
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sharon R. Pine,
University of Colorado Anschutz Medical
Campus, United States

REVIEWED BY

Paolo Spinnato,
Rizzoli Orthopedic Institute (IRCCS), Italy
Marion Tardieu,
INSERM U1194 Institut de Recherche en
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MR histology reveals
tissue features beneath
heterogeneous MRI signal
in genetically engineered
mouse models of sarcoma
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Purpose: To identify significant relationships between quantitative cytometric

tissue features and quantitative MR (qMRI) intratumorally in preclinical

undifferentiated pleomorphic sarcomas (UPS).

Materials and methods: In a prospective study of genetically engineered mouse

models of UPS, we registered imaging libraries consisting of matched multi-

contrast in vivo MRI, three-dimensional (3D) multi-contrast high-resolution ex

vivo MR histology (MRH), and two-dimensional (2D) tissue slides. From digitized

histology we generated quantitative cytometric feature maps from whole-slide

automated nuclear segmentation. We automatically segmented intratumoral

regions of distinct qMRI values and measured corresponding cytometric

features. Linear regression analysis was performed to compare intratumoral

qMRI and tissue cytometric features, and results were corrected for multiple

comparisons. Linear correlations between qMRI and cytometric features with p

values of <0.05 after correction for mult iple comparisons were

considered significant.

Results: Three features correlated with ex vivo apparent diffusion coefficient

(ADC), and no features correlated with in vivo ADC. Six features demonstrated

significant linear relationships with ex vivo T2*, and fifteen features correlated

significantly with in vivo T2*. In both cases, nuclear Haralick texture features were

the most prevalent type of feature correlated with T2*. A small group of nuclear

topology features also correlated with one or both T2* contrasts, and positive

trends were seen between T2* and nuclear size metrics.
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Conclusion: Registered multi-parametric imaging datasets can identify

quantitative tissue features which contribute to UPS MR signal. T2* may

provide quantitat ive information about nuclear morphology and

pleomorphism, adding histological insights to radiological interpretation of UPS.
KEYWORDS

MRI, sarcoma, histology, image registration, multi-modal, preclinical, feature mapping
Introduction

Undifferentiated pleomorphic sarcomas (UPS) form the largest

subset of the 10% to 20% of soft tissue sarcomas without a clear

tissue of origin (1, 2). Although relatively rare, soft tissue tumors

can be diagnostically challenging, with a large number of tumor

subtypes that exhibit overlapping diagnostic features (3). The

genomic underpinnings of UPS are defined by their mutational

complexity, including marked aneuploidy (4, 5), rather than a set of

specific alterations (2, 6). This complexity can make molecular

subtyping of these tumors a challenge. Morphologically, UPS can be

quite heterogeneous, with atypical ovoid or spindle-shaped cells

arranged in disorganized fascicular or storiform patterns. UPS

tumors characteristically harbor large variations in nuclear size

and shape, and may include multinucleated cells (7). Radiographic

findings are variable in UPS, but they typically present with

heterogeneous intratumor signal (8). Accurate diagnosis in

patients with UPS relies on adequate sampling of the lesion given

the heterogeneity of these tumors (9).

Although diagnosis of UPS presents a challenge, identifying

relevant features is of prognostic value (10, 11). Non-invasive

magnetic resonance (MR) imaging is a staple of clinical

management of soft tissue sarcomas, though its capacity for

prognostication has traditionally been limited to tumor size,

topological features, necrosis identification, and peritumoral

enhancement (10, 12). In addition to these features, the presence

of the “tail sign” on MRI is prognostic, having been associated with

a higher risk of local recurrence in UPS following surgical excision

(13, 14). Increased signal heterogeneity on T2-weighted (T2W) MR

images is typically considered a negative prognostic factor for soft

tissue sarcomas (15). More recently, studies of radiomic features of

soft tissues sarcoma have demonstrated prediction of tumor grade

based on MR imaging (16). However, the histological foundation

for MR features in UPS has not been established. Specifically, the

relationship between quantitative MR imaging (qMRI) features and

the hallmark cytological morphologies of UPS remains unknown.

The purpose of this study was to measure relationships between

qMRI and histology in UPS that may improve prognostication and

decision making for patients with this challenging disease.

Specifically, we looked for correlations between tissue histological

features and the parameters of apparent diffusion coefficient (ADC)
02
and T2*, as these measurements were acquired during our co-

clinical imaging trial of soft tissue sarcoma (NCI U24 CA220245)

performed to mirror patient imaging in the ongoing phase II clinical

trial SU2C-SARC032 (NCT03092323). Our hypothesis was that by

registering MR to pathology at high resolution using MRH, we

would identify histological features of UPS which significantly

correlate with qMRI, specifically ADC and T2*.
Materials and methods

Animal models

All animal studies were reviewed and approved by the

Institutional Animal Care and Use Committee. Soft tissue

sarcomas (n = 8) were induced in the hind limb of genetically

engineered mice through a combination of Cre recombinase (Cre)

activation to delete p53 and local injection of carcinogen, as

described previously (17, 18). Briefly, adenovirus expressing Cre

and 300 mg 3-methylcholanthrene (MCA; Sigma-Aldrich, Saint

Louis, MO) were injected into the gastrocnemius muscle of p53fl/fl

mice on a 129/SvJ background. Induction was performed in both

male and female mice at 6-12 weeks of age, and tumors developed in

approximately 8-12 weeks. When tumors reached 500-1,000 mm3,

imaging studies were initiated.
Study design

This pilot study was conducted prospectively. For analysis of

multi-modal imaging libraries, three-dimensional (3D) in vivoMRI

and subsequent ex vivoMRH were registered together. After tissues

were processed for pathology, 3D MR datasets were then registered

to two-dimensional (2D) histology slides that were digitized

through whole-slide imaging (Figures 1A, B). From digitized

histology, we generated quantitative cytometric feature maps

based on whole-slide automated nuclear segmentation

(Figure 1C). In registered libraries, we automatically segmented

intratumoral regions of distinct qMRI values and measured

corresponding cytometric features in these regions (Figure 1D).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1287479
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Blocker et al. 10.3389/fonc.2024.1287479
In vivo MRI

