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People’s Hospital), Dongguan, Guangdong, China, 2Artificial Intelligence and Smart Mine Engineering
Technology Center, Xinjiang Institute of Engineering, Urumqi, China, 3Department of Ultrasound, The
Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
Introduction: We aim to predict the pathological complete response (pCR) of

neoadjuvant chemotherapy (NAC) in breast cancer patients by constructing a

Nomogram based on radiomics models, clinicopathological features, and

ultrasound features.

Methods: Ultrasound images of 464 breast cancer patients undergoing NAC were

retrospectively analyzed. The patients were further divided into the training cohort

and the validation cohort. The radiomics signatures (RS) before NAC treatment

(RS1), after 2 cycles of NAC (RS2), and the different signatures between RS2 and RS1

(Delta-RS/RS1) were obtained. LASSO regression and random forest analysis were

used for feature screening andmodel development, respectively. The independent

predictors of pCR were screened from clinicopathological features, ultrasound

features, and radiomics models by using univariate and multivariate analysis. The

Nomogram model was constructed based on the optimal radiomics model and

clinicopathological and ultrasound features. The predictive performance was

evaluated with the receiver operating characteristic (ROC) curve.

Results: We found that RS2 had better predictive performance for pCR. In the

validation cohort, the area under the ROC curve was 0.817 (95%CI: 0.734-0.900),

which was higher than RS1 and Delta-RS/RS1. The Nomogram based on

clinicopathological features, ultrasound features, and RS2 could accurately

predict the pCR value, and had the area under the ROC curve of 0.897 (95%CI:

0.866-0.929) in the validation cohort. The decision curve analysis showed that

the Nomogram model had certain clinical practical value.

Discussion: The Nomogram based on radiomics signatures after two cycles of

NAC, and clinicopathological and ultrasound features have good performance in

predicting the NAC efficacy of breast cancer.
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1 Introduction

Breast cancer is the leading cause of cancer worldwide in 2020,

which has become the “world’s number one cancer”. Highly

aggressive breast cancer is difficult to treat and has a high

recurrence rate and poor prognosis (1, 2). At present,

neoadjuvant chemotherapy (NAC) is the standard treatment

regimen for breast cancer, which can effectively reduce tumor

volume and clinical stage (3). The efficacy evaluation of NAC

determines the individualized treatment plan. However, the

efficacy evaluation of NAC is still difficult at present.

The current efficacy evaluation methods for NAC mainly

include pathological evaluation and clinical evaluation.

Pathological evaluation is the gold standard for evaluating the

efficacy of NAC in breast cancer (4), but it has a lag, and cannot

provide timely guidance for clinical treatment. Ultrasound, as one

of the main clinical evaluation methods, is more frequently used in

NAC assessment than MRI and mammography (5). However,

ultrasound lacks quantitative parameters compared with other

imaging examinations.

In recent years, radiomics has shown potential advantages in

improving the precise diagnosis of breast cancers, assessment of

lymph node metastasis, and prognosis prediction (6). Ultrasound

imaging combined with radiomics can achieve a timely and

accurate quantitative assessment of the efficacy of NAC in breast

cancer (7). For the time point to evaluate the efficacy, one study has

shown that the use of pre-NAC ultrasound images of breast cancer

patients can more accurately predict the efficacy of NAC (8).

However, according to the Breast Cancer Diagnosis and

Treatment Guidelines by the Chinese Anti-Cancer Association,

the efficacy evaluation by ultrasound after two cycles of NAC has

significantly improved accuracy (9, 10). Another study reported

that if the efficacy was assessed as non-pathological complete

response (pCR) after two cycles of NAC, and then NAC was

replaced with other treatment regimens, the long-term prognosis

of patients was improved (11). However, there are few reports on

the use of ultrasound images after two cycles of NAC to predict its

efficacy. Breast cancer before NAC often presents all malignant

signs on ultrasound, while the malignant signs of breast cancer after

NAC often disappear completely on ultrasound, resulting in the fact

that breast cancers with different prognoses and curative effects

before and after NAC treatment often have the same ultrasound

signs (12, 13), and making it difficult to distinguish different

prognoses using ultrasound signs. Ultrasound radiomics can

extract more ultrasound signs that are invisible to the naked eye

and can provide more information than conventional

ultrasound (14).

Herein, we predicted the pCR of NAC in breast cancer patients.

The ultrasound radiomics of breast cancer before and after NAC

were extracted and their value in predicting pCR was analyzed.

