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A novel approach for
segmentation and quantitative
analysis of breast calcification
in mammograms
Yunfei Tong1†, Jianrong Jiang2*†, Fang Chen2, Guanghua Guo2,
Chaoren Zhang1 and Tiana Deng1

1Shanghai Yanghe Huajian Artificial Intelligence Technology Co., Ltd., Shanghai, China, 2Mindong
Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
Background: Breast cancer is a major threat to women’s health globally. Early

detection of breast cancer is crucial for saving lives. One important early sign is

the appearance of breast calcification in mammograms. Accurate segmentation

and analysis of calcification can improve diagnosis and prognosis. However,

small size and diffuse distribution make calcification prone to oversight.

Purpose: This study aims to develop an efficient approach for segmenting and

quantitatively analyzing breast calcification from mammograms. The goal is to

assist radiologists in discerning benign versus malignant lesions to guide

patient management.

Methods: This study develops a framework for breast calcification segmentation

and analysis using mammograms. A Pro_UNeXt algorithm is proposed to

accurately segment calcification lesions by enhancing the UNeXt architecture

with a microcalcification detection block, fused-MBConv modules, multiple-

loss-function training, and data augmentation. Quantitative features are then

extracted from the segmented calcification, including morphology, size, density,

and spatial distribution. These features are used to train machine learning

classifiers to categorize lesions as malignant or benign.

Results: The proposed Pro_UNeXt algorithm achieved superior segmentation

performance versus UNet and UNeXt models on both public and private

mammogram datasets. It attained a Dice score of 0.823 for microcalcification

detection on the public dataset, demonstrating its accuracy for small lesions. For

quantitative analysis, the extracted calcification features enabled high malignant/

benign classification, with AdaBoost reaching an AUC of 0.97 on the private

dataset. The consistent results across datasets validate the representative and

discerning capabilities of the proposed features.

Conclusion: This study develops an efficient framework integrating customized

segmentation and quantitative analysis of breast calcification. Pro_UNeXt offers
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precise localization of calcification lesions. Subsequent feature quantification and

machine learning classification provide comprehensive malignant/benign

assessment. This end-to-end solution can assist clinicians in early diagnosis,

treatment planning, and follow-up for breast cancer patients.
KEYWORDS
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1 Introduction

According to the latest global statistics, breast cancer incidence

rates have risen over the last four decades. Breast cancer is the most

common cancer (1) and the second leading cause of cancer death

among women (2). Mammograms are one of the main methods for

detecting and screening breast cancer at an early stage. Although

there are many different types of breast lesions in mammograms,

calcification cannot be ignored. Calcification refers to the

accumulation of calcium deposits within female breast tissue and

is an indicator that appears in the initial stages of breast cancer and
02
is often associated with ductal carcinoma in situ and invasive

cancer. In mammogram, calcification is considered a primary

indication of malignancy. In screening programs, between 12.7%

and 41.2% of women are recalled for further evaluation due to

calcification lesions being the sole sign of potential breast cancer.

Analyzing calcification aids in determining the most appropriate

approach to patient management. Understanding the morphology,

size, and distribution of calcification is crucial in determining

whether they are MB (benign and malignant) and whether

additional imaging or biopsies are warranted. Figure 1 shows the

mammogram of a 57-year-old patient with breast cancer. In this
FIGURE 1

The mammogram of a 57-year-old patient with breast cancer. 1 is the patient’s right CC view, 2 is the yellow box in 1, and 3 is the expert-labeled
result of 2.
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figure, 1 is the patient’s right craniocaudal (CC) view, 2 is the yellow

box within 1, and 3 is the expert-labeled result of 2, where

calcification lesions are highlighted as white spots on the

mammogram. In breast tissue, calcifications smaller than 0.5 mm

are categorized as micro-calcification. While micro-calcification

lesions do not always indicate malignancy, their presence often

serves as an early warning sign of potential breast cancer.

In recent years, with the development of artificial intelligence

technology, the application of artificial intelligence has achieved

very good results in many fields (3–6). Computer-aided diagnosis

(CAD) in the medical field has also made many breakthroughs

based on artificial intelligence, including the brain (7–9), breast

(10), thyroid (11), and other parts of the body. CAD algorithms

have the potential to offer clinicians improved decision support for

early segmentation and analysis of breast calcification. CAD

algorithms founded on deep learning have demonstrated their

effectiveness and robustness in automating breast cancer analysis.

