlorin A (129)

Diosmetin (130)

All-trans
retinoic acid

(1)

Chronic Lymphocytic Leukemia Bortezomib (131)

Melanoma Linichlorin A (132)

SKPin C1 (133)

Betulinic Acid (132)

miR-590-5p (134)

Bortezomib (135)

Multiple Myeloma Neosetophomone B (136)

CdpA (8)

SKPin C1 (137)

Bortezomib (138)

Solid Malignancies

Prostate Carcinoma SZL-P1-41 (139)

Gartanin (140)

Safranal (141)

SMIP004 (142)

Flavokawain A (143)

Lung Carcinoma SZL-P1-41 (139)

SKPin C1 (144)

MLN4924 (144)

Flavokawain A (144)

SMIP004 (103)

Curcumin (145)

Tubocapsanolide A (146)

Hepatocellular Carcinoma Longikaurin A (147)

SZL-P1-41 (139)

Breast Carcinoma Flavokawain A (148)

Linichlorin A (149)

Gentian Violet (149)

Diosgenin (150)

Rottlerin (151)

Curcumin (24)

Lycopene (55)

(Continued)
TABLE 3 Continued

Tumor Type Compound Reference

Solid Malignancies

Quercetin (55)

Osteosarcoma SZL-P1-41 (139)

Flavokawain A (152)

Cervical Cancer Linichlorin A (149)

Gentian Violet (149)

Bladder Carcinoma Flavokawain A (143)

ABT-751 (153)

Glioblastoma Curcumin (154)

Endometrial Carcinoma SKP2E3Li C2 (155)

Colorectal Carcinoma 7-azaindoles (156)

Dioscin (49)

Sulforaphane (157)

Pancreatic Carcinoma Curcumin (158)

Rottlerin (159)

Head and Neck Squamous
Cell Carcinoma

Curcumin (160)

Ovarian Carcinoma Nitidine Chloride (161)
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Moreover, the identification of synergistic combinations holds

significant importance for advancing cancer treatment strategies. In

the context of synthetic drug-target interaction, particularly those

involving DNA damage-response genes and ubiquitination-

mediated vulnerabilities, preclinical studies underscore the

potential of combining these approaches with PARP inhibitors

(170). CRISPR/Cas9- or RNAi- or shRNA-based whole genome

screening, coupled with genomic and transcriptomic data analysis,

contributes to predicting new synthetic lethal interactions for

alternative anticancer therapeutic approaches. Recent discoveries,

such as the identification of new substrates targeted by

ubiquitination, including sugars alongside proteins, broaden the

scope of this post-translational modification as a master regulator

with potential implications for treating various pathologies,

including HMs (171).
Discussion and concluding remarks

HMs account for a substantial number of newly diagnosed cases

in most oncology settings. These malignancies are most common in

the Western world. They occur due to several factors, such as

abnormality of cytogenetic, epigenetic, gene mutations, and other

environmental factors that influence the progression of HM (172,

173). In HM, blood cancer cells grow uncontrolled and function

abnormally. Commonly, HM’s are categorized into three major

subtypes: such as Lymphoma, Leukemia, and Myeloma (174).

Among these, AML is developed among adults. More than 80%

of cases re-occurred in patients over the age of 60, and 20-30% of

cases are children. However, the average survival rate among all HM

types is small, especially among elderly patients due to drug-

resistant drug resistance or relapse after advanced chemotherapy

and transplantation treatments. The molecular mechanism of drug

resistance or relapse is not entirely understood in HMs. Compared

to proteasomal inhibitors BTZ, E3 ligase drugs specifically block the

entire protein degradation with less toxicity.