Furthermore, a Nomogram was constructed based on

clinicopathological features, ultrasound features, and radiomics

models. Our findings may help clinicians to optimize the

individualized treatment for NAC patients promptly.
Frontiers in Oncology 02
2 Materials and methods

2.1 Patients

This study included patients who were diagnosed with breast

cancer and who were admitted to the Tumor Hospital of Xinjiang

Medical University between January 2018, and April 2022. The breast

cancer diagnosis was confirmed by surgery and pathology. Inclusion

criteria: (I) patients who had pathologically confirmed pCR or non-

pCR after NAC; (II) patients who only received complete NAC

therapy; (III) patients who underwent breast ultrasonography before

surgery and after two cycles of NAC. Exclusion criteria: (I) patients

with unavailable pathology results; (II) patients who did not complete

NAC; (III) patients with insufficient ultrasound image quality; (IV)

patients who had unilateral multifocal carcinoma. The flowchart of

patient enrollment is shown in Figure 1. The study was conducted

following the Declaration of Helsinki and approved by the ethics

committee of Tumor Hospital of Xinjiang Medical University

(approval number G-2023027). The written informed consent was

obtained from each patient.

We randomly assigned the finally enrolled 464 patients with

breast cancer into the training cohort (n=324) and the validation

cohort (n=140). In the training cohort, 84 patients had pCR and 240

patients had non-pCR. In the validation cohort, 40 patients were

with pCR and 100 patients were with non-pCR.
2.2 NAC and pathological evaluation of
NAC efficacy

Treatment regimens and schedules followed the National

Comprehensive Cancer Network (NCCN) guidelines. The NAC

regimen was based on anthracyclines and taxanes (15).

All patients underwent standard histopathological examination

to assess their response to NAC. The criteria for pCR were no residual
FIGURE 1

Flowchart of patient enrollment.
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invasive carcinoma in the specimen (residual ductal carcinoma in situ

may be present) and no lymph node involvement in the ipsilateral

sentinel lymph node or axillary lymph node.
2.3 Data collection

Clinical data collection included patient age, tumor types (e.g.,

invasive ductal carcinoma, invasive lobular carcinoma), presence of

vascular invasion (positive or negative), TNM staging (stages I, II, and

III), T staging [stages 1-4), N staging (stages 0-3), histological grade

(low grade (I, II) and high grade (III)], estrogen receptor (ER)

(positive or negative), progesterone receptor (PR) (positive or

negative), human epidermal growth factor receptor 2 (Her2)

(positive or negative), and Ki-67 expression (< 20% or ≥ 20%).

TNM staging adhered to the 2017 AJCC Eighth Edition TNM Staging

Standard for breast cancer. Ultrasound data collection encompassed

post-NAC tumor characteristics, such as shape (regular or irregular),

position (parallel or not parallel to the skin), margins (regular or

irregular), internal echo (homogeneous or non-homogeneous),

posterior echo (iso-echoic or weakened-echoic), calcifications

(coarse, fine, or none), distortion of surrounding structures

(distorted or not distorted), blood flow (internal type, peripheral

type, or none), breast background (fatty echo or fibrous echo), as well

as changes in the long and anterior-posterior diameters of tumor

before and after treatment (< 30% or ≥ 30%).
2.4 Ultrasound examination

Ultrasound examination was performed with GE Logic E9 with

the high-frequency linear array probe L-16-5. The ultrasound

images with the longest diameter were selected for analysis. Two

radiologists (with at least 10 years of experience in breast

ultrasound), who were blinded to the pathological findings,

delineated the region of interest (ROI) in the ultrasound images

by using Itk-Snap (version 3.8.0). The interclass correlation

coefficient (ICC) was used to assess the agreement of the feature

extraction between observers and within observers. Ratings of ICC

were assigned as follows: an ICC of less than 0.40 was considered

‘Poor’, 0.40–0.59 was labeled ‘Fair’, 0.60–0.74 was categorized as

‘Good’, and 0.74–1.00 was deemed ‘Excellent’.
2.5 Extraction of radiomics features

The flowchart of radiomics feature extraction and model

establishment is shown in Figure 2. In detail, the ultrasound

features were extracted from ultrasound images using the

PyRadiomics open-source tool (https://pyradiomics.readthedocs.io/

en/latest/index.html). The ultrasound images were processed using

the Wavelet filter. A total of 7 categories of features were extracted,

including 1) First Order Features; 2) Shape Features; 3) GLCM

Features; 4) GLSZM Features; 5) GLRLM Features; 6) NGTDM

Features; and, 7) GLDM Features. The radiomics signatures (RS) of
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ultrasound images before NAC (defined as RS1), and those after 2

cycles of NAC (defined as RS2) were obtained. The different

signatures between RS1 and RS2 were defined as Delta-RS/RS1.
2.6 Establishment and performance
evaluation of radiomics models

We used the PyRadiomics open-source tool (https://

pyradiomics.readthedocs.io/en/latest/index.html) to establish

radiomics models. Before the feature selection, the ICC was

calculated to ensure the repeatability and stability of features with

a threshold of 0.75. All signatures were normalized by the Z-score

method. Student’s test and Pearson correlation analysis were

performed. The Least Absolute Shrinkage and Selection Operator

(LASSO) was used to further screen the signatures, and according to

the Minimum Squared-Error criterion, the signatures with the

greatest correlation were selected. The Random Forest classifier

was used to analyze the key signatures for predicting pCR, and the

10-fold cross-validation was used to optimize hyperparameters,

thus improving model performance.

