
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Satyendra Chandra Tripathi,
All India Institute of Medical Sciences Nagpur,
India

REVIEWED BY

Balkrishna Chaube,
Yale University, United States
Rodney Infante,
University of Texas Southwestern Medical
Center, United States

*CORRESPONDENCE

Axel Stang

a.stang@asklepios.com

RECEIVED 31 August 2023

ACCEPTED 05 February 2024
PUBLISHED 20 February 2024

CITATION

More TH, Hiller K, Seifert M, Illig T,
Schmidt R, Gronauer R, von Hahn T,
Weilert H and Stang A (2024) Metabolomics
analysis reveals novel serum metabolite
alterations in cancer cachexia.
Front. Oncol. 14:1286896.
doi: 10.3389/fonc.2024.1286896

COPYRIGHT

© 2024 More, Hiller, Seifert, Illig, Schmidt,
Gronauer, von Hahn, Weilert and Stang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 20 February 2024

DOI 10.3389/fonc.2024.1286896
Metabolomics analysis reveals
novel serum metabolite
alterations in cancer cachexia
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Thomas von Hahn7,8,9, Hauke Weilert8,9,10 and Axel Stang8,9,10*
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Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany, 3Connexome GmbH,
Fischen, Germany, 4Department of Human Genetics, Hannover Medical School, Hannover, Germany,
5Hannover Unified Biobank (HUB), Hannover, Germany, 6Immunetrue, Cologne, Germany, 7Asklepios
Hospital Barmbek, Department of Gastroenterology, Hepatology and Endoscopy, Hamburg, Germany,
8Asklepios Tumorzentrum Hamburg, Hamburg, Germany, 9Semmelweis University, Asklepios Campus
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Background: Cachexia is a body wasting syndrome that significantly affects well-

being and prognosis of cancer patients, without effective treatment. Serum

metabolites take part in pathophysiological processes of cancer cachexia, but

apart from altered levels of select serummetabolites, little is known on the global

changes of the overall serum metabolome, which represents a functional

readout of the whole-body metabol ic state. Here, we aimed to

comprehensively characterize serum metabolite alterations and analyze

associated pathways in cachectic cancer patients to gain new insights that

could help instruct strategies for novel interventions of greater clinical benefit.

Methods: Serum was sampled from 120 metastatic cancer patients (stage UICC

IV). Patients were grouped as cachectic or non-cachectic according to the

criteria for cancer cachexia agreed upon international consensus (main

criterium: weight loss adjusted to body mass index). Samples were pooled by

cachexia phenotype and assayed using non-targeted gas chromatography-mass

spectrometry (GC-MS). Normalized metabolite levels were compared using t-

test (p < 0.05, adjusted for false discovery rate) and partial least squares

discriminant analysis (PLS-DA). Machine-learning models were applied to

identify metabolite signatures for separating cachexia states. Significant

metabolites underwent MetaboAnalyst 5.0 pathway analysis.

Results: Comparative analyses included 78 cachectic and 42 non-cachectic

patients. Cachectic patients exhibited 19 annotable, significantly elevated

(including glucose and fructose) or decreased (mostly amino acids) metabolites

associating with aminoacyl-tRNA, glutathione and amino acid metabolism

pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-

learning models identified metabolic signatures for separating cachectic states

(accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels

of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked

to pentose-phosphate and detoxification pathways.
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Conclusion: We found both known and yet unknown serum metabolite and

metabolic pathway alterations in cachectic cancer patients that collectively

support a whole-body metabolic state with impaired detoxification capability,

altered glucose and fructose metabolism, and substrate supply for increased

and/or distinct metabolic needs of cachexia-associated tumors. These findings

together imply vulnerabilities, dependencies and targets for novel interventions

that have potential to make a significant impact on future research in an

important field of cancer patient care.
KEYWORDS

cancer cachexia, GC-MS metabolomics, erythronic acid, glucuronic acid, serum

metabolites, metabolic pathways, body metabolism
Introduction

Cancer cachexia is a common adverse effect of cancer with

negative impact on patient´s physical function, quality of life, and

survival (1). Involuntary weight loss (WL), adjusted to the body

mass index (BMI), represents the validated cardinal criterium of the

international consensus-definition for cancer cachexia, which

distinguishes between cachectic and non-cachectic patients with

regards to all other cachexia domains proposed (e.g., C-reactive

protein [CRP], food intake, appetite loss, performance status [PS])

(1–3). Cachexia is estimated to affect 50-80% of cancer patients,

which worsens the susceptibly to toxic side effects of anti-cancer

drugs, and to account for up to 20% of cancer deaths (4, 5). Despite

its clinical relevance, this cancer-associated body wasting syndrome

remains without effective treatment. Current concepts outline a

tumor-orchestrated takeover of the whole-body metabolism to

promote tumor anabolism and growth at the expense of host

tissue catabolism (6, 7). Serum metabolites take part in

pathophysiological processes of CC, but apart from altered levels

of select metabolites, there is relative paucity of data on the global

alterations of the serum metabolome, which integrates the

functional readout of the whole-body metabolic state (8–10).

Determining variations of the serum metabolome may reveal yet

unknown metabolite alterations, broaden the scope of dysregulated

metabolic pathways, and drive the translation of chemical

metabolome data into biological knowledge (11–13). These

results, in turn, may instruct strategies for novel therapeutic

interventions of greater clinical benefit.

Metabolomics, or comprehensive metabolite profiling, uses

analytical chemistry platforms, such as mass spectroscopy

coupled with gas chromatography (GC-MS), to provide an

integrated status of the metabolome to metabolic disease research

(10, 14). Serum metabolomics, in non-targeted mode, has proven

utility for discovering unanticipated metabolites and new metabolic

pathways that change between clinical states, and hence for the

design of novel intervention strategies aimed at modulating

metabolic diseases (10, 13–15). Since metabolites interact and the
02
structures of metabolomics data are complex, significant

metabolites are not necessarily good predictors (15, 16).

Therefore, consistent results from both statistical (direct

metabolite-level testing between sample groups) and machine

learning (ML) methods (train models to label groups of samples)

lend strengths to metabolomics study findings, as these

complementary methods differentially process the data and

validate each other (16–18).