The components of E3 ligases such as MDM2, FBW7, RBX2/

ROC2, RBX1/ROC1, Cullins, and many others are referred to as

oncogenes or tumor suppressors; similarly, essential proteins such as

p53 and Notch are associated during cancer development. The inverse

correlation between SKP2 and p27 cell cycle regulators in HM and

solid cancer demonstrated the shared mechanism of neoplastic

transformation (175). However, Skp2 gene function has not been

fully investigated in hematological malignancies. Hence, we analyzed

in-silico RNA seq using available TCGA datasets. Our results (data not

shown) demonstrated that the M7 AML within the French American

classifications exhibited a high expression of Skp2, while there seems to

be no significant difference in expression among different ethnic races.

High Skp2 gene promoter methylation among African American

populations illustrates the complexity of epigenetic aberration (data

not shown), and increased expression of Skp2 across tumors

demonstrates a common mechanism of SKP2 drug resistance. Poor

survival rates among the African American population and FLT3

mutation suggested that common mutation patterns are linked with

overexpression of the Skp2 gene (figure not shown). Our heatmap

analysis demonstrated both positively and negatively correlated genes
Frontiers in Oncology 13
with SKP2; identifying the relationship with complex gene network

functions that may support drug resistance mechanisms in various

aspects (Supplementary Table 2). In addition, our STRING analysis

(data not shown) demonstrated protein networks of SKP2 interaction,

which will prompt the identification of the associated factors involved

in the drug resistance mechanisms. Escalated expression of Skp2 in

Basso Lymphoma results demonstrated strong evidence of a common

mechanism involved in triggering the Skp2 gene in HM and a crucial

player in Hematopoietic stem cells (data not shown).

Similarly, miRNAs are also found to be a crucial player in drug

resistance affecting various genes. Hence, we highlighted the SKP2 gene

function by projecting the essential role of miRNAs across various

types of solid tumor malignancies. However in HM, only miR-203 was

found to target SKP2 in Leukemia and hematopoietic stem cells.

Our miR target prediction and Venn diagram analysis

demonstrated common miRNAs such as hsa-miR-21-5p, hsa-

miR-590-5p, hsa-miR-26a-5p, hsa-miR-1297, hsa-miR-26b-5p,

hsa-miR-30d-5p, hsa-miR-30a-5p Skp2 gene (data not shown).

Overexpression of mir-21-5p induces apoptosis and cell cycle

arrest by down-regulating SKP2 and overcoming Bortezomib

resistance in Multiple Myeloma. Similarly, some reports

demonstrated that targeting the EZH2/miR-138 axis might be a

potential therapeutic target against MM (100). Nevertheless, more

evidence is required to validate Skp2 gene regulation and its

function in other HM, including AML (100). In the future,

identifying the posttranscriptional and feedback regulatory loop

mechanism of SKP2 will support the miRNA rational therapeutic

approaches against relapse. Finally, we demonstrated the

significance of SKP2 targeting drugs in HM, which strongly

suggests a potential therapeutic strategy; however, miRNA

mimics/miRNA inhibitors alongside natural products

combination such as Apigenin, Dioscin, Arsenic trioxide,

NSC689857, NSC681152, C1, C2 with, C16, C20, Compound A,

and Compound ZL25 will open a new doorway for understanding

the molecular mechanism of drug resistance or relapse in HM

patients (49, 74, 160, 163, 176).

SKP2 remarkably promotes phosphorylation, ubiquitination, and

degradation of PDCD4 (Programmed cell death protein 4), thereby

facilitating cell proliferation and survival in breast cancer cells. SKP2

and PDCD4 displayed an inverse correlation in this cancer (177).

Interestingly, its expression exhibits dynamic patterns, with some cases

demonstrating overexpression in cancer samples compared to normal

tissues, while others exhibit elevated levels in control samples relative to

cancerous tissues. A high throughput screening identified SKP2 as a

potentially novel cancer drug target (41), suggesting that

pharmacologic SKP2 inactivation may limit tumor progression and

overcome chemoresistance. However, in prostate cancer, SKP2 exhibits

an opposite trend with high expression associated with a gain in

mesenchymal and CSC-like phenotype compared with epithelial cells

(178). This variability underscores the complexity of SKP2’s role in

cancer progression and highlights the need for personalized therapeutic

approaches. Given its diverse implications, personalized therapies

targeting SKP2 may offer a tailored strategy to address the specific

expression patterns observed in individual patients, potentially

enhancing treatment efficacy and minimizing adverse effects. As

researchers unravel the intricacies of SKP2’s involvement in
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hematological malignancies, the exploration of targeted interventions

holds promise for advancing precision medicine in cancer therapy.