According to the calculation formula in the official

documentation of Radiomics, the Rad-score of each patient was

calculated as follows:

Rad − score = b0 + b1X1 + b2X2 + b3X3 +… + bnXn :

Xn represents the RSs after screening, b0 is the constant of the

Rad-score, and bn is the regression coefficient of the corresponding

RS in the regression model (16).

In detail, the formula for the Rad-score of RS1 was 0.301724 +

0.018033×original_glrlm_GrayLevelNonUniformityNormalized-

0.004469×original_ngtdm_Strength+0.004457×original_gldm_

SmallDependenceHighGrayLevelEmphasis+0.027550×wavelet-

LLH_firstorder_Mean+0.090245×wavelet-LHH_ngtdm_

Coarseness+0.043016×wavelet-HLL_firstorder_MeanAbsolute

Deviation+0.045260×wavelet-HLH_glcm_DifferenceVariance-

0.004468×wavelet-HLH_glszm_LargeAreaLowGrayLevelEmphasis

+0.015469×wavelet-HLL_glszm_ZoneEntropy+0.002321×wavelet-

HHL_ngtdm_Str eng th-0 .005785×wave l e t -LLH_g lcm_

ClusterShade-0.010428×wavelet-LLH_glcm_MaximumProbability.

The formula for the Rad-score of RS2 was 0.267241-

0.010622×original_glcm_ClusterShade-0.022649×original_glszm_

Smal lAreaHighGrayLeve lEmphas i s+0.048624×or ig ina l

_ngtdm_Strength+0.010071×wavelet-LLH_firstorder_Mean

+0 .022298×wave l e t -LLH_g l cm_Max imumProbab i l i t y

+0.100730×wavelet-LHH_ngtdm_Coarseness-0.005865×wavelet-

LHH_g l dm_Depend en c eNonUn i f o rm i t yNo rma l i z e d

+0.005142×wavelet-HLL_firstorder_Mean+0.027327×wavelet-

HHL_ngtdm_Strength+0.017414×wave le t -HHL_gl szm

_Z o n e P e r c e n t a g e + 0 . 0 4 0 3 5 8 ×w a v e l e t -HHL _ g l dm_

Sma l lDep enden c eEmpha s i s+0 . 0 20727×wav e l e t - LHL

_firstorder_10Percentile-0.051783×wavelet-LHL_glcm_Idn-

0.009552×wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasis-

0.001952×wavelet-LLH_glrlm_RunEntropy+0.057903×wavelet-

LLL_ngtdm_Coarseness+0.001388×wavelet-LLL_ngtdm_Contrast.
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The formula for the Rad-score of Delta-RS/RS1 was 0.301724 +

0.012994*original_firstorder_Minimum+0.015151*original

_glszm_ZoneEntropy+0.008663*original_ngtdm_Complexity-

0 .003557*wave le t -LHL_glcm_Imc2-0 .047644*wave le t -

LHL_g l cm_Max imumProbab i l i t y+0 .060348 *wave l e t -

LHH_glszm_SmallAreaEmphasis+0.017589*wavelet-LHH

_glszm_ZoneEntropy-0.000699*wavelet-LHH_ngtdm_Coarseness

+0.005423*wavelet-LLH_gldm_DependenceNonUniformity

Normalized+0.021508*wavelet-LHL_glszm_ZoneEntropy-

0.056111*wavelet-HLL_glszm_ZonePercentage+0.012303*wavelet-

HLL_glrlm_RunLengthNonUniformity+0.006602*wavelet-HHL

_firstorder_Kurtosis-0.011061*wavelet-HHL_glcm_Cluster

Prominence-0.061069*wavelet-HHH_glszm_ZonePercentage

+0.021748*wavelet-LLH_glcm_Idmn-0.039115*wavelet-

LLL_ngtdm_Coarseness.
2.7 Construction and performance
evaluation of radiomics nomogram

The Nomogram was constructed based on the optimal radiomics

model, and the significant clinicopathological features and ultrasound

features affecting pCR. The Nomogram and the radiomics model

were compared with the DeLong test. Decision curve analysis (DCA)

was used to calculate and compare the net benefit at different

threshold probabilities for the training and validation cohorts to

assess the clinical value of the radiomics model and Nomogram.
2.8 Statistical analysis