In vivo MR images were acquired on a 7-T Biospec small-

animal MRI scanner (Bruker, Billerica, MA). 2.5% atomized

isoflurane in air was used to induce anesthesia, followed by

maintenance at 1%-2%. Animals were imaged in the lateral

recumbent position, with a four-element mouse brain coil secured

over the tumor-bearing limb. The animals and surface coil were

positioned on a custom 3D-printed bed with integrated tubing for

circulation of warm water and equipment for active monitoring of

breath rate and body temperature. Animal vitals were monitored

through the duration of imaging. The unit was centered in a 72-mm

diameter, actively decoupled linear volume coil for transmission.
Frontiers in Oncology 03
Acquisition was performed using ParaVision software, version 6.0.1

(Bruker). Images were exported in Digital Imaging and

Communications in Medicine (DICOM) format. In vivo

sequences included anatomic 2D, non-isotropic T1-weighted fast

low-angle shot (FLASH), T2-weighted turbo rapid acquisition with

relaxation enhancement (TurboRARE), spiral-trajectory diffusion-

weighted imaging (DWI), and multigradient-recalled-echo

(MGRE) sequences. Sequences were selected according to the

small animal imaging protocols developed during the companion

co-clinical imaging study of soft tissue sarcomas (NCI U24

CA220245), and were originally designed to mimic the clinical

protocols on study. Basic scanning parameters are described in

Table 1. Total acquisition time per animal was less than 90 minutes.
B

C D

A

FIGURE 1

Multi-modal sarcoma imaging library registration and analysis workflow. Mouse models of UPS were imaged to construct registered imaging data
libraries. (A) Tumors were imaged with MRI in vivo, and fixed tissues were imaged at high resolution with MRH before preparation for conventional
histology with hematoxylin and eosin (H&E) staining. (B) Tumor imaging libraries were registered to histological sections. (C) Quantitative cytometric
feature maps were generated from H&E-stained tumor cross sections. (D) Registered MR imaging datasets were compared to quantitative
cytometrics intratumorally to probe for linear relationships between tumor features and MR signal. Scale bars = 2 mm.
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Ex vivo MR histology

Following in vivo imaging experiments, animals were

euthanized according to Institutional Animal Care and Use

Committee humane practices guidelines. Tissues were enhanced

for MRH with contrast agents using previously described methods

(19–21). Transcardial perfusion was performed with a 1:10 mixture

of ProHance (Bracco Diagnostics, Princeton, NJ) in formalin.

Fixation with a 1:10 mixture of ProHance and buffered formalin

reduces the T1 by more than six-fold in most mouse tissues. This
Frontiers in Oncology 04
permits the use of a 3D spin echo sequence, minimizing geometric

distortions with a short TR providing the signal averaging inherent

in 3D spin warp encoding without excessive acquisition times. At

TR=50 ms, the SNR is more than 5 times greater in the actively

stained tissue than in a formalin-fixed specimen (19). T1s in the

specimens in this study were typically ~ 100 ms. The resulting gain

in SNR allows us to achieve spatial resolution of 35 um with scan

times of ~ 8 hrs which would not be possible with unstained

specimens. Tumor-bearing limbs were then resected and

immersed in the ProHance/formalin and kept at 4°C. 24 hours

after resection, specimens were transferred to a 1:200 mixture of

ProHance in phosphate buffered saline to rehydrate tissues one

week prior to ex vivo MRH.