Image segmentation techniques are employed to segment

calcification lesions, and among the deep learning-based methods,

UNet (12) stands out as an efficient and robust medical image

segmentation technique. In recent years, UNet has served as the

cornerstone for nearly all leading medical image segmentation

methods. Its extensions, such as UNet++(UNetPlus)Zhou et al.

(13), V-Net (14), Y-Net (15), and TransUNet (16), have been at the

forefront of medical image segmentation.

However, considering that mammograms are typically large-

scale images whereas calcification lesions are notably small,

especially micro-calcification, the aforementioned methods often

face challenges, including an abundance of network parameters,

complex computations, and slow processing speeds. In calcification

process segmentation, issues like false positives and limited

accuracy are prevalent. As a result, some scholars have proposed

methods tailored to the unique characteristics of calcification (17–

21). Wang and Yang (17) developed a context-sensitive deep neural

network designed to simultaneously consider local image features of

calcification and the surrounding tissue background for calcification

detection. Marasinou et al. (19) proposed a deep learning method

based on Hessian matrix Gaussian difference regression, a two-stage

multiscale method for calcification segmentation. Valvano et al.

(18) proposed a two-stage deep learning method: first, extract

region proposals and then classify each region proposal. Hossain

(21) proposed a method consisting of multiple preprocessing stages

and then manually selected suspicious regions and fed them into a

trained UNet network. Zamir et al. (20) developed a strategy to

prioritize challenging pixels during the training phase to address the

false-positive calcification issue. These methods are generally

classified as CAD systems, which automatically flag suspicious

calcification lesions in mammograms. While current CAD

systems achieve high sensitivity, they also generate numerous

false-positive markers, increasing radiologist interpretation time.

Most breast calcification CAD systems primarily focus on

segmentation or detection of calcification, lacking in-depth

analysis of their features. They provide a visual observation but

fail to comprehensively analyze and quantify calcification

properties. To effectively assess the morphology, size, and

distribution of calcification, it is necessary to accurately segment
Frontiers in Oncology 03
calcification from mammograms. Accurate segmentation allows for

a more accurate quantitative description of the morphology, size,

and distribution of calcification.

Based on the characteristics of calcification lesions in mammogram

and the latest SOTA medical image segmentation algorithm UNeXt

(22), this paper proposes a Pro_UNeXt algorithm. Based on the UNeXt

algorithm, the Pro_UNeXt algorithm model first adds a micro-

calcification learning block at the network input, which can

effectively improve micro-calcification segmentation. The fused-

MBConv (23) and Tok-MLP modules are used instead of the

convolution module in the network, improving the model’s ability to

learn features and its operating speed. Based on the characteristics of

calcification, the focal loss (24) and Dice loss (25) are used as the loss

function in the first step of training, and then the Hausdorff distance

(HD) loss (26) is used to fine-tune the model trained in the first step to

improve the model’s ability to segment micro-calcification. Due to the

difficulty in labeling breast calcification data and that the image area

occupied by calcification is very small, effective data augmentation

(Aug) methods are used for the characteristics of calcification lesions.

These methods include cropping, original image scaling, Gaussian blur,

sharpening, grayscale transformation, affine transformation, grayscale

histogram transformation (27), and calcification copy and paste (28).

As one of four common breast lesions, calcification is

inseparable from breast cancer. To analyze the characteristics of

calcification lesions, quantitative analysis is conducted on

segmented calcification lesions. First, the quantitative

characteristics of each mammogram is quantified. Including the

number, density, size, area, distribution, calcification clusters,

perimeter, roundness, long side, rectangularity, length–width

ratio, and perimeter ratio. Then, the machine learning method is

used to classify the MB.

In this paper, the problem of calcification segmentation and

quantitative analysis is investigated. The proposed algorithm can

not only reduce the calculation overhead and operation cost but also

accurately segment micro-calcification. This paper presents a rapid

calcification lesion segmentation algorithm that combines deep

learning and breast calcification features. At the same time,

machine learning methods were used to analyze the quantified

calcification lesions. The method can help doctors conduct more

effective analyses, assist doctors in film reading, and reduce errors.
2 Method

Based on the characteristics of calcification, this paper proposes

a novel and comprehensive breast calcification lesion segmentation

and analysis scheme. As shown in Figure 2, the scheme consists of

three modules: segmentation, feature quantification, and feature

analysis. The first is the calcification lesion segmentation module.