Statistical analysis was performed using Python (version 3.7)

and R language (version 4.2.0). The data of normal distribution and
Frontiers in Oncology 04
non-normal distribution were analyzed by t-test and Mann-

Whitney U test, respectively. Enumeration data were analyzed by

chi-square test. The significant clinicopathological features and

ultrasound features affecting pCR were screened with univariate

and multivariate analysis. The performance of each model was

assessed using receiver operating characteristic (ROC) curves. The

area under the ROC curve (AUC) was calculated. A two-tailed p-

value <0.05 indicated statistical significance.
3 Results

3.1 Clinicopathological and ultrasound
features of patients

A total of 464 patients were enrolled in this study. The

clinicopathological features and ultrasound imaging features of

the patients are shown in Table 1; Supplementary Table S1. In

both training and validation cohorts, the ER status, Her2 status,

vascular invasion, PR status, post-NAC posterior echo, percentage

of ultrasound length, delta height, and percentage of ultrasound

height were significantly associated with pCR (p<0.05). There was

no significant association between pCR and other features.

The significant clinicopathological and ultrasound features were

subjected to mult ivariate logist ic regression analysis

(Supplementary Tables S2, S3). The results showed that ER status,

PR status, Her2 status, post-NAC posterior echo, and percentage of

ultrasound height were all significantly associated with higher pCR

(p < 0.05). Patients with negative ER and Her2 or with Post-NAC

posterior echo of Weaken-Echoic and percentage of ultrasound

height ≥ 30% were easier to achieve pCR.
FIGURE 2

Flowchart of radiomics feature extraction and model establishment.
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TABLE 1 Baseline characteristics of the patients.

Characteristics

Training cohort Validation cohort

P-valuenon-pCR
(N=240)

pCR
(N=84)

P-value
non-pCR
(N=100)

pCR
(N=40)

P-value

Age, Mean (SD), years 48.8 (9.96) 46.9 (8.63) 0.306 47.2 (9.96) 48.8 (7.82) 0.662 0.768

NAC duration, Mean (SD), day 154 (78.9) 153 (55.5) 0.992 157 (88.8) 147 (24.1) 0.797 1

Tumor type 0.426 0.828 0.999

Invasive ductal carcinomas 214 (89.2%) 70.0 (83.3%) 87.0 (87.0%) 37.0 (92.5%)

Invasive lobular carcinoma 6.00 (2.5%) 1.00 (1.2%) 3.00 (3.0%) 0 (0%)

Others 20.0 (8.3%) 13.0 (15.5%) 10.0 (10.0%) 3.00 (7.5%)

Vascular invasion 0.0034 0.0347 0.680

Positive 62.0 (25.8%) 7.00 (8.3%) 31.0 (31.0%) 4.00 (10.0%)

Negative 178 (74.2%) 77.0 (91.7%) 69.0 (69.0%) 36.0 (90.0%)

Nerve invasion 0.329 0.739 0.865

Positive 28.0 (11.7%) 5 (6.0%) 12.0 (12.0%) 0 (0%)

Negative 212 (88.3%) 79.0 (94%) 88.0 (88.0%) 40.0 (100%)

TNM stage 0.966 0.388 0.095

I 22.0 (9.2%) 10.0 (11.9%) 10.0 (10.0%) 1.00 (2.5%)

II 88.0 (36.7%) 31.0 (36.9%) 46.0 (46.0%) 25.0 (62.5%)

III 130 (54.2%) 43.0 (51.2%) 44.0 (44.0%) 14.0 (35.0%)

T stage 0.552 0.478 0.912

1 53.0 (22.1%) 12.0 (14.3%) 27.0 (27.0%) 4.00 (10.0%)

2 106 (44.2%) 48.0 (57.1%) 47.0 (47.0%) 26.0 (65.0%)

3 45.0 (18.8%) 15.0 (17.9%) 15.0 (15.0%) 6.00 (15.0%)

4 36.0 (15.0%) 9.00 (10.7%) 11.0 (11.0%) 4.00 (10.0%)

N stage 0.0981 0.458 0.423

0 30.0 (12.5%) 23.0 (27.4%) 9.00 (9.0%) 7.00 (17.5%)

1 117 (48.8%) 31.0 (36.9%) 57.0 (57.0%) 24.0 (60.0%)

2 48.0 (20.0%) 14.0 (16.7%) 19.0 (19.0%) 2.00 (5.0%)

3 45.0 (18.8%) 16.0 (19.0%) 15.0 (15.0%) 7.00 (17.5%)

Histological grading 0.0023 0.719 0.298

Low grade invasive breast cancer
(Grade I, II)

129 (53.8%) 51.0 (60.7%) 40.0 (40.0%) 19.0 (47.5%)

High grade invasive breast cancer
(Grade III)