Here, we comprehensively characterize the serum metabolite

profiles of 78 cachectic and 42 non-cachectic cancer patients using a

non-targeted metabolomics approach followed by pathway analysis.

Our objectives were to assess statistically differential cachexia-

related serum metabolite alterations and metabolome clusters, to

examine top differential metabolite features for associated pathways

to help understand what these metabolite changes represent, and to

apply an ML strategy to evaluate whether significance-based and

prediction-oriented results are distinct or overlapping. Altogether,

we aimed to provide a resource for future research that can help

define testable hypotheses about mechanisms of action and/or

design approaches for novel therapeutic strategies in an

important field of cancer patient care.
Materials and methods

Study population

For this cross-sectional case-control study, adult patients with

newly diagnosed, metastatic cancer (stage UICC IV) were recruited

via the cancer care in- and out-patient units and oncology wards of

the Asklepios Hospital Barmbek between January 2019 and

December 2021. Patients were included at the time of diagnosis

before start of any anticancer treatment. Primary cancer types

included gastric, colorectal, pancreatic, liver and ovarian cancer.

Eligible patients met the following inclusion criteria: ≥18 years of

age, and histologically proven metastatic cancer diagnosis, and

either antibiotics treatment within ≤2 weeks or non-exposure of
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≥3 months before inclusion. Exclusion criteria were as follows:

acute or chronic diarrhea, acute gastrointestinal illness including

ileus, inflammatory bowel disease, acute infection, autoimmune

diseases, immunosuppressive therapy including corticosteroids,

acquired immunodeficiency syndrome, kidney or liver failure, and

need for emergency surgery. and. The study was approved by the

Ärztekammer Hamburg, Protocol number: V5649, Date: 23.10.2017

and was conducted according to the Declaration of Helsinki and its

revisions. All patients gave written informed consent.
Clinical assessments

Demographic information (age, gender, cancer type,

medication, CRP values) was collected from medical records by

the study coordinators at the time of study inclusion. Patient-

reported data on height, body weight, WL history, appetite, food

intake, and vegetarian diet were collected by means of a structured

questionnaire. A research assistant was available and provided help

in a face-to-face interview as necessary. Information about actual

height and weight, WL at last 6 months, and food intake past month

(unchanged or reduced) was provided by the patients using

questions from the Scored Patient-Generated Subjective Global

Assessment (PG-SGA) (19). Assessment of appetite was

performed using a numerical rating scale provided by the

Edmonton Symptom Assessment System, scoring 0 (normal

appetite) to 10 (no appetite) (20). Diet-based vegetarianism was

determined from the intake of animal products (red meat, poultry,

fish, dairy products, and eggs). Vegetarians were defined by a plant-

based dietary pattern that excludes red meat, and, to different

extents, other animal products (subtypes included lacto-/, ovo-/,

pesco-/, lacto-ovo-/and pesco-lacto-ovo-vegetarians and vegans

depending on the inclusion and exclusion of poultry, fish, dairy

products and/or eggs). Smoking was defined as current daily

smoking. We used self-reported average absolute alcohol

consumption (grams per week) during the last 12 months.

Medication use was defined as a drug purchase during the 3

months preceding the study inclusion. Prevalent diabetes was

defined as self-reported diabetes, a diabetes diagnosis code

indicating diabetes in medical records, and/or use of diabetes

medications. Patients were classified into two groups (cachexia

versus non-cachexia) based on the agreed and validated

diagnostic criteria from the international consensus (1–3). The

criterion for cachexia was: WL ≥5% the past 6 months or WL

≥2% the last 6 months and BMI ≤20 kg/m2 (1). Patients above or

below theses cut-offs were grouped as cachexia or non-cachexia.

BMI is reported as current weight (kg)/height (m)2.
Sample collection

Morning overnight fasting (≥6 hours) venous blood (5-10 mL)

was collected in serum tubes. The blood samples were kept at 4°C

for 20 minutes for clotting. Clotted samples were centrifuged at

1300 x g for 10 minutes at 4°C. The removed supernatant serum

samples were immediately stored at -80°C within ≤30-40 minutes
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after blood collection. Samples remained stored on average for 1.2 ±

0.6 years until further processing. Finally, the samples were

transported to the Department of Bioinformatics and

Biochemistry, Braunschweig Integrated Centre of Systems Biology

(BRICS), University of Braunschweig, on dry ice for

metabolomics analysis.
Metabolite extraction

Metabolite extraction was performed as per our previous

publication (21). Prior to extraction, the serum samples were

thawed on ice for 30 minutes. Then, 11 µL of serum was mixed

with 100 µL of an extraction solvent consisting of methanol and

water (at a ratio of 8:1) at -20°C. This solvent also contained internal

standards, specifically 2 µg/mL of D6-glutaric acid and U13C-

ribitol. The mixture was vortexed for 10 minutes at 1400 rpm and

4°C, followed by centrifugation at 13,000 g and 4°C for 10 minutes

to precipitate proteins. The resulting supernatants (90 µL) were

transferred to glass vials and evaporated using speed-vac at 4°C. The

metabolic extracts in the glass vials were sealed with a crimped

aluminium cap featuring a septum to prevent oxidation. Typically,

the samples were extracted and analyzed immediately after

extraction. If storage was necessary, the dried samples were stored

at -20°C until GC-MS measurement. The storage time until analysis

did not exceed 48 hours. Serum samples were individually extracted

in technical triplicates. A fraction (10 µL) from each sample is used

to create a pooled quality control (QC) sample, which is then

extracted and acquired after every 8th measurement. These QC

samples served as a means to normalize untargeted metabolomics

data by dividing the sample metabolite intensity by the average

intensity of the nearest pool sample, ensuring measurement

quality (22).
Metabolic analysis

Metabolomics measurements were performed using gas

chromatography coupled with mass spectrometry (GC-MS). To

render the identification of polar metabolites, two-step

derivatization was performed prior to analysis. Metabolite extracts

were derivatized using a multipurpose sampler (Gerstel MPS). The

first derivatization was performed by adding 15 µL of (20 mg/mL)

methoxyamine hydrochloride in pyridine (Sigma-Aldrich), shaken

for 90 min at 40°C. The second derivatization was performed by

adding an equal volume of N-methyl-N-trimethylsilyl-

trifluoroacetamide (MSTFA) (Macherey-Nagel) under continuous

shaking for 30 min at 40°C. The sample (1 µL) was injected into an

SSL injector at 270°C in spitless mode.