Specimen imaging was performed on a 7-T horizontal bore

magnet with high-performance Resonance Research gradient coils

(2500 mT/m peak) controlled by an Agilent Direct Drive console

(Agilent Technologies). High sensitivity was achieved using an in-

house built solenoid resonator. Tissues were immersed in fomblin

(Sigma-Aldrich) to reduce surface susceptibility artifacts. 3D DWI

and MGRE sequences were acquired at 35 µm isotropic resolution

using compressed sensing with an acceleration of 8X. DWI was

performed using a 3D Stejskal-Tanner sequence. Phase-encoding

was sparsely sampled in two dimensions using probabilistic

methods (21–23). The data was fully sampled in the readout

direction. A script running on the Agilent console automated

each acquisition by launching the sequence and writing the data

to a local file. At the conclusion of that acquisition, the file was

automatically written to a remote disc on a high-performance Dell

cluster. The script launched the reconstruction program on the

cluster which started with a Fourier Transform along the fully

sampled readout dimension. This produced a large collection of

undersampled 2D images which were distributed to multiple nodes

of the cluster for iterative reconstruction using the BART

reconstruction tool box (https://mrirecon.github.io/bart/). DWI

and MGRE sequences were selected to ensure that qMRI

parameters (ADC and T2*) were available to complement in vivo

qMRI measurements. DWI and MGRE sequence parameters were

calibrated to ensure adequate SNR at high resolution in fixed tissues

in the shortest reasonable scan time. Total acquisition time was

approximately 8 hours per sample. The basic scanning parameters

are included in Table 2.
Histological preparation

Following MRH, tumor-bearing limbs were decalcified in 14%

ethylenediaminetetraacetic acid for 14 days to allow tissue

preparation with intact bone. Tissues were stored in 70% ethanol,

and gross sections were trimmed to tissue cassettes at 2-3 levels

along the tibia/fibula prior to embedding in paraffin. 6 mm sections

were cut from each level and stained with hematoxylin and eosin

(H&E). Stained slides were scanned at 40X on an Aperio AT2

whole-slide scanner (Leica Biosystems, Buffalo Grove, IL), and data

were stored in SVS format. The result was digitized H&E images of

tumor-bearing limb cross sections at 2-3 levels for each specimen.
TABLE 1 Imaging Parameters for in vivo MR in preclinical soft
tissue sarcomas.

Sequence Parameter Value

T1-weighted FLASH

TE (ms) 4.5

TR (ms) 767.5

Flip angle (°) 30

No. excitations 3

In-plane resolution (mm) 0.1 X 0.1

Slice thickness (mm) 0.3

Acquisition time 4.9 minutes

T2-weighted TurboRARE

TE (ms) 45

TR (ms) 8000

RARE 8

No. of excitations 3

In-plane resolution (mm) 0.1 X 0.1

Slice thickness (mm) 0.3

Acquisition time 10.7 minutes

Spiral DWI

b values (s/mm2) 0, 100, 300, 500

Interleaves 40

No. of excitations 2

In-plane resolution (mm) 0.1 X 0.1

Slice thickness (mm) 0.6

Acquisition time 30 minutes

MGRE

TE (ms) 4, 19, 34, 49

No. of excitations 3

In-plane resolution (mm) 0.1 X 0.1

Slice thickness (mm) 0.6

Acquisition time 20 minutes
TE, echo time; TR, repetition time; FLASH, fast low-angle shot; TurboRARE, turbo rapid
acquisition with relaxation enhancement; DWI, diffusion weighted imaging; MGRE, multi-
gradient recalled echo.
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Multi-modal image registration

For subsequent analysis of imaging libraries, 3D in vivo MRI

and subsequent ex vivoMRH were registered together. After tissues

were processed for pathology, 3D MR datasets were then registered

to 2D digitized histology slides. Image registration was performed

using 3D Slicer (https://www.slicer.org/), an open-source platform

for image analysis, as described previously (18). Briefly, in vivo

images were registered to MRH images through a series of linear

(rigid) and landmarks-based (non-rigid) transformations. Ex vivo

MRH images were registered to digitized histology via linear

transformation and 2D slice selection, followed by landmarks

based non-rigid transformation. The high resolution of MRH

facilitates registration of multi-modal imaging datasets, as meso-

and micro-scale structures are resolved. The resulting

transformation was applied to all MRH-registered in vivo images.

The result was a series of histology-registered MR images which

included in vivo T1- and T2-weighted images, DWI, MGRE, and

DTI, as well as ex vivo DWI and MGRE (Figure 2). In addition,

apparent diffusion coefficient (ADC) and T2 star (T2*) qMRI maps

were calculated for all DWI and MGRE image series, respectively.

Registration success was quantified by comparing tumor

segmentations. Binary images defined via semi-automated tumor

segmentation in MR (24) and histological images were compared

post-registration transformation as described previously (18). Dice

similarity coefficients (DSC) were calculated to measure registration

success, with a minimum DSC cutoff of 0.8 required for

study inclusion.
Cytometric feature mapping

To generate quantitative cytometric feature maps, automated

nuclear segmentation was performed on digitized H&E images

using the StarDist plugin for FIJI as described previously (25, 26).

30 features broadly divided into four categories were measured for
Frontiers in Oncology 05
each nucleus: Topology, Delaunay triangulation distance, nuclear

stain Haralick features, and stain intensity features. Nuclei were

sorted into 35 mm pixels to match the registered MRH resolution,

and mean and variance of features were measured for each pixel. In

addition, we measured how many cells were detected in each pixel

to generate density maps. The result was a library of 61 cytometric

feature maps for each H&E slide, which were quantitative and

spatially matched to the registered MR images.
Image analysis

All correlative studies were performed using qMRI calculated

diffusion coefficient and T2* maps derived from acquired MR data.

Specifically, ADC was derived by exponential fitting of intensity

across a range of b values, and T2* was calculated via exponential

fitting of intensity from the series of echoes in MGRE. The resulting

qMRI parameters are referred to as ADC and T2*, respectively, and

were available for both in vivo and ex vivo data. The methods for

automated segmentation and measurement of registered MR/

pathology datasets were described in detail previously (18, 24).

Briefly, normalized curves of ADC and T2* distribution among the

entire cohort were calculated for both in vivo and ex vivo data. 6

bins were determined for each qMRI curve (ADC and T2*) with

equal area under the curve, with boundaries at ± 2 standard

deviations. These bins were used to automatically segment

regions of differing qMRI values in histology-registered ADC and

T2* images. The regions of interest were automatically measured in

all 61 cytometric feature maps derived from registered histology

slides. The results were cytometric feature measurements evaluated

in regions of incrementally increasing ADC and T2*.