111 (46.3%) 33.0 (39.3%) 60.0 (60.0%) 21.0 (52.5%)

ER status <0.001 <0.001 0.554

Positive 179 (74.6%) 37.0 (44.0%) 72.0 (72.0%) 14.0 (35.0%)

Negative 61.0 (25.4%) 47.0 (56.0%) 28.0 (28.0%) 26.0 (65.0%)

PR status <0.001 0.0416 0.993

Positive 149 (62.1%) 25.0 (29.8%) 61.0 (61.0%) 15.0 37.5%)

Negative 91.0 (37.9%) 59.0 (70.2%) 39.0 (39.0%) 25.0 (62.5%)

(Continued)
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3.2 Screening and modeling of
radiomics features

Through radiomics feature extraction, 851 radiomics features

were screened from RS1, RS2, and Delta-RS/RS1, including 216

GLCM Features, 126 GLDM Features, 144 GLRLM Features, 144

GLSZM Features, 45 NGTDM Features, 162 First Order Features,

and 14 Shape Features. Before selection, the ICC for the 369 features

was >0.75, ensuring the repeatability of features. After screening by

LASSO regression analysis, the results showed that when l
was 0.008685 (Supplementary Figures S1A, B), 0.003393

(Supplementary Figures S1C, D), and 0.017575 (Supplementary

Figures S1E, F), the optimal models of RS1, RS2, and Delta-RS/RS1

could be obtained (Supplementary Figure S1).

A total of 12, 17, and 17 radiomics features with non-zero

coefficients from RS1, RS2, and Delta-RS/RS1 were obtained,

respectively (Supplementary Figure S2). Among the features with

positive correlation coefficients, the optimal features of Coarseness

(0.090245) and Difference Variance (0.045261) in RS1, Coarseness

(0.057903) in RS2, and Small Area Emphasis (0.060348) and Idmn

(0.021748) in Delta-RS/RS1 had the highest weight. Among the

features with negative correlation coefficients, the optimal features

of RS1 had a lower weight. IDN (inverse difference normalized)

(-0.051783) in RS2 had the highest weight. Additionally, among the

optimal features of Delta-RS/RS1, the features with the highest

weight were Zone Percentage [-0.060348 (wavelet-HH), -0.056111

(wavelet-HL)], and Maximum Probability (-0.047644).

For the comparison of Rad-Score, it was shown that there was

no significant difference in the Rad-score between the training

cohort and the validation cohort (p>0.05, Table 1). Further
Frontiers in Oncology 06
univariate analysis showed that the pCR in breast cancer patients

was closely related to the Rad-score (p<0.001, Table 1).
3.3 Prediction of NAC efficacy by
radiomics, clinicopathological, and
ultrasound models

ROC was used to assess the role of the radiomics models in

predicting the pCR status of breast cancer patients after two cycles of

NAC. The Delong test showed that the performance of the RS2

(AUCRS2 = 0.863) was higher than the RS1 (AUCRS1 = 0.739, p RS2 vs

RS1 = 0.002) but was no higher than Delta-RS/RS1 (AUCDelta-RS/RS1 =

0.850, p RS2 vs Delta-RS/RS1 = 0.682) in the training cohort (Figure 3A;

Table 2). In the validation cohort, the performance of the RS2

(AUCRS2 = 0.817) was higher than the RS1 (AUCRS1 = 0.799, p RS2

vs RS1 = 0.213) but was no higher than Delta-RS/RS1 (AUCDelta-RS/

RS1 = 0.748, p RS2 vs Delta-RS/RS1 = 0.689) (Figure 3B; Table 2).

The ROC curve evaluated the performance of clinicopathological

and ultrasound features in predicting pCR (Figures 3C, D). In the

training cohort, the AUC for clinicopathological and ultrasound

features was 0.832 (95%CI: 0.779-0.884). In the validation cohort,

the AUC for clinicopathological and ultrasound features was 0.862

(95%CI: 0.797-0.928).

We further evaluated the combined performance of

clinicopathological features, ultrasound features, and RS2 (C-U-R

model) and compared it with that of RS2 alone (Table 2). The results

showed that in the training cohort, the C-U-R model (AUCC-U-R

model = 0.902) had a better performance than the RS2 (AUCRS2 =

0.863, p C-U-R model vs RS2 = 0.005) for predicting pCR (Figure 3E). In
TABLE 1 Continued

Characteristics

Training cohort Validation cohort

P-valuenon-pCR
(N=240)

pCR
(N=84)

P-value
non-pCR
(N=100)

pCR
(N=40)

P-value

Her2 status <0.001 <0.001 0.662

Positive 49.0 (20.4%) 55.0 (65.5%) 20.0 (20.0%) 31.0 (77.5%)

Negative 191 (79.6%) 29.0 (34.5%) 80.0 (80.0%) 9.00 (22.5%)