The module designs a Pro_UNeXt algorithm with high accuracy

and good performance based on the characteristics of calcification.

Next is the calcification lesion feature quantification module and

visualization. As one of the most common breast lesions, knowledge

of the morphology, size, and distribution of calcification by the

radiologist can help determine the extent of the lesion. According to

the daily working habits of radiologists, we quantified the
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characteristics of the calcification segmented in the first step,

including quantity, shape, size, density, peripheral density, cluster,

and blurriness. The quantification results inform radiologists about

various features, reducing the risk of oversight and facilitating

analysis comparisons of feature changes. Finally, the calcification

feature analysis module employs the machine learning algorithm to
Frontiers in Oncology 04
classify quantified features, providing a comprehensive assessment

of lesion MB.

To obtain the first step of calcification lesion segmentation

model, the calcification lesion processing process as shown in

Figure 3 is designed. Mammograms with only calcification lesions

were first collected and annotated by two junior radiologists. If the
FIGURE 3

Flowchart for segmentation and quantitative analysis of mammographic calcification lesion.
FIGURE 2

Segmentation and quantitative analysis flowchart of breast calcification in mammograms.
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Dice coefficient of the data annotated by junior radiologists was

less than 95%, it was considered a discrepancy. If there was

discrepancy between the two, it was corrected by a senior

radiologist. The datasets involved in this article were all

annotated and checked by radiologists. The annotated data were

divided into a training set and a test set at the ratio of 4:1. Since

breast calcification lesions are localized, the training and test sets

were cropped to the size of 512 × 512 pixels. To reduce

calcification on the edges of image, the overlap rate between

cropped images was 20%. As shown on the left side of Figure 3,

the model training process includes cropped, Aug, model

parameter design, model training, loss function calculation, and

fivefold cross-validation. The optimal models for the five

validation sets were obtained through loop iterations, with each

model being trained for 200 iterations. As shown on the right of

Figure 3, the test set after cropping was segmented with five train

models. The segmentation results were stitched together to obtain

a map of calcification lesions for each mammogram. The Dice,

specificity (SPE), recall, and intersection over union (IoU) (29) of

the models were calculated to evaluate the segmentation models.

Finally, the segmentation results were quantified and analyzed. To

highlight the superior calcification segmentation performance of

the algorithm in this study, comparable algorithms were employed

using the same dataset and procedures. This was done to ensure

the effectiveness of the algorithm. The annotation method

employed in this article involves utilizing the labeling functions

within the 3D Slicer software (30), specifically the level tracing

feature found in the Segment Editor module. This entails setting

constraints on the density range of calcifications and then clicking

on the center of the calcification, thereby enabling the acquisition

of the boundary of the calcified region.
2.1 Data Aug

According to the calcification characteristics, the Aug methods

were as follows: cropping, original image scaling, Gaussian blurring,

sharpening, grayscale transformation, affine transformation,

grayscale histogram transformation, and copy and paste. In this

paper, the original image was directly scaled and then cropped,

which can improve the micro-calcification detection ability of the

model. Image blurring and grayscale transformation can improve

the segmentation of high fibrous density and fuzzy micro-

calcification lesions. The copy and paste strategy is based on

copying the calcification points in an image, counting the number

of connected domains, selecting the connected domains using a

random ratio (0 to 1), and then pasting them into other images.

This method not only increases the number of annotated

calcification points but also enhances the performance of model.
2.2 UNeXt algorithm

The UNeXt algorithm is a convolutional multilayer perceptron

(MLP) (31)-based image segmentation network. It is designed with

an early convolution stage and a latent-stage MLP stage. The early
Frontiers in Oncology 05
convolution stage is responsible for extracting low-level features

from the input image, whereas the latent-stage MLP stage is used for

modeling the representations.

One of the key components of UNeXt is the tokenized MLP (32)

block. This block effectively tokenizes and projects the convolutional

features and uses MLPs to model the representations. The tokenization

process involves dividing the input into non-overlapping patches and

flattening each patch into a 1D vector. These vectors are then projected

into a higher dimensional space using a linear transformation. The

projected vectors are then fed into the MLPs for further processing.