Measured features were plotted as a function of ADC or T2* for

linear regression analysis. Where multiple slides were available per

animal, the measured cytometric-to-MRH relationships were

averaged on a per-animal basis prior to group analysis, as

described previously (18, 25, 26). This ensured that the number

of available slides for each subject did not impact the group analysis.

Mean animal values for each cytometric feature were plotted for the

cohort as a function of four qMRI parameters: ex vivo ADC, ex vivo

T2*, in vivo ADC, and in vivo T2*. Tissue features which

demonstrated significant non-zero relationships when plotted as a

linear function of qMRI, after correction for multiple comparisons,

were identified as potential contributors to qMRI in

heterogeneous sarcomas.
Statistical analysis

Statistical analyses were performed using Prism (version 9.00

for Windows; GraphPad Software, San Diego, CA). The pilot

sample size was chosen based on previous MRH pilot studies, in

which individual tumor specimens demonstrated significant linear

relationships between measured cytometric features and qMRI

(p<0.05, R2>0.9, Pearson’s r>0.9). Sample size (n=7) was
TABLE 2 Imaging Parameters for ex vivo MR in preclinical soft
tissue sarcomas.

Sequence Parameter Value

DWI

b values (s/mm2) 0, 500, 1000, 1500, 2000

Compression Factor 5

Isotropic Resolution (mm3) 0.035

Acquisition time 4 hours, 33 minutes

MGRE

TE (ms) 6, 12, 18, 24

Isotropic Resolution (mm3) 0.035

Acquisition time 3 hours, 39 minutes
DWI, diffusion weighted imaging; MGRE, multi-gradient recalled echo; TE, echo time.
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calculated to achieve statistical power (1- b) of 0.8, when a=0.05
and r=0.9, with a loss of n=1 incorporated to account for any errors

in registration or imaging complications. The resulting pilot study

was carried out with n=8. Linear regression analysis was performed

for group data comparing each cytometric feature with four qMRI

parameters, and p-values describing the significance of non-zero

relationships were reported, as well as R2 goodness of fit. For each

MR sequence, correction for multiple comparisons was performed

using the Benjamini-Hochberg method. Features of interest were

identified as regressions with slopes that statistically deviated from

zero (P <.05) after correction for multiple comparisons.
Frontiers in Oncology 06
Results

Multiple tumor cytometric features
correlate linearly with MR signal in a
cohort of murine soft tissue sarcomas

We successfully registered all MR images in this cohort to their

corresponding histology slides, with a mean DSC of 0.944 for ex vivo

MRH to histology, and a mean DSC of 0.930 for in vivo MRI to

histology. Detailed metrics of registration success are provided for each

specimen in Supplementary Table 1. Just as we have shown previously
B

A

FIGURE 2

Representative sarcoma imaging library including multi-contrast, multi-resolution MR datasets registered to digitized 2D histological slides. (A) Shown is a
sample of a digitized 2D histology image (left) with a registered 35 mm isotropic MRH diffusion-weighted image (right). (B) The complete imaging suite
gathered for each sarcoma-bearing animal included registered ex vivo histology (B.a), diffusion-weighted MRH (B.b), MRH apparent diffusion coefficient
(ADC) maps (B.c), MRH T2* maps (B.d), as well as in vivo bias corrected anatomical T1-weighted (B.e) and T2-weighted (B.f) images, ADC maps (B.g),
and T2* maps (B.h). Scale bars = 2 mm.
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(18), we demonstrated linear relationships between intratumoral qMRI

and cytometric features in individual registered datasets of preclinical

soft tissue sarcomas (Figure 3). These relationships were often

consistent in both the ex vivo and in vivo analyses for a given tissue

(Figures 3C, D). However, due to improvements in tissue processing

and histological data consistency, we were able to expand these

experiments for cohort analysis (n = 8).

After correcting for multiple comparisons, we found that a subset of

cytometric features correlated significantly with qMRI in the group data,

including in vivo and ex vivo qMRI. Significant non-zero relationships

between quantitative cytometric measurements plotted as a linear

function of qMRI measurements are described in Table 3. Somewhat
Frontiers in Oncology 07
surprisingly, only three features out of 61 correlated with ex vivo ADC,

and no features correlated with in vivo ADC. Complete summary tables

describing the corrected p-values for all cytometric features compared to

ex vivo and in vivo ADC are provided in Supplementary Table 2 and

Supplementary Table 3, respectively. Interestingly, six features

demonstrated significant linear relationships with ex vivo T2*, and

fifteen features correlated significantly with in vivo T2*. Complete

summary tables describing the corrected p-values for all cytometric

features compared to ex vivo and in vivo T2* are provided in

Supplementary Table 4 and Supplementary Table 5, respectively. In

both cases, nuclear Haralick texture features were themost prevalent type

of feature correlated with T2*.
B

C

D

A

FIGURE 3

Both in vivo and ex vivo T2* demonstrate significant linear relationships with Hematoxylin Haralick Angular Second Moment (ASM) at the
intratumoral level in murine soft tissue sarcomas. (A) A map of nuclear texture feature Haralick ASM was derived from an H&E-stained cross-section
(B) of a soft tissue sarcoma of the hind limb. Within the tumor boundary (yellow line) Nuclear Haralick ASM demonstrated a significant linear
relationship with ex vivo T2* in this sample (C). This trend was also seen when comparing Nuclear Haralick ASM to in vivo T2* imaging in this sample
(D). Plotted are mean and SD Nuclear Haralick ASM in regions of variable T2*, and p-value and R2 values are included. Scale bar = 2 mm.
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T2* correlated significantly with nuclear
texture and topology features in both in
vivo MRI and ex vivo MRH

In both ex vivo and in vivo images, multiple cytometric features

related to nuclear Haralick texture correlated significantly with T2*.