GC-MS measurements were performed on Agilent 7890A GC

equipped with a 30 m DB-35MS + 5m Duraguard capillary column

(0.25 mm inner diameter, 0.25 µm film thickness), which was

connected to an Agilent 5977B MSD. Helium was used as the

carrier gas at a flow rate of 1.0 mL/min. The GC oven temperature

was held at 80°C for 6 min, subsequently increased to 300°C at 6°C/

min, and held at that temperature for 10 min. The temperature was
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increased to 325°C at 10°C/min and held for an additional 4 min,

resulting in a total run time of 60 min per sample. The transfer line

temperature was set to 280°C, and the MSD was operating under

electron ionization at 70 eV. The MS source was held at 230°C and

the quadrupole at 150°C. Full scan mass spectra were acquired from

m/z 70 to m/z 800 at a scan rate of 5.2 scans/s. Pooled samples were

measured after every eighth GC-MS measurement for quality

control and data correction.
Data processing

All GC-MS chromatograms were processed using our in-house

software (23). The software package supports the deconvolution of

mass spectra, peak picking, integration, and retention index

calibration. Compounds were identified using an in-house mass

spectral library by spectral and retention index similarity. The

following deconvolution settings were applied to scan data: peak

threshold: 5; minimum peak height: 5; bins per scan: 10;

deconvolution width: 7; no baseline adjustment; minimum 15

peaks per spectrum; no minimum required base peak intensity.

Retention index calibration was based on a C10–C40 even n-alkane

mixture (68281, Sigma-Aldrich, Munich, Germany). Relative

quantification was done using the batch quantification function of

our in-house software (23). Data were normalized to quality control

pool measurement and intensity of the internal standard (D6-

Glutaric acid).
Statistical analysis

Group-wise comparisons of cachectic versus non-cachectic

cancer patients with regards to items representing cachexia

domains and a range of clinical data were performed. Continuous

variables with normal distribution are presented as mean (standard

deviation) and Welch`s two sample t-test was used to examine

differences between groups. Continuous variables outside the

normal distribution are presented as medians (quartile 1, quartile

3) and Wilcoxon rank sum test was applied to examine differences

between groups. Categorical variables were summarized as counts

(percentages) and Pearson`s Chi-squared test was applied to test for

differences between groups. Different statistical approaches were

utilized to identify significant metabolic differences between the

cachexia and non-cachexia groups. At first, metabolomics data were

cube root transformed and range scaled to obtain Gaussian

distribution using Metaboanalyst 5.0 (24). Principal component

analysis (PCA) was applied to detect intrinsic clustering, while

partial least squares discriminant analysis (PLS-DA) was used for

supervised clustering. Cross-validation was performed to avoid

over-fitting, and R2 and Q2 values were employed to evaluate the

model’s goodness of fit and predictive ability. The variable

importance in projection (VIP) score was utilized to extract

variables that significantly influenced group discrimination, with

a VIP score greater than 1 considered important. Additionally,

significant metabolic differences were confirmed within the

cachexia and non-cachexia groups using a t-test (p < 0.05) that
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was adjusted for multiple hypothesis testing using false discovery

rate (FDR) correction. The collective analysis was used to determine

significant metabolic differences in the cachexia versus the non-

cachexia group. In addition, the volcano plot was used to visualize

the alterations in metabolites between cachectic and non-cachectic

cancer patients. Box-and-whisker plots were generated using SPSS

(V27), and heat maps of altered metabolites were created using

MetaboAnaylst 5.0. The pathway analysis tool (MetPA) in

MetaboAnalyst 5.0 was utilized for the pathway analysis of

significant metabolites (24).
Machine learning classification

For all ML-based approaches, we used the Waikato Environment

for Knowledge Analysis (Weka) (https://www.cs.waikato.ac.nz/ml/

weka/) (25). For developing a predictive ML model for binominal

classification between cachectic and non-cachectic patients to predict

the cachexia state, we applied simple logistic regression analyses,

because they are typically applied and useful to investigate biomedical

regression and classification issues. Simple Logistics in Weka fits a

multinomial logistic regression model using the LogitBoost algorithm

(26). The number of LogitBoost iterations was manually selected

based on an optimization of cross-validation results. We applied a

meta classifier approach with reweighted training instances to make

base predictors cost-sensitive for balancing positive and negative

predictive values, predominantly to avoid false positive prediction

and to improve overall true predictive accuracy. Further, we applied a

10-fold cross-validation, with each fold containing a balanced

proportion of compared groups to handle dataset imbalances and

to avoid overfitting. After applying the trained Simple Logistics model

to classify the left-out test set, model´s classification performance was

estimated by receiver operating characteristic (ROC) methods and by

coefficient analysis to determine the predictor composition and

predictors contributing to ML models predictive performance.
Results

Clinical characteristics of the
study population

In total, 120 cancer patients with metastatic disease (UICC stage

IV) participated in the study. 41 patients were diagnosed with

colorectal cancer, 32 patients with pancreatic cancer, 30 with gastric

cancer, 12 with liver cancer, and 5 with ovarian cancer. Among

these, 78 patients were classified as cachectic, while 42 patients were

non-cachectic (Supplementary Table 1). The cachectic patients had

a mean BMI of 20.9 kg/m2 and a mean WL of 6.5 kg (mean %WL:

-9.7%), while the non-cachectic patients had a mean BMI of 26.4 kg/

m2 without WL (Figure 1, Supplementary Table 1, p < 0.001,

respectively). When comparing cachectic versus non-cachectic

patients on items representative of key cachexia domains, higher

levels of CRP (median 37 versus 14 mg/dl, p < 0.001) and appetite

loss (median score 4.0 versus 2.0, p < 0.001) and reduced food intake

(76% versus 26%, p < 0.001) was observed for cachectic patients.
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The ECOG-PS was significantly lower in cachectic patients

compared to non-cachectic patients (ECOG ≥2: 44% versus 12%,

p < 0.001). There were no significant differences in the distribution

of cancer types between the two groups analyzed (Table 1, p > 0.05,

respectively). Moreover, the two groups matched in clinical factors

(e.g., sex, age, alcohol intake, smoking, diabetes, medication) that

could potentially affect the serum metabolite profile (Table 1, p >

0.05). Overall, these data underline the legitimacy of using BMI-

adjusted WL as diagnostic criterium for cancer cachexia and that

there was almost equal distribution of covariables without

significant difference between the cachectic and non-cachetic

patient group.
Metabolic profiling reveals distinctive
patterns between patients with and
without cachexia

Distinct patterns emerged in cancer patients, distinguishing

those with and without cachexia following exploratory statistical

analysis. Within the metabolic profiling of serum samples, 159

prevalent metabolites were identified, and leveraging an in-house

metabolic reference library facilitated the annotation of 60

metabolites. The normalization process employed pooled quality

controls and D6-Glutaric acid peak areas as internal standards.

Furthermore, the data matrix underwent log transformation and

Pareto scaling to achieve a Gaussian distribution. Principal

component analysis discerned inherent clusters and outliers

within the metabolic dataset (Supplementary Figure S1). Further,

distinct clusters between cachexia and non-cachexia groups were

evident following partial least square discriminant analysis (PLS-
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TABLE 1 Demographic, clinical and cachexia domain characteristics of
the study population (n = 120 cancer patients with metastatic disease,
stage UICC IV).

Cohort
Cachexia

No
Cachexia

P-
value

Sample size (n) 78 42

Patient data

Age,1 year 68 (10) 65 (12) 0.074

Male3 46 (59) 17 (40) 0.053

ECOG-PS,3 score ≤1 44 (56) 37 (88) <0.001

Body mass index (BMI)

Height,1 cm 172 (10) 172 (10) 0.880

Weight,1 kg 62 (12) 78 (13) <0.001

BMI,1 kg/m2 20.9 (3.0) 26.4 (3.6) <0.001

Weight loss (WL)

WL,1 kg -6.5 (1.8) -0.2 (1.6) <0.001

WL,1% -9.7 (3.6) -0.3 (2.0) <0.001

Food intake

Reduced,1 (vs. unchanged) 59 (76) 11 (26) <0.001

Appetite loss

ESAS Score,2 score 0-10 4.0 (3.0, 5.0) 2.0 (0.25, 2.0) <0.001

C-reactive protein (CRP)

CRP values2 (mg/dl) 37 (9, 61) 14 (7, 30) <0.001

Clinical data

Smoking3 23 (29) 10 (24) 0.682

Alcohol3 26 (33) 17 (40) 0.713

Vegetarian3 5 (6.4) 2 (4.7) 1.0

Diabetes 17 (21) 7 (17) 0.644

Cancer type

Colon Cancer3 25 (32) 16 (38.1) 0.707

Pancreatic Cancer3 23 (29) 9 (21) 0.532

Gastric Cancer3 20 (26) 10 (24) 1.0

Liver Cancer3 7 (9) 5 (12) 0.754

Ovarian Cancer3 3 (3.8) 2 (4.8) 1.0

Cancer stage

Metastatic Disease (stage
UICC IV)3 78 (100) 42 (100) 1.0

Medication

Morphine3 20 (25) 7 (17) 0.499

Novaminsulfon3 23 (29) 9 (21) 0.523

Non-steroidal Analgetics3 14 (18) 10 (24) 0.642

Pantozol3 8 (10) 7 (16) 0.403

(Continued)
fron
FIGURE 1

Violin plots of body mass index (BMI) in cachectic (n = 42) and non-
cachectic (n = 78) patients. BMI differed significantly between
cachectic and non-cachectic cancer patients (p < 0.001, two-tailed
unpaired t-test).
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DA). Model validation, executed through 100 randomly permuted

models in cross-validation analysis (Figure 2A), demonstrated

cumulative R2 and Q2 values of 0.69 and 0.48, respectively,

emphasizing the robust predictive ability of the original

model (Figure 2B).
Significant metabolite differences unveiled
between cachectic and non-
cachectic patients

Significant metabolic differences were revealed through a rigorous

analysis of cachexia and non-cachexia groups using various statistical

methods. Initially, a t-test revealed significant metabolic alterations

(FDR-adjusted p < 0.05) in both groups. Subsequently, the PLS-DA

model’s VIP score identified key variables influencing group

discrimination. This comprehensive examination revealed

distinctive metabolic differences in 38 metabolites between the

cachectic and non-cachectic patients (Supplementary Table S1).

Among these, 19 metabolites were confidently annotated in the in-
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house library using their spectral data and retention indices.

Unidentified metabolites lacking matches in the in-house library

were annotated based on their retention indices. Identified

metabolites spanned various metabolic classes, such as amino acids,

fatty acids, amino sugar derivatives, and organic acids. Significantly

higher levels of glucuronic acid, glucose, and fructose were observed in

cachectic patients compared to non-cachectic patients. Conversely,

lower levels of erythronic acid, lysine, methionine, ornithine,

homocysteine, threonine, alanine, proline, valine, leucine, tyrosine,

1,5-anhydro-d-glucitol, isoleucine, maltose, glutamine, and serine

were noted in cachectic relative to non-cachectic patients (Figure 3).

The metabolite heatmaps depicted distinct metabolic patterns

between the cachectic and non-cachectic patients (Figure 4).

Additionally, the volcano plot, visualizing statistical significance (p-

value) versus magnitude of change (fold change), highlighted the

altered metabolites within and between the cachectic and non-

cachectic patients, with red denoting the up-regulated and blue

indicating the down-regulated metabolites (Figure 5). Overall, these

results provide robust evidence for a distinct metabolite profile

associated with the clinical manifestation of cancer cachexia.