UNeXt changes the channel of the input when entering the MLP to

focus on learning local dependencies and improving the segmentation

ability of object edges. Using tokenized MLP in the latent space not

only reduces the number of parameters and computational complexity

but also produces better representations to help segmentation. To

further enhance the performance, channel shuffling is proposed before

feeding the input into the MLPs. This allows the network to focus on

learning local dependencies, which are crucial for image

segmentation tasks.

Similar to UNet, the network also includes skip connections

between the encoder and decoder at all levels. Compared with the

current medical image segmentation architecture, UNeXt has 72

times fewer parameters, 68 times less computational complexity,

and 10 times faster inference, while achieving better segmentation

performance than state-of-the-art medical image segmentation

architectures. This makes UNeXt a promising solution for real-

time, fast image segmentation tasks in clinical applications.
2.3 Pro UNeXt algorithm

Combining the characteristics of breast calcification lesions, this

paper proposes the Pro_UNeXt algorithm based on UNeXt. The

Pro_UNeXt medical image segmentation is shown in Figure 4. Our

algorithm adopts a UNet architecture consisting of an encoder and

a decoder. The encoder comprises one convolutional block

(orange), four fused-MBConv (23) blocks (blue), and two

tokenized MLP blocks (purple). The decoder contains two

tokenized MLP blocks (purple) and four convolutional

blocks (orange).

In the encoder part, the first convolution block(orange) is not

downsampled to achieve maximum retention of the micro-

calcification features. To learn micro-calcification features, each

image is fed into the first convolution block with 64 channels and a

step of 1. After the first convolutional block (orange), the next 4

blocks of the network are fused-MBConv blocks (blue). To learn

image features more accurately, the convolutional kernel in the

encoding process is fused-MBConv. Fused-MBConv, compared

with traditional convolutions, excels in parameter efficiency,

feature adaptability with Squeeze-and-Excitation (SE) (33) blocks,

reduced computational load, and suitability for resource-

constrained environments. Its efficiency and versatility make it

valuable in deep learning models, leading to improved accuracy

in computer vision tasks, particularly in mobile and embedded

applications. The last two blocks are tokenized MLP blocks

(purple). The tokenized MLP block efficiently tokenizes and
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projects convolutional features into a higher-dimensional space,

enabling the network to capture complex patterns. It focuses on

local dependencies and reduces parameters and computational

complexity, making the network more efficient for real-

time applications.

The decoder part contains two tokenized MLP blocks (purple)

and four convolutional blocks (orange) from bottom to top. In

addition to the first micro-calcification convolutional block

(orange), each other encoder block reduces the feature resolution

by 1/2, and each decoder block increases the feature resolution by a

factor of 2.

The other parameters of our algorithm are as follows: the input

image size is fixed at 512 × 512, where the numbers of parameters in

each channel layer of the encoding process are 64, 64, 128, 256, 512,

1,024, and 2,048 and the numbers of decoding parameters are 2,048,

1,024, 512, 256, 128, and 64. The network structure is an encoder–

decoder architecture with two phases: (1) convolution phase and (2)

tokenized MLP phase.

Convolution phase: This phase comprises both normal

convolution blocks (orange) and fused-MBConv blocks (blue).

Each normal convolution block includes a convolutional layer, a

batch normalization layer, and a ReLU activation layer. The

convolutional layers employ a kernel size of 3 × 3 with a stride of

1 and padding of 1. The fused-MBConv convolutional block

comprises a 1 × 1 convolutional layer, a Squeeze-and-Excitation

(SE) layer, and 3 × 3 convolutional layers. Within the encoder, the

convolution block incorporates a maximum pooling layer with a

pooling window of 2 × 2. Conversely, the convolution block

within the decoder is composed of transposed convolutions.

These convolutions act as learnable upsampling modules,

enhancing the capacity for learnable parameters and improving

boundary detection.

Tokenized MLP phase: First, the features are shifted and

projected into tokens. Then, these tokenized blocks are passed to

the shifted MLP (across the width). Next, the features are passed

through the depthwise convolutional (DWConv) (34) layer.