Thus, we can conclude that SKP2 is critical in regulating

multiple cellular functions related to cell growth, differentiation,

and cell cycle. These alterations could perturb the delicate balance

and contribute to different pathological states like cancer. But the

in-depth and detailed exploration of these aspects of SKP2 biology

will be not only helpful in understanding cancer but also in

discovering a therapeutic target. It has been observed that SKP2

dysregulation is one of the fundamental driver events for

oncogenesis. These observations show that SKP2 is an oncogenic

modulator; hence, its expression status is vital in cancer prognosis

and determining treatment response. Small molecule activators or

inhibitors for SKP2 hold tremendous promise against various

cancers. It was reported that an expression of Skp2 confers drug

resistance, and hence targeting SKP2 appears to be crucial for

overcoming drug resistance in cancer chemotherapy. Therefore

efforts have been made to develop novel inhibitors targeting SKP2

(43). However, more clinically relevant human tumor models, such

as PDX and organoids and genetic mouse models should be applied

to carefully evaluate the efficacy of Skp2 inhibitors. Further research

is of utmost necessity to delineate the signaling pathway for SKP2

and identify its cellular target function to understand the molecular

mechanism of drug resistance in different cancer types.
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I, et al. Chlorinated guaiane-type sesquiterpene lactones as cytotoxic agents against
human tumor cells. Int J Mol Sci. (2020) 21:1–14. doi: 10.3390/ijms21249767

130. Liu Y, Shao Z, Liao Y, Xia X, Huang C, He J, et al. Targeting SKP2/Bcr-Abl
pathway with Diosmetin suppresses chronic myeloid leukemia proliferation. Eur J
Pharmacol. (2020) 883:173366. doi: 10.1016/j.ejphar.2020.173366

131. Faderl S, Rai K, Gribben J, Byrd JC, Flinn IW, O’Brien S, et al. Phase II study of
single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell
chronic lymphocytic leukemia. Cancer. (2006) 107:916–24. doi: 10.1002/cncr.22097

132. Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, et al. Small-molecule
compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol.
(2023) 14:1122008. doi: 10.3389/fphar.2023.1122008

133. Zhao H, Pan H, Wang H, Chai P, Ge S, Jia R, et al. SKP2 targeted inhibition
suppresses human uveal melanoma progression by blocking ubiquitylation of p27.
Onco Targets Ther. (2019) 12:4297–308. doi: 10.2147/OTT.S203888

134. Tong Y, Jin L. MiR-590-5p targets Skp2 to inhibit the growth and invasion of
Malignant melanoma cells. Dis Markers. (2022) 2022:8723725. doi: 10.1155/2022/
8723725

135. Markovic SN, Geyer SM, Dawkins F, Sharfman W, Albertini M, Maples W,
et al. A phase II study of bortezomib in the treatment of metastatic Malignant
melanoma. Cancer. (2005) 103:2584–9. doi: 10.1002/cncr.21108

136. Kuttikrishnan S, Ahmad F, Mateo JM, Prabhu KS, El-Elimat T, Oberlies NH,
et al. Neosetophomone B induces apoptosis in multiple myeloma cells via targeting of
AKT/SKP2 signaling pathway. Cell Biol Int. (2023) 42(2):190–200. doi: 10.1002/
cbin.12101

137. Yang Y, Yan W, Liu Z, Wei M. Skp2 inhibitor SKPin C1 decreased viability and
proliferation of multiple myeloma cells and induced apoptosis. Braz J Med Biol Res.
(2019) 52:1–10. doi: 10.1590/1414-431x20198412
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