Among significant metabolite alterations, the most noticeable ones

are yet unknown altered serum levels of erythronic acid and

glucuronic acid in human cancer cachexia (Figures 3-5). Moreover,

the volcano scatterplot outlines that erythronic acid showed the

highest magnitude of down-regulation and glucuronic acid the

highest magnitude of up-regulation among the significantly changed

metabolites between cachectic and non-cachectic patients (Figure 5).
Pathway analysis highlights global
metabolic changes in cancer cachexia

Noteworthy metabolic responses were observed when

subjecting these significant metabolites to the pathway analysis
TABLE 1 Continued

Cohort
Cachexia

No
Cachexia

P-
value

Medication

Diuretics3 7 (9) 5 (12) 0.754

Antibiotics (within ≤2 weeks)3 20 (25) 10 (24) 1.0

No Antibiotics (within
≥3 months)3 58 (75) 32 (76) 1.0
1Mean (standard deviation) [normal data distribution]; Welch two sample t-test applied to
compare groups.
2Median (quartile 1, quartile 3) [outside normal distribution]; Wilcoxon rank sum test applied
to compare groups.
3Count (percentage); Pearson´s Chi-squared test applied to compare groups.
BA

FIGURE 2

Exploratory multivariate statistical analysis. (A) Partial least square discriminant analysis (PLS-DA) score plots distinct clustering of cachectic (red) and
non-cachectic (green) cancer patients. (B) The PLS-DA model was evaluated for its validity using a random permutation test that involved 100
permutations. The plot generated after the test highlighted the best classifier (a red asterisk) with an R2 value of 0.69, indicating the amount of
variance explained by the model, and a Q2 value of 0.48, which indicated its predictive ability. A high R2 and Q2 value indicates good predictive
ability and confirms the validity of the PLS-DA model. The accuracy of the best model is summarized in an inset table, which includes Q2, R2, and
the number of components used in the model. “Comps” refer to the number of components.
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tool (MetPA), revealing compelling insights into metabolic

alterations within cachexia groups. Notably, the predominant

pathways implicated in these responses included aminoacyl tRNA

biosynthesis, valine, leucine, and isoleucine metabolism, glutathione

metabolism, valine, leucine, and isoleucine degradation, arginine

biosynthesis, alanine, aspartate, and glutamate metabolism,

phenylalanine, tyrosine, and tryptophan metabolism, glyoxylate

and dicarboxylate metabolism, glycine, serine, and threonine

metabolism, and arginine and proline metabolism. A detailed
Frontiers in Oncology 07
topology map illustrating the impact of metabolites on these

altered metabolic pathways is presented in Figure 6. This pathway

map delineates the matched pathways based on their p-values from

the pathway enrichment analysis and the pathway impact values

from the pathway topology analysis. Overall, the integrative

pathway analysis of the metabolite profile differences supports

global metabolic changes associated with the manifestation of

cachexia in cancer patients, predominantly affecting the amino

acid (AA), protein, and glutathione metabolism.
FIGURE 3

Box-and-whisker and dot plots showing significant differences in serum levels of specific metabolites between cachectic and non-cachectic cancer
patients. Specific significant metabolite differences were obtained after Tukey’s HSD and illustrated as normalized peak area differences. *P ≤ 0.05;
**P ≤ 0.01; *** P ≤ 0.0001 and all lower values.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1286896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


More et al. 10.3389/fonc.2024.1286896
Robust logistic regression model predicts
cancer cachexia with high accuracy

To account for potential combinatorial effects and interrelations

among metabolites in our dataset, we implemented a purely
Frontiers in Oncology 08
prediction-oriented simple logistic ML-based model for

binominal discrimination of cachexia states. Following the

training of the simple logistic ML model using a 10-fold cross-

validation strategy together with a meta classifier approach to make

base predictors cost-sensitive, the predictive ML-based models

achieved accuracy of 83.2% and an area under ROC value of

88.0% for the correct binominal discrimination of the samples

according to patients cachexia state (Figure 7). Influencing

predictors contributing to the correct binominal discrimination

comprised 10 non-annotable and 5 annotable metabolites; the

identifiable metabolites were erythronic acid, lactic acid, maltose,

methionine, and ornithine (Supplementary Table 2). Despite of a

small dataset and operations on subsamples through data splits

(training/test data), the purely data-driven ML model yielded high

predictive performance and identified erythronic acid as influencing

predictor variable. This supports ML-based technologies as valuable

tool for biomarker discovery, and indicates a benefit from taken

account for combinatorial effects and interrelationships among

metabolite alterations.
Discussion

Cachexia alters the cancer patient’s metabolism with deleterious

consequences, but the ability to understand and effectively treat

cachexia remains an unmet need in cancer medicine (1–6). We

pursued this by untargeted GC-MS-based metabolomics of

overnight-fasting serum samples from previously untreated

metastatic cancer patients presenting with and without cachexia

according to validated diagnostic criteria agreed upon by

international consensus (1–3). The cachectic patient group

displayed considerable variations in 38 metabolites, of which 19

annotable metabolites belonged to metabolic classes such as amino
FIGURE 4

Heatmap showing the 38 metabolites with significant differences in
serum level between cachectic and non-cachectic cancer patients.
Significant differences were determined by false discovery rate
(FDR)-corrected t-test p-values (FDR-corrected p < 0.05) to adjust
for multiple hypothesis testing. The colors from green to red
indicate increased metabolite concentration (normalized peak area).
FIGURE 5

Volcano plot displaying the distribution of significantly altered metabolites with identification in a group comparison between cachectic and non-
cachectic cancer patients. Red represents significantly up-regulated metabolites, blue represents significantly down-regulated metabolites, and grey
represents metabolites with no difference in comparative analysis between cachectic and non-cachectic cancer patients. Metabolites with a t-test p-
value less than 0.05 were selected, and the results were adjusted for multiple hypothesis testing using the false discovery rate (FDR).
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acids, sugars, fatty acids, organic acids, and amino sugar derivatives.

The significant differential 19 metabolites, mainly encompassing

sugars and amino acids, distinguished accurately the cachectic state

in both statistical and ML-based models. Pathway analysis found

several pathways to which the metabolites contribute in several

ways. To our best knowledge, this study is the first to report

decreased erythronic acid and increased glucuronic acid levels in

blood in human cancer cachexia. As discussed further, our work

broadens the metabolic cancer cachexia landscape and may provide

a resource for future study directions.