DWConv is used for two reasons: (1) It helps encode the

positional information of the MLP features. (2) It uses fewer
Frontiers in Oncology 06
parameters compared with regular convolutions. The layer is then

activated using the Gaussian Error Linear Unit (GELU) (35), which

is a smoother alternative to the Rectified Linear Unit (ReLU) and

has better performance. Afterward, the features are passed through

another moving MLP (across height), and the original token blocks

are connected using a residual structure. Finally, the application

layer is normalized, and the output features are passed to the

next block.

In summary, our Pro_UNeXt algorithm has three advantages:

(1) The use of a micro-calcification learning block at the input to

focus on detecting small lesions. (2) Replacing standard convolution

blocks with fused-MBConv and Tok-MLP to improve feature

learning and speed. (3) Increasing network channels for enhanced

representation capacity.
2.4 Loss function

In deep learning, the loss function is used to measure the gap

between the model’s prediction results and the real results. Our goal

is to minimize the loss so that the model’s predictions become more

accurate. In this paper, three loss functions are used to train the

model: focal loss, Dice loss, and HD loss. The focal loss is a loss

function that handles imbalanced sample issues. The Dice loss is a

metric used to evaluate the similarity of two samples and is

currently widely used in medical image segmentation. The HD

loss is a boundary-based metric commonly used to segment small

target. However, when the HD loss is used alone to train a neural

network, training instability may occur. Therefore, in this paper, the

focal loss + Dice loss combination is first used as the loss function

for initial training, and then the HD loss is used to fine-tune the

trained model to obtain better performance.
2.5 Statistical analysis method

For feature analysis of medical image segmentation, radiomics

is most commonly used. However, radiomics is not applicable for
FIGURE 4

Image segmentation algorithm Pro_UNeXt network structure.
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breast calcification lesions. Therefore, in this paper, other methods

were used to learn the characteristics of calcification lesions.

Figure 5 shows a partial interception of a mammographic

calcification image (left), the calcification annotations (middle),

and a table of quantitative features for the calcification (right).

The MB in the statistical results is provided by pathological

analyses. The calc_num indicates the number of calcification. The

density represents the average density of calcification. The

density_32 is the average density within a 32-pixel field

surrounding each calcification. The density_8 is the average

density within an 8-pixel field. The size_10 is the number of

calcification less than 10 pixels. The size_10_30 is the number of

calcification with sizes between 10 and 30 pixels. The size_30 is the

number with sizes above 30 pixels. The calc_area indicates the

total area of calcification. The suffixes _l, _m, and _s represent

relative size categories. For example, density_l, density_m, and

density_s indicate high-, medium-, and low-density calcification

respectively. length_l, length_m, and length_s denote calcification

with high, medium, and low aspect ratios. The clu_num,

clu_max_num, and clu_max areas represent the number of

clusters, number of calcification in the largest cluster, and area

of the largest cluster. clu_Density_l, clu_Density_m, and

clu_Density_s denote the number of high-, medium-, and low-

density calcification within clusters. perimeter_s, perimeter_m, and

perimeter_l indicate calcification with small, medium, and

large perimeters. round_s, round_m, and round_l represent

different roundness levels. long_l, long_m, and long_s denote

different lengths of the long side of approximated rectangles.

rectangularity_l, rectangularity_m, and rectangularity_s represent

different rectangularity levels. lenratio_l, lenratio_m, and lenratio_s

indicate different perimeter ratios. The statistical method for

identifying calcification clusters is as follows: First, a dilation operator

with a 16 × 16 all-one matrix is applied on the segmented image. This

connects adjacent calcification points into connected domains. If the

number of calcification points in a connected domain is greater than 5, it

is considered a calcification cluster. As shown in Figure 5, two

calcification clusters are highlighted within the red circles.

To help doctors accurately judge patients’ MB, machine

learning algorithms are used to analyze quantitative features,

including decision tree (DTs) (36), logistic regression (LR) (37),
Frontiers in Oncology 07
support vector machines (SVMs) (38), K nearest neighbors (KNN)

(39), random forests (RFs) (40), XGBoost (XGB) (41), and

AdaBoost (42). The relationship between quantitative features

and MB is established by the machine learning algorithm. It can

provide more accurate digital services for clinics and help doctors

make more accurate judgements. It is also of great significance for

retrospective comparisons of patient follow-up.
2.6 Evaluation method

For the evaluation of calcification segmentation, the Dice

(Equation 1), recall (Equation 3), SPE (Equation 2) and IoU

(Equation 4) are used. These metrics are commonly employed in

the evaluation of machine learning models, particularly in image

segmentation. They provide valuable insights into different aspects

of a model’s performance, such as its ability to correctly identify

positive and negative instances, and the degree of overlap between

predicted and true positive regions. The formula is as follows:

Dice =  2TP=(2TP + FP + FN) (1)

SPE  =  TN=(TN  +  FP) (2)

Recall  =  TP=(TP  +  FN) (3)

IoU  =  
TP

TP  +  FP  +  FN
(4)

where TP is the true positive, TN is the true negative, FP is the

false positive and FN is the false negative.