Ki-67 status 0.067 0.824 0.584

< 20% 30.0 (12.5%) 3.00 (3.6%) 8.00 (8.0%) 2.00 (5.0%)

≥ 20% 210 (87.5%) 81.0 (96.4%) 92.0 (92.0%) 38.0 (95.0%)

Rad-score for RS1, Mean (SD) 0.229 (0.113) 0.365 (0.168) <0.001 0.228 (0.113) 0.394 (0.216) <0.001 0.941

Rad-score for RS2, Mean (SD) 0.188 (0.170) 0.490 (0.235) <0.001 0.192 (0.183) 0.470 (0.247) <0.001 0.967

Rad-score for Delta-RS/RS1,
Mean (SD)

0.205 (0.137) 0.465 (0.224) <0.001 0.196 (0.138) 0.397 (0.206) <0.001 0.36
fro
SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; Her2, human epidermal growth factor receptor 2; NAC, neoadjuvant chemotherapy; pCR, pathological complete
response; RS, radiomics signature.
The chi-square test or Fisher’s exact test was used for the nominal variable, and the Mann–Whitney test was used for the continuous variable with the abnormal distribution. A two-tailed p-value
<0.05 indicated statistical significance.
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the validation cohort, the C-U-R model (AUCC-U-R model = 0.885)

also had a better performance than the RS2 (AUCRS2 = 0.817, p C-U-R

model vs RS2 = 0.009) for predicting pCR (Figure 3F).
3.4 Construction and validation of
the nomogram

We constructed a Nomogram based on the C-U-R model. As

shown in Figure 4A, the item “Points” represented the corresponding

score of each variable. The calculated C-statistics of the Nomogram

was 0.897, indicating the model had high predictive power. In

addition, we used the Hosmer-Lemesow test to verify the

calibration curves of the training cohort (Figure 4B) and the
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validation cohort (Figure 4C), and the results showed that the

difference between the training cohort (p=0.50) and the validation

cohort (p=0.97) was not statistically significant. We further used the

DeLong test to compare the predictive power of the Nomogram and

the RS2 radiomics model, which showed that the difference between

the training cohort (p=0.005) and the validation cohort (p=0.009)

was statistically significant. Additionally, based on the Youden index,

the optimal critical score for the Nomogram was calculated as 71.742.
3.5 Clinical application of the
nomogram model

We further used the DCA to compare the Nomogram model

with the RS2 radiomics model (Supplementary Figure S3). With a
TABLE 2 Performance comparison of RS1, RS2, Delta-RS/RS1, C-U-R model radiomics models.

Training cohort Validation cohort

RS1 RS2 Delta-RS/RS1 C-U-R model RS1 RS2 Delta-RS/RS1 C-U-R model

AUC 0.739 0.863 0.850 0.902 0.748 0.817 0.799 0.885

Accuracy 0.787 0.830 0.806 0.861 0.793 0.829 0.779 0.857

Precision 0.721 0.762 0.712 0.795 0.667 0.731 0.620 0.767

Sensitivity 0.500 0.750 0.795 0.818 0.528 0.722 0.861 0.722

Specificity 0.873 0.835 0.780 0.873 0.856 0.817 0.606 0.904

Recall 0.352 0.546 0.477 0.659 0.389 0.528 0.361 0.639

F1-score 0.473 0.636 0.571 0.721 0.491 0.613 0.456 0.697

Youden Index 0.373 0.585 0.575 0.691 0.384 0.540 0.467 0.626
AUC, the area under the ROC curve; RS, radiomics signature; C-U-R, clinicopathological features, ultrasound features, and RS2.
B

C

D

E

F

A

FIGURE 3

ROC analysis of each radiomics model, clinical and ultrasound model, and C-U-R model. ROC analysis of RS1, RS2, and Delta-RS/RS1 radiomics
models in the training (A) and validation (B) cohorts. ROC analysis of clinicopathological features (clinical model), ultrasound features (ultrasound
model), and the combination of the two (C-U model) in the training (C) and validation (D) cohorts. ROC analysis of the C-U-R model and RS2 model
in the training (E) and validation (F) cohorts. C-U-R model, combined model of clinicopathological features, ultrasound features, and RS2; RS,
radiomic signature; AUC, area under the ROC curve.
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threshold probability greater than 0.3%, the Nomogram model or

RS2 benefited more than the “all-treated” or the “no-treatment”

regimen. When the threshold probability was greater than 26.2%,

the predictive ability of the Nomogram model was better than that

of the RS2 radiomics model.
4 Discussion

In this study, the performance of clinicopathological features,

ultrasound features, radiomics models, and Nomogram models in

predicting pCR was analyzed and compared. The results showed

that the Nomogram model was superior in predicting both the

energy efficiency and clinical net benefit of pCR in patients.
4.1 Predictive performance of
clinicopathological and ultrasound features