Elevated serum levels of glucose and fructose are the first

noticeable metabolic feature of our cachectic cancer patients.

Insulin resistance (IR) induced by the tumor upon the host is

commonly present in human cancer cachexia (27, 28). Fasting

hyperglycemia, as seen in our cachectic patients, also defines type

2 diabetes mellitus (T2DM) and is largely secondary to inadequate

action of the major glucose-lowering hormone insulin (28). IR

displays tissue-specific functional alterations in muscle, liver, and

adipose tissue, which are unable to mount a coordinated glucose-

lowering response, involving cellular uptake of glucose, suppression

of gluconeogenesis and lipolysis, and glycogen synthesis (29). In

cachectic cancer patients, the disturbed insulin-stimulated anabolic

fluxes may shunt substrates to support the tumor anabolism.

Tumors benefit from hyperglycemia, as they consume 200x more

glucose than normal tissues to generate energy (30). This process

termed anaerobic glycolysis (Warburg effect) produces large

quantities of lactate, which can be converted back to glucose via
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gluconeogenesis in the tumor itself (31) and/or in the liver via the

Cori cycle (32). These mechanisms, which maintain glucose supply

but avoid lactate acidosis, may be present in our cachectic cancer

patients, as they exhibited increased glucose but normal lactate

serum levels. Notably, IR is sustained by low-grade inflammation in

obesity (33), T2DM (34), and cancer cachexia (35), leading to some

overlap in metabolic programming (36). However, clinical

outcomes from testing the anti-T2DM drug metformin in anti-

cancer therapy have been disappointing (37). Moreover, IR-related

defects in obesity and T2DM are readily reversal by weight loss and

hypocaloric nutrition, whereas weight loss persists in cancer

cachexia despite hypercaloric nutrition. Therefore, future research

might focus on investigating tumor-induced mechanisms that

specifically sustain IR, glycemia, and fructose circulation in cancer

cachexia. Notably, fructose has emerged as an important driver of

both IR (38) and the Warburg effect in cancer cells (39). The

increased serum fructose signal found in this study supports the

inhibition of fructose-induced metabolic alterations as a reasonable

approach to reverse cancer cachexia (40).

The second noticeable serum profile alteration in cachectic

patients is the decrease of 13 circulating amino acids (AAs). As

cancer cachexia refers to a state with increased muscle protein

degradation and AA release into the blood circulation (41), this

uniform trend likely reflects a disproportional high AA

consumption. Tumors have high demands for AAs for energy

production and nucleotide, lipid, and protein synthesis needed for

tumor growth (42, 43). Especially glycine, serine, homocysteine, and

methionine needed for one-carbon metabolism and glutamine

needed for glutaminolysis are essential AAs to support tumor

metabolism (44–46). The decline of these 5 AAs in our cachectic

patients may point to increased one-carbon metabolism and

glutaminolysis in cachexia-associated tumors. The three
FIGURE 6

Topology map of altered metabolic pathways, which describes the
impact of metabolites selected from a comparative t-test (p-value <
0.05), adjusted for multiple hypotheses testing by false discovery
rate (FDR). The top ten altered metabolic pathways in the cancer
cachexia group are 1. aminoacyl tRNA biosynthesis, 2. valine, leucine
and isoleucine metabolism, 3. glutathione metabolism, 4. valine,
leucine and isoleucine degradation, 5. arginine biosynthesis, 6.
alanine, aspartate and glutamate metabolism, 7. phenylalanine,
tyrosine, and tryptophan metabolism, 8. glyoxylate and dicarboxylate
metabolism, 9. glycine, serine, and threonine metabolism, and 10.
arginine and proline metabolism.
FIGURE 7

ROC curve of predictive machine learning (ML) models (Simple
Logistics) for binominal discrimination between cachectic and non-
cachectic state. List below ROC curve shows the confusion matrix
and accuracy value of the model.
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branched-chain AAs (BCAAs: isoleucine, leucine and valine) are

carbon and nitrogen suppliers for energy demands and protein

synthesis and sustain the TCA cycle and lipogenesis by providing

acetyl-CoA, which is essential for histone acetylation and epigenetic

modification (47, 48). BCAA serum levels are increased in IR and

T2DM but decreased in several critical illnesses suggesting that the

lower cachexia-associated BCAA levels may reflect increased supply

to both tumoral and non-tumoral sites (e.g., immune cells

sustaining inflammation, hepatic gluconeogenesis) (49, 50). The

biological roles of the decreased AAs ornithine, proline, tyrosine,

lysine, and alanine are multifaceted. Ornithine helps convert toxic

ammonia to urea by the urea cycle and is a key substrate for excess

polyamine production in many cancers (51, 52). Proline is involved

in collagen and polyamine synthesis, tissue repair, and redox

reactions (53, 54). Tyrosine is a precursor of neurotransmitters

and a receiver of phosphate groups by way of protein kinases in

signal transduction and regulation of enzymatic activity (55). Lysine

plays roles in protein synthesis and structure, cross-linking of

collagen polypeptides, histone modification, immune response,

and tissue repair (56–58). Alanine, released into the bloodstream

from muscle proteolysis, serves as major AA for protein resynthesis

but also drives the glucose-alanine cycle (Cahill cycle), which

regenerates glucose from alanine via hepatic gluconeogenesis (59,

60). Notably, we found lower serum signals in 11 of the 20

proteinogenic AAs (non-proteinogenic: homocysteine, ornithine),

of whom 10 (all but lysine) could also act as substrates for

gluconeogenesis. Despite the differences in the metabolism of

individual AAs, the simultaneous decrease of AAs likely reflects

alterations in tumor-associated cachexia-causing pathways that

simultaneously affect all of them.