The 95% confidence interval provides a range of plausible values

for a parameter estimate, conveying the level of uncertainty

associated with the estimate. The p-value helps assess the strength

of evidence against a null hypothesis in hypothesis testing, guiding

the decision to accept or reject the null hypothesis based on a

predetermined significance level (commonly 0.05). The ROC curve

is a graphical representation used to evaluate the performance of a

binary classifier. It is a plot of the TP rate against the FP rate at

different classification thresholds. The AUC is the area under the

ROC curve and is used as a metric to measure the performance of a
FIGURE 5

A partial interception of mammographic calcification (left), calcification annotations (middle), and quantitative features table of calcification(right).
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binary classifier. It ranges from 0 to 1. The higher the AUC is, the

better the classifier performance.
3 Image segmentation results

3.1 Experimental conditions and
the dataset

To train and test our model, we used one public dataset and one

private dataset. The DDSM (43) is a public dataset created by

medical institutions in the United States. We manually screen

DDSM data with calcification lesions. A total of 401 benign and

358 malignant cases with calcification lesions were collected in the

public dataset. The private dataset was provided by Mindong

Hospital Affiliated with Fujian Medical University. As shown in

Table 1, there were a total of 178 cases of mammograms, including

76 cases of malignant (average age 50.5) and 102 cases of benign

(average age 47.9). The benign and malignant are generated by

histopathology. The table includes age, breast density, and BI-RADS

distribution. Their P values are 0.18, 0.27, and 0.69, respectively. It

shows that there is no significant difference between benign and

malignant data. Due to certain differences between the two datasets,

both datasets were independently tested and trained, without cross-

validation between them.

The parameters of ourmachine areWindows 10Gen Intel(R) Core

(TM) i7-11700K @ 3.60 GHz, 32 GB of memory, and 16 GB of

graphics card A4000 memory. The private dataset acquisition machine

is a GE full digital mammogram machine, which can display micro-

calcification lesions less than 0.1 mm, and the single pixel is 0.068 mm.

The data annotation software used was 3D slicer (30).
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3.2 Image segmentation results

To verify the effectiveness of the segmentation algorithm, two

datasets are used for testing: DDSM and a private dataset. Our

algorithm is compared with classical algorithms: UNet, UNetPlus,

and UNeXt, where UNet and UNetPlus use ResNet (44) and

EfficientNet (45), respectively, as the backbone. The models of the

comparison algorithm and Pro UNeXt+Aug+Loss are the result of

optimization with Aug and loss functions.

3.2.1 DDSM dataset results
As shown in Figure 6, we selected the CC view image of the patient

P-01108 in the DDSM, and the pathological result was malignant. The

area in the light blue box is compared for different segmentation

algorithms. Cut is the cropping image of the light blue box, and GT is

the binary image of the cropping area marked by the imaging doctor.

Others are segmentation results of different algorithms. the Dice

scores of different segmentation algorithms in this image were

as follows: UNet+ResNet: 0.77; UNet+EfficientNet: 0.80;

UNetPlus+ResNet: 0.78; UNetPlus+EfficientNet: 0.76; UNeXt_S: 0.57;

P UNeXt: 0.76; UNeXt_L: 0.75; Pro_UNeXt: 0.76; Pro_UNeXt+Aug:

0.82; and Pro_UNeXt+Aug+Loss: 0.94. GT is the ground truth of the

manual annotation. By observing the red circles, we found that the

UNeXt series of algorithms missed a lot of micro-calcification lesions.

However, Pro_UNeXt, which adds amicro-calcification learning block,

has a stronger detection ability for micro-calcification and muddy

calcification. Compared with the UNet series algorithm, the

Pro_UNeXt algorithm performs better in details.