For example, mean Haralick hematoxylin Angular Second Moment

(ASM) exhibited a significant inverse linear correlation with ex vivo

T2* (corr. p<0.005) and in vivo T2* (corr. p<0.005) (Figures 4A, B).

Haralick ASM is a measure of homogeneity among grey level

intensities in the measured pixels, in this case, within a nucleus

stained by hematoxylin (27, 28). This is visibly evident on the

pathology slide, with increased ASM demonstrating higher stain

homogeneity within the nuclear boundary, and lower ASM values

measured in nuclei with high stain variance, which occurs with
Frontiers in Oncology 08
heterogeneous chromatin structure or prominent nucleoli

(Figure 4C). Other examples of Haralick features correlating with

ex vivo and in vivo T2* include mean hematoxylin difference

entropy (ex vivo, corr. p<0.005; in vivo corr. p=0.0201), variance

in hematoxylin difference entropy (ex vivo, corr. p=0.0065; in vivo

corr. p<0.005), mean hematoxylin sum entropy (ex vivo, corr.

p<0.005; in vivo corr. p<0.005), and variance in hematoxylin sum

entropy (ex vivo, corr. p<0.005; in vivo corr. p<0.005).

A small group of nuclear topology features correlated with one or

both T2* sequences. In vivo T2* showed a positive correlation with

nuclear maximum diameter (corr. p=0.0432), a measure of nuclear size

(Figures 5A, B). This correlation was also seen with ex vivo T2* (corr.

p=0.0316). Differences in nuclear size are common in human UPS.

Also correlating with in vivo T2* was mean nuclear solidity (corr.

p=0.0412; Figure 5C), which measures irregularity of nuclear shape by
TABLE 3 Cytometric features demonstrating significantly non-zero linear relationships with quantitative in vivo and ex vivo MR signal in soft tissue
sarcomas (n = 8) after correction for multiple comparisons.

MR Imaging Sequence Tissue Cytometric Feature Linear Regression
Corrected
p-value

Feature Category

Ex Vivo ADC

Variance in Delaunay Max Distance 0.0216 Delaunay

Variance in Delaunay Average Distance 0.0378 Delaunay

Variance in Hematoxylin Entropy 0.0378 Nuclear Haralick

In Vivo ADC N/A – –

Ex Vivo T2*

Mean Nuclear Max Diameter 0.0316 Topology

Mean Hematoxylin ASM <0.005 Nuclear Haralick

Mean Hematoxylin Difference Entropy <0.005 Nuclear Haralick

Variance in Hematoxylin Difference Entropy 0.0065 Nuclear Haralick

Mean Hematoxylin Sum Entropy <0.005 Nuclear Haralick

Variance in Hematoxylin Sum Entropy 0.0108 Nuclear Haralick

In Vivo T2*

Mean Nuclear Max diameter 0.0432 Topology

Mean Nuclear Solidity 0.0412 Topology

Variance in Delaunay Max Distance 0.0462 Delaunay

Mean Hematoxylin ASM <0.005 Nuclear Haralick

Mean Hematoxylin Difference Entropy 0.0201 Nuclear Haralick

Variance in Hematoxylin Difference Entropy <0.005 Nuclear Haralick

Mean Hematoxylin Entropy <0.005 Nuclear Haralick

Variance in Hematoxylin Entropy 0.0198 Nuclear Haralick

Variance in Hematoxylin IDM 0.0416 Nuclear Haralick

Variance in Hematoxylin Sum Average 0.0472 Nuclear Haralick

Mean Hematoxylin Sum Entropy <0.005 Nuclear Haralick

Variance in Hematoxylin Sum Entropy <0.005 Nuclear Haralick

Variance in Hematoxylin Peak Intensity 0.0432 Stain

Variance in Hematoxylin Average Intensity 0.0414 Stain

Variance in Hematoxylin Minimum Intensity 0.0451 Stain
ADC, apparent diffusion coefficient; N/A, not applicable; ASM, angular second moment.
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calculating the difference between the measured area and the convex

perimeter (Figure 5D). Interestingly, while significant correlations

between T2* and nuclear topology features were limited, positive

linear trends were noted between both T2* contrasts and measures

of nuclear size (Figure 6). Along with significant positive linear

correlations with nuclear maximum diameter, non-significant

positive correlations were also seen with nuclear area (ex vivo corr.

p=0.3372; in vivo corr. p=0.2666) and minimum nuclear diameter (ex

vivo corr. p=0.2068; in vivo corr. p=0.1932). In each case, data from a

single tumor diminished the goodness of fit, thus extinguishing

statistical significance. For all nuclear size features, data from the

same tumor was visibly separable from the rest of the cohort. This

tumor showed consistently larger nuclear sizes compared to other mice

in the cohort. The source of this difference in nuclear size is unknown.