Altogether, cachectic patients exhibited 3 significantly elevated

(including glucose and fructose) and 16 decreased (mostly AAs)

circulating metabolites. The significance of the distinct metabolite

profile for distinguishing cachexia states is shown by the PLS-DA

model, which yielded distinct clusters with 85.6% accuracy, and

supported by ML-based models, which identified a metabolic

signature achieving 83.2% accuracy and an area under the ROC

value of 88.0%. Pathway analysis of the observed metabolite

variations indicated 10 metabolic pathways to be most

significantly involved in cancer cachexia. Among these, the

significance of aminoacyl-tRNA biosynthesis supports the crucial

role of protein biosynthesis (61, 62), whereas the affected

glutathione metabolism outlines the importance of detoxifying

and antioxidant processes (63, 64). Collectively, the 7 AA-related

metabolic pathways suggest that cachexia-associated tumors display

a dependency on AA metabolism. In line with the AA shortage, one

may consider AA deprivation to limit tumor anabolism or AA

supplementation to limit body catabolism. However, in the tumor-

bearing cachectic state, tumor anabolism overrides host catabolism,

and AA deprivation may rather exacerbate cachexia and AA

supplementation promote tumor growth (65). Instead, targeting

the metabolic rewiring behind distinct metabolite dependencies of

cachexia-associated tumors, but not normal tissues, may counteract

both cancer and cachexia. Metabolic reprogramming, a key

distinguishing cancer hallmark, includes unique demands for

glucose, fructose and AAs to fuel critical pathways needed for
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energy, biosynthetic, methylation, acetylation and reductive

metabolism to support tumor growth (28, 39, 66, 67). Commonly

affected components of metabolic reprogramming include the one-

carbon metabolism encompassing the folate and methionine cycles

(43, 44), glutaminolysis (45), anaerobic glycolysis (30), glutathione

metabolism (63, 64), the pentose phosphate pathway (68),

polyamine synthesis (69), extracellular matrix (ECM) modelling

(70), and protein glycolisation (71). Despite the influence of the gut

microbiome, diet, and genetics on the human blood metabolome

(72), many of the serum metabolite changes seen in our cancer

cachexia cohort hint towards a biochemical foundation in

overactivated cancer metabolism pathways in cachexia-associated

tumors. Understanding cancer cachexia as a cancer metabolism

syndrome would imply several novel means for pharmaceutical

intervention against cancer, and, by reducing the catabolic drive,

against cachexia (28, 39, 46, 62–74).

To our best knowledge, this study is the first to demonstrate a

link between decreased erythronic acid levels in blood and cancer

cachexia. The consistency of our FDR-corrected statistical tests

(highest downregulated metabolite) and ML-based analyses

(highest classifier importance) support the biological relevance of

this unanticipated finding. However, the factors influencing

circulating levels of erythronic acid are poorly characterized.

Elevated serum levels of erythronic acid have been found in

patients with transaldolase deficiency, which represents a defect

in the non-oxidative branch of the reductive pentose-phosphate

pathway (PPP) (75). Conversely, reduced erythronic serum levels

may reflect increased PPP activity in cancer cells to generate 5-

carbon sugars used in nucleotide, DNA and RNA synthesis and to

supply reductive NADPH to counteract oxidative damage and

support lipogenesis (68). The reduced levels of erythronic acid

may be also a result of scavenging reactions against hydroxyl

radicals in cachexic patients (76). Notably, erythronic acid is a

by-product of the degradation of N-acetylglucosamine (GlcNAc)

caused by reactive oxygen species (ROS) (77). Protein

GlcNAcylation is the most common posttranslational

modification of proteins by sugars, which affects numerous

cellular functions, including metabolic enzyme activities (78).

Serum erythronic acid levels may reflect alterations of the

synthesis and/or degradation of GlcNAc and/or protein

GlcNAcAcylation, which impacts metabolic programming in

cancer, including the direction of glucose into the PPP to support

tumor growth (79). However, further studies are required to assess

whether these hypothetical or other mechanisms influence

circulating levels of erythronic acid. Isotope-assisted

metabolomics approaches may be a starting point to explore the

currently unknown metabolism and turnover of erythronic acid in

cancer cachexia.

In the context of cachexia, to our knowledge, this study is also

the first to report increased levels of glucuronic acid in the blood.

Notably, population-based studies outline glucuronic acid as a

biomarker of all-cause mortality and healthspan-related outcomes

(80). Several mechanisms may contribute to circulating levels of the

glucose metabolite glucuronic acid, which participates in

detoxification processes and ECM modelling (81, 82). Firstly,

decreased glycosyltransferase activities, as seen in hepatic
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dysfunction, lead to decreased toxin-conjugation and, hence,

increased glucuronic acid and toxin levels in the bloodstream

(83). Secondly, cleavage of glucuronide toxin-conjugates by gut

microbial ß-glucuronidases can counteract glucuronidation and

hepatic-enteric detoxification and make deconjugated glucuronic

acid and toxins available for reabsorption into the bloodstream

(enteric-hepatic recycling) (84). Thirdly, human ß-glucuronidase,

which localizes primarily in lysosomes, leads to hydrolytic

liberation of glucuronic acid during the remodeling of the ECM

(85). Low-grade inflammation, a typical feature accompanying

cancer cachexia, can amplify the release of human ß-

glucuronidase into the bloodstream, where it cleaves

glucuronidated conjugates and contributes to circulating

glucuronic acid and toxin levels (80, 82, 86). In most clinical

scenarios, elevated glucuronic acid levels are likely the result of

increased ß-glucuronidase activity, ECM remodeling, inflammation

and/or cell death by concurrent disease (80–86). Recent drug

developments emphasize ECM normalizat ion and ß-

glucuronidase inhibition as novel strategies in anti-cancer

treatment (70, 87), which could also favorably affect the body´s

glucuronic acid, toxin-conjugation, and detoxification metabolism.

To bring the potential anti-cachexia effects of these anti-cancer

drugs into perspective, clinical trial designs may expand patient-

centered efficacy endpoints toward clinical benefits on symptoms

and quality of life to cancer patients suffering from cachexia (88).