We found that the clinicopathological features had better

predictive value of pCR than ultrasound features. This study

showed that breast cancer with posterior echo attenuation had a

lower pCR rate. It is known that the pathological basis of

posterior echo attenuation is that the internal tumor stroma is

rich and densely arranged (17). Therefore, non-triple negative

breast cancer, which has rich tumor stroma, may have lower pCR

rates (18). NAC can induce necrosis and fibrosis of breast cancer

cells, leading to structure collapses (19). The change of the

anteroposterior diameter of the lesion is much greater than the

long diameter. Therefore, the larger change rate of the tumor

anteroposterior diameter after treatment also indicates that the

tumor necrosis rate is high, and it is easier to achieve pCR.

However, the value of conventional ultrasound in predicting pCR

by macroscopic signs is limited. Then, we tried to predict pCR by

combining RSs.
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4.2 Predictive performance of ultrasound
radiomics models

Ultrasound imaging presents several notable advantages

compared to other imaging modalities, including its wide

availability, cost-effectiveness, real-time nature, non-invasiveness,

and superior soft tissue resolution, which facilitates the accurate

capture offine structural details (20). Li et al. (21) utilized radiomics

extracted from FDG PET/CT imaging to predict pCR in 100 cases of

breast cancer patients who underwent NAC. Their retrospective

analysis revealed that the combined model of clinical features and

PET/CT imaging radiomics achieved an AUC of 0.958 in the

training set and 0.730 in the validation set, surpassing the

predictive accuracy of the clinical model. In addition, Liu et al.

(22) found through a multicenter study involving 586 cases of breast

cancer that the combined model of clinical features and

multiparametric MRI radiomics predicted the pCR of breast

cancer patients after NAC with significantly higher AUC

compared to the clinical model. These studies confirm that the

combined model based on imaging radiomics has high accuracy in

predicting the efficacy of NAC in breast cancer, indicating the

significant value of imaging radiomics in predicting the efficacy of

breast cancer NAC. This study, analyzing retrospectively 464 breast

cancer patients undergoing NAC, confirmed that the combined

model based on ultrasound imaging radiomics also had high

predictive efficacy for predicting the efficacy of breast cancer

NAC, markedly outperforming the clinical model and yielding

greater net benefits. Furthermore, we screened the RS1 and RS2,

respectively, and found that the feature with the highest weight was

Coarseness (0.090245/0.100730). Coarseness reflects the grayscale

difference between a central pixel or voxel and its neighbors, thereby

capturing the spatial rate of grayscale intensity changes (23). The

results of this study showed that for both RS1 and RS2, the

ultrasound images of patients with pCR had a lower rate of

spatial change and more uniform local texture, and this change
B CA

FIGURE 4

Development and performance of the nomogram. (A) Radiomics Nomogram was developed with vascular invasion, axillary lymph node metastasis,
posterior echo delta-height/pre-height, and RS2 for the prediction of the probability of pCR. The predictors are ER, Her2, PNPE, TPH, and RS2. A
vertical line was drawn from each predictor to ‘Points’ to get the score of the predictor. Then, the scores of each predictor were summed up. The
‘Total Points’ corresponded to the probability of pCR. Calibration curves of the model in the training (B) and validation (C) cohorts. The X-axis
represents the predictive probability; the Y-axis denotes the observed probability. The 45° “Ideal” line represents the perfect prediction of the
probability of pCR, and the “Bias-corrected” line indicates the prediction model of the nomogram. The closer the “Bias-corrected” line fits to the
“Ideal” line, the better the discrimination of the nomogram is. ER, ER status; Her2, Human epidermal growth factor receptor 2; PNPE, Post-NAC
posterior echo; TPH, Percentage of ultrasound length; RS, radiomic signature.
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was more obvious for RS2. In addition, the weight of IDN in RS2

was -0.051783, whereas it was not present in RS1. IDN is another

measure of the local homogeneity of an image. Unlike homogeneity,

IDN normalizes the difference between the neighboring intensity

values by dividing over the total number of discrete intensity values

(24). These results suggest that patients with pCR and non-pCR

have a larger difference in the local homogeneity of post-RS2

ultrasound images, which are not present in RS1. Meanwhile, the

weight coefficient of the signature Difference Variance in RS1 was

0.045261, while it did not have any weight in RS2, suggesting that

the effect of Difference Variance was diminished by NAC. The main

reason for the above differences is the high tumor heterogeneity and

disordered tumor cell arrangement before NAC treatment in breast

cancer (25, 26), which is reflected in the RSs of pixel grayscale and

texture inhomogeneity (27). After NAC treatment, patients with

pCR will have a higher necrosis rate of tumor cells, lower tumor

heterogeneity, and a uniform internal tissue structure, while

patients with non-pCR will have less tumor cell necrosis and high

tumor heterogeneity, which is not different than before treatment

(28, 29). Consistently, we also found that the homogenization of

texture feature was higher on ultrasound radiomics in patients with

pCR response than in patients with non-pCR.