However, the positive correlation between T2* and nuclear size metrics

was still observed in this tumor. Taken together, these observations

suggest that nuclear size may play a considerable role in the T2*

measured in these murine soft tissue sarcomas.
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In vivo T2* correlated significantly with
variance in nuclear stain intensity features

In addition to nuclear Haralick features and topology metrics,

measures of hematoxylin stain intensity also correlated significantly

with in vivo T2* (Figure 7). Specifically, the stain features

correlating with in vivo T2* were variance metrics, including

variance in hematoxylin peak intensity (corr. p=0.0432), variance

in hematoxylin average intensity (corr. p=0.0414), and variance in

hematoxylin minimum intensity (corr. p=0.0451). Important to

note, variance metrics in this case refer to variance among

neighboring cells in a 35 mm2 pixel. Unlike mean Haralick texture

features, which measure intensity patterns within a nucleus, the

calculated variance metrics measure differences among neighboring

nuclei. In this case, a negative correlation between in vivo T2* and

hematoxylin variance features suggests that higher T2* may be

measured when neighboring cells have similar hematoxylin staining

properties (Figure 7D).
B

C

A

FIGURE 4

T2* correlates with a measure of nuclear stain texture, nuclear Haralick Angular Second Moment (ASM), in both ex vivo and in vivo MR. Among the
cohort of soft tissue sarcomas (n = 8), regions of variable ex vivo T2* demonstrated a significant linear relationship with nuclear hematoxylin Haralick
ASM (A). The same trend was observed in vivo among the same cohort (B). Regression lines are plotted in black, with 95% CI represented with blue
dotted lines and shading. Corrected p-values and R2 values are provided for reference. Nuclear hematoxylin Haralick ASM is a measure of textural
homogeneity, with high values corresponding to greater uniformity in intranuclear staining (C). Nuclear Haralick ASM is also related to size, as shown
in representative nuclei with variable ASM values. Pathology images are 25 µm2 tiles, with nuclear segmentations outlined in blue.
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Ex vivo ADC correlated significantly with
three measures of cytometric variance

While numerous cytometric features correlated with T2* in this

preclinical sarcoma cohort, very few significant correlations were

observed between cytometric features and ADC. No features

demonstrated significantly non-zero linear relationships with in

vivo ADC when corrected for multiple comparisons. When

comparing cytometric features to ex vivo ADC, three features

demonstrated a significant linear relationship: variance in Delaunay

maximum distance (corr. p=0.0216), variance in Delaunay average

distance (corr. p=0.0378), and variance in nuclear hematoxylin

Haralick entropy (corr. p=0.0378). All three features are variance

metrics, measuring variance among neighboring cells. Delaunay

triangulation measures the distance between a cell and its nearest

neighbors. Variance in Delaunay distances, which correlated

positively with ex vivo ADC, measures the degree to which

intercellular distances vary in local cell populations (Figure 8).

Higher variance in Delaunay distances suggests greater

heterogeneity in cell-to-cell distances, often demonstrated in highly

pleomorphic regions of these soft tissue sarcomas (Figure 8C).
Discussion

UPS is one of the most aggressive subtypes of sarcoma, but is

one of the most poorly categorized. Recent efforts to understand
Frontiers in Oncology 10
disease behavior have focused on genomic profiling (29), but

clinical methods to aid decision making, such as radiological

biomarkers, have remained elusive. In response to this deficiency,

studies of qMRI parameters, including radiomic features, to predict

UPS behavior and response to treatment are being explored with

MRI (30). Despite efforts to understand or predict UPS behavior

with MR imaging, the histological underpinnings of qMRI in UPS

remain unresolved. Clinically, pathologist assessment is still the

gold standard for prognostication in UPS, despite the challenge of

adequate sampling posed by these heterogeneous and often large

tumors. By providing a quantitative link between MR imaging

signatures and tissue histology, we can empower the radiologist

with histological insights as well as design better, more predictive

imaging methods for UPS. To better understand the tissue histology

underlying UPS qMRI, we utilized unique imaging libraries in a

cohort of autochthonous soft tissue sarcomas in genetically

engineered mice that resemble human UPS in both histologic

appearance and gene expression. With these rich datasets that

include in vivo and ex vivo MR images registered to tissue

pathology slides, we identified significant linear relationships

between quantitative MR and tumor cytometric features. In

particular, we found a group of cytometric features, including

nuclear texture and topology features, which correlated

significantly with in vivo and ex vivo T2*. These studies represent

the first of their kind to link qMRI and histological features

quantitatively via tissue-registered imaging datasets in a

preclinical cohort of UPS.
B

C D

A

FIGURE 5

In vivo T2* correlates with nuclear topology metrics. Among the cohort of soft tissue sarcomas (n = 8), regions of variable in vivo T2* signal
demonstrated significant linear relationships with average nuclear maximum diameter (A), a direct measure of nuclear size (B). In vivo T2* also
correlated significantly with mean nuclear solidity (C). Nuclear solidity is a measure of how much the nuclear boundary deviates from a convex
shape, with lower values correlating with greater irregularity (D). Scale bars = 100 µm.
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In this study, the majority of significant linear relationships

between cytometric features and qMRI were identified in T2*, both

ex vivo and in vivo. In both cases, nuclear Haralick features were

predominant in correlating with T2*. Haralick features are

calculated from the gray-level co-occurrence matrix (GLCM) of

pixels or voxels within a region of interest (31). Unlike first order

image statistics, Haralick features describe the spatial relationships,

or “textures”, of normalized grayscale values (32). In the cytometric

feature maps, the nuclear Haralick features were measured based on

the hematoxylin stain vector, thus describing texture features within

individual nuclei. Nuclear Haralick feature quantitation is sensitive

to differences between uniformly-stained nuclei and nuclei with

heterogeneous or unevenly distributed hematoxylin intensity. An

example of this type of distinction would be heterochromatic versus

euchromatic nuclei, both of which are seen in UPS (33). We

identified linear relationships between T2* and multiple nuclear

Haralick features, as well as with local variance in nuclear Haralick

features. Nuclear pleomorphism is a hallmark of UPS, thus making

T2* a potentially valuable imaging approach for understanding

these tumors.