For opening up new diagnostic and therapeutic options for

cancer cachexia, global metabolic changes and combinatorial effects

within metabolomics data are of particular interest. Pathway analysis

revealed protein and glutathione metabolism to be involved in cancer

cachexia. This correlates with previous work supporting sarcopenia as

important feature of cancer cachexia, including a deranged protein

metabolism, likely caused by mitochondrial dysfunction in cachectic

skeletal muscle tissue (1, 4, 65, 89). Disturbance in glutathione

metabolism, the most important detoxifying antioxidant system in

human tissues, has been shown to be implicated in increased

resistance and toxicity to anti-cancer therapy in cachectic cancer

patients (1, 4, 63, 64). Remarkably, purely data-driven ML models,

taking into account the combinatorial effects of altered metabolites,

yielded high performance for prediction of the cachexia state. The

metabolites contributing to ML-based prediction, namely erythronic

acid, lactic acid, maltose, methionine and ornithine, reveal intriguing

metabolic adaptations. Erythronic acid´s levels may be linked to

detoxification mechanisms involving GlcNAc and protein

GlcAcylation (76–78) and PPP activity (79). Lactic acid correlates

well with long-recognized resting energy expenditure in cancer

cachexia, which has been related to futile metabolic cycling

including an overactivation of the Cori cycle (7, 31, 32). Ornithine

and methionine contribute to the urea cycle, glutathione synthesis

with interconnection to one-carbon metabolism, and polyamine

production (44–46, 69, 90). Research on the relationship between

maltose and cancer cachexia is limited, necessitating further

investigation to establish potential connections. Overall, contrasted

to previous work in cancer cachexia research, we found well-known

(glucose, AAs), less-recognized, but potentially important (fructose,

maltose) and yet unknown (erythronic acid, glucuronic acid)

metabolite alterations. The metabolite profile as a whole points to
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global metabolic changes related to cancer cachexia, which are in part

long-recognized (e.g. altered glucose, protein, and glutathione

metabolism, IR-like state, activated Cori cycle), less-recognized but

potentially important (e.g., fructose and polyamine metabolism), or

yet unknown (e.g. PPP activation, GlcNAcAcylation, reduced

glucuronidation-based detoxification). The robust predictive

performance of ML-based models may impact on future research

directions and research methodologies. These findings point to a

stronger focus on combinatorial effects of metabolic changes that

collectively contribute to the development of cancer cachexia.

Further, they support ML technologies as valuable tool for

biomarker discovery. The validation of a common serum

metabolite biomarker panel for early detection of cancer cachexia

would provide tremendous advance in the design of clinical trials for

new preventive and/or therapeutic interventions (91).

Our study has limitations. First, we used BMI-adjustedWL as the

agreed and validated main diagnostic criterium of the internal

consensus-definition for cancer cachexia (1–3). The legitimacy of

applying this diagnostic criterium in our study cohort is supported by

several items representing other cachexia domains that are easily

applicable in clinical practice. However, future studies may benefit

from additional muscle mass measurements to better assess the role

of sarcopenia. Second, the case-control design using cancer patients

without cachexia as control isolates results to cachexia as opposed to

other phenomena associated with cancer. However, future research

may benefit from the inclusion of healthy controls to examine how

cancer affects early stages in the cachexia trajectory, which could

guide clinical trial designs focusing on prevention, rather than

treatment, of cachexia. Third, the serum metabolite profile was

assessed only once. This does not represent intra- and inter-day

variation of metabolites, which can confound signal detection in

metabolomics research. Fourth, covariables, such as diet, medication,

diabetes, patient-related factors and cancer type, may affect levels of

serummetabolites. There was almost equal distribution of covariables

without significant difference between the two patient groups

analyzed. Further, pooling samples minimized inter-individual

variation, making substantive findings easier to find (92). However,

covariables were not assessed in this cross-sectional single-center

study by downstream analysis to account for confounding effects. The

overall small sample size, the small subgroup sizes but high numbers

of metabolite features per sample, and the design-based constraints to

measure effect sizes of intra- and interindividual variation in our

dataset limited us to produce meaningful data in this respect. Further

larger-scale, multi-centric, and longitudinal designed studies in

independent patient populations, that include substantially

increased numbers for different cancer types and pay attention to

intra- and inter-day variation of serum metabolites, are needed to

explore confounding factors, variability of metabolite levels, trends of

metabolite level changes related to cancer cachexia progression over

time, and to verify the extent to which the findings presented here are

generalizable. Fifth, metabolome analyses of body fluids are

challenging. To obtain high-quality samples and reproducible

results, we applied a strict work-up according to recently published

guidelines (22) for sample collection, metabolite extraction, quality

control, GC-MS measurement, and data acquisition. Further, we

applied strict statistical and ML-based (e.g., 10-fold cross-validation,
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cost-sensitive base classifier) methods to control overfitting, false

discovery, and data misinterpretation. The consistent results obtained

by significance-based and prediction-oriented ML-based analyses

lend strengths to our findings. Finally, untargeted metabolomics is

limited by the ability to identify unknown metabolites. However, no

metabolomics approach can be completely comprehensive, and our

identified metabolite cluster has biological plausibility. However,

despite the aforementioned study limitations, we believe that our

dataset and especially our new findings may contribute to the

literature, may provide a resource for comparisons across patient

cohorts with cancer cachexia and/or other metabolic diseases, and

could stimulate future investigations in the field.
Conclusions

In conclusion, we newly describe altered serum levels of erythronic

acid and glucuronic acid as a characteristic feature of cancer cachexia,

potentially linked to intra-tumoral PPP activation and impaired body

detoxification. Further, we found a distinct serum metabolite profile of

cancer cachexia, with glucose, fructose and AAs being the most

disturbed metabolites. Some serum metabolite alterations could reflect

the supply of overactive metabolic pathways in cachexia-associated

tumors needed for energy, biosynthetic, epigenetic and reductive

metabolism. Additional studies connecting measurements from both

tumor and body metabolism may be an interesting direction to identify

actionable targets for distinct metabolic needs of cachexia-associated

tumors, but not normal tissues. Altogether, our findings broaden the

scope of metabolic vulnerabilities, dependencies and targets in cancer-

associated cachexia that can help define testable hypotheses about

mechanisms of action and/or design novel therapy approaches to

improve patient outcomes in an important field of cancer patient care.
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