In this study, we used RS1 and RS2 radiomics to construct a

radiomics model, and the best features selected included GLCM,

NGTDM, GLSZM, GLRM, GLDM, and First Order features.

Among them, GLCM and NGTDM features had the highest

proportion. Studies have shown that GLCM reflects the changes

in images and tumor heterogeneity by calculating the relative

distance between the image and a specific pixel and by calculating

the correlation coefficient of gray values in different directions (30–

33). However, there are few studies on NGTDM. In this study, six

types of texture features including GLCM, NGTDM, GLSZM,

GLRM, GLDM, and First Order features were enrolled, and it was

found that NGTDM and GLCM had similar weights. NGTDM

quantifies the difference between a gray value and the average gray

value of its neighbors within distance d (30–34). Here, when we

used NGTDM to evaluate the tumor ROI region, we also verified

that NGTDM could accurately reflect tumor heterogeneity, thereby

accurately predicting the NAC efficacy in patients.

In addition, we introduced a new radiomics model, Delta-RS/

RS1, representing the magnitude of changes in ultrasound

radiomics characteristics in breast cancer patients before and after

NAC treatment. We found that among the positive correlation

coefficients, the RSs with the highest weights were Small Area

Emphasis (0.060348), Idmn (0.021748), and Zone Entropy

(0.021508). Among the negative correlation coefficients, the RS

with the highest weights was Zone Percentage (-0.060348 (wavelet-

HH), -0.056111 (wavelet-HL)), followed by Maximum Probability

(-0.047644). There were significant differences in these RSs between

patients with pCR and non-pCR. In the positive correlation

coefficient, the magnitude of change in patients with pCR was

higher than that in patients without pCR. However, in the negative

correlation coefficient, the magnitude of change in patients with

pCR was lower than that in patients without pCR. The RS1, RS2,

and Delta-RS/RS1 models all showed high predictive value for NAC

response. However, the predictive value of RS2 and Delta-RS/RS1
Frontiers in Oncology 09
was better than that of RS1. These results indicate that the radiomics

model of breast cancer after two cycles of NAC can better predict

the efficacy of NAC than that of before NAC. Clinicians should pay

more attention to the radiomics characteristics of breast cancer after

two cycles of NAC to facilitate the prediction of NAC efficacy.
4.3 Predictive performance of the C-U-R
model and nomogram model

We further assessed the combined performance of the C-U-R

model. We found that the C-U-R model had higher predictive

performance for pCR than any single model. Then, we constructed

a Nomogram model based on clinicopathological features,

ultrasound features, and RS2. The Nomogram model showed

accurate predictive power (C-statistics=0.897) in predicting NAC

response. According to the Nomogram, after excluding RS2, the

features with the highest individual scores were the percentage of

ultrasound height ≥ 30% and negative ER status. We found that the

optimal critical score for the Nomogram was 71.742. The breast

cancer patients with a total score of > 71.742 were more likely to

achieve pCR after NAC. In recent years, the Nomogram prediction

model has been widely used in the clinic (33, 34). However, the

indicators included in the Nomogram model for predicting the

efficacy of NAC in breast cancer are confusing, and there is no

conclusion on the evaluation time point of NAC. The indicators

used for modeling in this study were more comprehensive, and the

evaluation time point of NAC was determined to be after 2 cycles of

NAC. Our results suggest that clinicians can comprehensively

evaluate the efficacy of NAC according to the patients’

Nomogram score, ER status, Her2 status, etc., thus making the

treatment strategy with the highest benefit to the patients.
4.4 Limitations

First, due to the individual differences of patients and to obtain

high-quality images, the parameters of each ultrasound instrument

during the examination were not unified. Therefore, different

parameters of ultrasound may affect the final performance of the

model. Secondly, the Delta-RS/RS1 was relatively new, and

validation on Delta-RS/RS1 is needed. Finally, this study is a

single-center retrospective study. Further multicenter studies are

needed to assess the reliability of the Nomogram model.
4.5 Conclusions

In summary, the Nomogram model was developed based on

clinicopathological features, ultrasound features, and RS2. The

Nomogram model had good prediction performance of pCR after

two cycles of NAC in breast cancer patients. Therefore,

conventional clinicopathological features, and breast ultrasound

features before NAC treatment and in the early stage of

treatment (after two cycles of NAC) combined with radiomics

can provide valuable prognostic information for predicting the
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efficacy of NAC in breast cancer and provide reference for making

treatment strategies.
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