We also found a limited number of nuclear topological features,

such as nuclear maximum diameter, which correlated significantly

with T2*. Additional nuclear topology features, particularly those

related to nuclear size, showed positive trends with T2*. Specifically,

increased nuclear sizes were measured in regions with higher T2*.

However, many of these linear relationships were not statistically

significant due to the presence of single tumor. Although the

positive relationships were measured in this tumor as well, the

average size of the nuclei measured in this specimen was larger than

the rest of the cohort. The cause of this discrepancy is unknown.

When considering nuclear size as a possible correlate with T2* in
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these sarcomas, it is important to note that Haralick features can

also be affected by the size of the region in which they are calculated

(28, 34). In this case, the Haralick features would be inherently

related to nuclear size. Taken together, despite the presence of a

single tumor with excessive influence on this dataset, trends

between nuclear size metrics and T2* warrant further exploration.

In observing the histology slides, we speculate that the origins of

the correlations between cytometric features and T2* arise from

differences in cytoarchitecture, size and distribution. Early NMR

studies of the relaxation properties of tissues determined that many

tissues have multicomponent T1, T2 (35, 36). R2*, i.e. the rate of

decay, is the sum of the rates from all the mechanisms contributing

to loss of coherence—molecular, imaging gradients, exchange

effects and diffusion. Majumdar and Gore demonstrated that

diffusion through susceptibility induced gradients would reduce

the transverse relaxation time (37). While our data do not

definitively support this mechanism, they are consistent with it.

When reflecting on the utility of T2* measurement for studying

tumor tissues, it is imperative to consider the relationship between

T2* and spatial resolution. Although many of the relationships we

found between T2* and histological features were observed in high

resolution MRH as well as lower resolution in vivo MRI, we have

not yet demonstrated the limits of detection of this relationship.

Ongoing studies have incorporated these questions into sequence

program design and included multi-resolution acquisition

protocols. Still, improving our understanding of the pathological

insights that T2* mapping may provide to radiologists could impact

future clinical care, as nuclear size has been shown to have

prognostic significance in multiple sarcomas (38–40). In

osteosarcoma, particularly, tumor nuclear size has been shown to

correlate with response to chemotherapy (41). In other solid
B

A

FIGURE 6

Ex vivo and in vivo T2* show positive correlations with nuclear size, including in a statistical outlier. Ex vivo T2* showed trends of positive correlation
with nuclear size metrics, including mean nuclear area, average nuclear maximum diameter, and average nuclear minimum diameter (A). The same
trends were seen with in vivo T2* and nuclear size metrics (B). In all cases, data from a single tumor (represented in each graph by open squares)
exhibited larger nuclear size metrics overall relative to measurements made in all other tumors in the cohort (solid circles).
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tumors, nuclear size and feature variance, as described above, are

associated with tumor grade and aggressiveness (42–44). Although

T2* is not widely employed in the clinical setting, further

exploration of its utility may add great value to UPS MRI.

While many cytometric features correlated with T2*, we found

very few features significantly associated with ADC. This was

surprising, given evidence in the literature connecting ADC to

tumor pathology, particularly tumor cell density (45–47). Further,

the limited correlations noted in ex vivo ADC were not seen in vivo.

In both cases, we believe that deficiencies in the scan protocols may

have diminished any findings of interest. Regarding in vivo ADC,

we hypothesize that the lack of significant relationships may be

attributable, in part, to challenges related to signal-to-noise ratio

(SNR) with the scan protocol. The bias conferred by the surface coil

caused a disproportionate SNR loss in the spiral DWI sequence

compared to other sequences, such as the MGRE sequence. Often,

this resulted in 30-50% of the tumor volume being irreparably
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affected by noise, depending on the size or depth of the tumor in the

hind limb relative to the surface coil. To address this issue in

subsequent studies, we have begun using a modified volume coil

and updated the DWI protocol to achieve higher and more

uniform SNR.

Results from the ex vivo ADC are more challenging to interpret.

These images were free of coil-related signal bias and had excellent

SNR. In fact, individual tumors demonstrated very strong linear

correlations with ex vivo ADC, including inverse relationships with

features related to cell density as expected based on the literature

(48). However, many of these trends were in complete opposing

directions for other tumors. As a result, group data for these

features showed no significant relationships with ex vivo ADC.

While challenging to interpret, we hypothesize that these peculiar

results were also due to insufficiencies in the scan protocol.

Specifically, the ex vivo DWI protocol employed multiple b values

to calculate ADC, but all data were acquired in a single direction,
B C

D

A

FIGURE 7

In vivo T2* correlates with three measures of variance in nuclear Hematoxylin stain intensity. Among the cohort of soft tissue sarcomas (n = 8),
regions of variable in vivo T2* signal demonstrated significant linear relationship with variance in nuclear hematoxylin average intensity (A), variance
in nuclear hematoxylin peak intensity (B), and variance in nuclear hematoxylin range (C). In each case, variance in hematoxylin intensity metrics
showed an inverse correlation with in vivo T2*. Regression lines are plotted in black, with 95% CI represented with blue dotted lines and shading.
Corrected p-values and R2 values are provided for reference. Variance in mean nuclear hematoxylin intensity is a measure of how a cell’s nuclear
stain intensity varies from its local neighbors, with high values indicating more heterogeneous groups (C). Shown are representative tiles of H&E-
stained soft tissue sarcomas with differing variance in nuclear mean hematoxylin intensity (top) and quantitative hematoxylin stain vector images
(bottom) (D). Scale bars = 100 µm.
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which may be too reductive at such high resolutions. The cells

measured within a 35 mm3 voxel can demonstrate directional

architecture, as these sarcomas frequently include elongated or

spindled tumor cells arranged in fascicular or storiform patterns

with variable directionality. We hypothesize that at high resolution,

the diffusion properties in a single direction may be impacted by

this directional tissue structure. Important to note, while the

literature generally associates tumor ADC with cell density, there

have been discrepancies among studies (49–52). We hypothesize

that our data could provide evidence that the DWI sequence

parameters may play a role in how ADC relates to cell density.

While not used in the present study, we have subsequently

employed multi-directional DWI to exploit these features as

additional parameters for future tumor analyses.
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The primary limitations to this study were deficiencies in scan

protocols discussed above and the small sample size for this cohort.

Subsequent experiments have overcome many of the inadequacies

of the scan protocols based on the confounds identified in this

study. While statistically significant associations were observed

between cytometric features and qMRI, these results should be

interpreted in the context of the limited sample size. Ongoing

studies have utilized the data from this pilot study to adjust our

statistical models and to calculate suitable, larger cohort sizes. We

have also improved our imaging and registration workflows to

reduce technical noise in the resulting data. Further, future studies

will incorporate more nuanced approaches for comparing

cytometric features with qMRI beyond linear relationships, such

as non-linear and multivariate analyses. Finally, in vivo and ex vivo
B

C

A

FIGURE 8

Ex vivo ADC correlates with two measures of Delaunay triangulation variance. Among the cohort of soft tissue sarcomas (n=8), regions of variable ex
vivo ADC demonstrated a significant linear relationship with variance in Delaunay maximum distance (A) and Delaunay average distance (B).
Regression lines are plotted in black, with 95% CI represented with blue dotted lines and shading. Corrected p-values and R2 values are provided for
reference. Variance in Delaunay distances measures the heterogeneity of cell-to-cell distances within local populations, demonstrated visually in
representative tiles comparing regions of increasing variance of Delaunay maximum distance in soft tissue sarcomas (C). Scale bars = 100 µm.
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images were acquired on different scanners, which could introduce

technical variables when directly comparing in vivo and ex vivoMR.

This has been remedied in subsequent experiments through

instrumentation upgrades.

The most notable achievement of this work was demonstrating

the ability to consistently measure significant quantitative

relationships between soft tissue sarcoma histologic features and

qMRI at the intratumoral level in a cohort of animals. These

experiments represent the foundation by which tissue histology can

directly inform results derived from radiomics studies in UPS (53,

54), thus providing a mechanistic link between qMRI and tumor

biology. Our previous work focused primarily on methodological

development to facilitate MRI/histology registration and quantitative

comparison using MRH. However, in initial experiments we found

that inconsistencies in tissue handling and histological preparation on

a case-by-case basis, such as poor fixation and inconsistent staining,

prevented us from comparing data between tumors. In this study, we

employed a series of methodological advancements compared to

previous studies to facilitate group data analysis. First, tumor-bearing

limbs were perfusion-fixed during euthanasia to improve ex vivo

tissue quality. Second, the histological technique was improved to

ensure maintenance of tissue integrity, as well as to facilitate

improved automated histological analysis. Third, we expanded the

histological slide analysis to include more features for comparison to

MR. Finally, we increased the spatial resolution of the MRH datasets

to improve registration to histological slides. With the

aforementioned improvements to data collection, these experiments

represent the first of their kind to identify statistically significant

relationships between cytometric features and qMRI among a cohort

of tumor-bearing animals.

With these improvements, we have shown that the heterogeneity

of multi-parametric qMRI in sarcomas can be linked to tissue

pathology and that pathological hallmarks of UPS, like nuclear

pleomorphism, may specifically correlate to select qMRI patterns.

Importantly, we achieved image registration from in vivo MRI to

histology slides by utilizing non-destructive MRH, without the need

for any special tissue processing equipment, stereotactic tissue molds,

or non-standard histological techniques. The results from this study

provide pathology-based insights into qMRI in sarcomas, and can

inform thoughtful sequence selection when designing MR imaging

biomarker studies in UPS. Further, this work provides a

methodological approach for defining the histological basis of

tumor radiomics studies. Utilizing cutting-edge imaging techniques

and analysis pipelines, these experiments have established

quantifiable links between heterogeneous tumor qMRI properties

and their histological underpinnings. In this way, we have begun to

unravel the specific tissue pathologies which contribute to the

radiological presentation of UPS. This work represents an initial

key step in empowering the clinical radiologist with pathological

insights using non-invasive, whole-tumor MR imaging.
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