As shown in Table 2, we tested different algorithms on the

DDSM dataset. After the optimization with Aug and loss functions,

Pro_UNeXt+Aug+Loss achieved the highest Dice score of 0.823
TABLE 1 General clinical characteristics of the private dataset.

Characteristics Total Malignant Benign P value

Mean age 49.0 50.5 47.9

Age range 23-85 27-85 23-67 0.18

Breast density 0.27

Almost entirely fatty 8 (4.5%) 2 (2.6%) 6 (5.9%)

Scattered densities 21 (11.2%) 7 (9.2%) 14 (13.7%)

Heterogeneous dense 131 (73.6%) 56 (73.7%) 75 (73.5%)

Extremely dense 18 (10.1%) 11 (14.5%) 7 (6.9%)

BI-RADS classification 0.69

II 35 (19.7%) 0 (0%) 35 (34.3%)

III 29 (16.3%) 5 (6.6%) 24 (23.5%)

IVa 48 (27.0%) 11 (14.5%) 37 (36.3%)

IVb 26 (14.6%) 20 (26.3%) 6 (5.9%)

IVc 23 (12.9%) 23 (30.3%) 0(0%)

V 17 (9.5%) 17 (22.4%) 0(0%)

Total 178 76 102
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(95% CI 0.747–0.901). Compared with the algorithm without Aug

and loss function optimization, the Dice score increased from 0.794

(95% CI: 0.703–0.865) to 0.823 (95% CI: 0.747–0.901). The Dice

score of Pro_UNeXt+Aug+Loss is 0.060 higher than that of the

UNeXt series algorithms and 0.006 higher than that of the UNet

series algorithms. Regarding other metrics, the Pro_UNeXt

algorithms also showed excellent performance and obtained the

optimal Dice of 0.823, IoU of 0.665, and SPE of 0.999. The recall is

0.01 lower than that of the best UNet+EfficientNet algorithm. The

Pro_UNeXt algorithm only requires 7 ms to process a single 512 ×

512 image, which is 3 ms slower than the original UNeXt.

Compared with the speeds of the UNet and UNetPlus algorithms,

the speed of Pro_UNeXt is more superior. Since the area occupied

by calcification is very small relative to the entire image, the SPE of
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all algorithms is close to 1. After comparison, it is not difficult to see

that our algorithm not only has better speed but also has the best

performance in calcification segmentation.

3.2.2 Private dataset results
Figure 7 shows a malignant case in private dataset containing

only calcification lesions with indistinct margins. The first on the

left is the CC view of the patient, where the area in the light blue box

is compared for segmentation. The second on the left is the result of

the pro_UNeXt+Aug+Loss, where green is the segmented

calcification point. Others are Cut image, GT, and segmentation

results of different algorithms. As shown in Figure 7, our algorithm

has better performance in terms of both missed segmentation and

edges, especially micro-calcification. Figure 8 presents a benign case
FIGURE 6

The first on the left is the CC view of the patient, where the area in the light blue box is compared for segmentation effect. Others are cut image,
GT, and segmentation results of different algorithms.
TABLE 2 The segmentation results of different algorithms tested in the DDSM dataset.

Model Dice (95%CI) IoU SPE Recall T(ms)

UNet+ResNet 0.786 (0.673-0.895) 0.597 0.998 0.809 14

UNet+EfficientNet 0.817 (0.706-0.892) 0.642 0.998 0.837 19

UNetPlus+ResNet 0.788 (0.687-0.861) 0.549 0.999 0.819 20

UNetPlus+EfficientNet 0.809 (0.734-0.866) 0.647 0.999 0.772 27

UNeXt_S 0.763 (0.699-0.841) 0.581 0.999 0.743 3

UNeXt 0.749 (0.657-0.817) 0.559 0.998 0.806 4

UNeXt_L 0.728 (0.603-0.811) 0.557 0.999 0.717 19

Pro_UNeXt 0.794 (0.703-0.865) 0.626 0.998 0.802 7

Pro_UNeXt+Aug 0.817 (0.723-0.896) 0.644 0.999 0.813 7

Pro_UNeXt+Aug+Loss 0.823 (0.747-0.901) 0.665 0.999 0.827 7
Bold numbers represent the optimal metric results.
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in the Private dataset with macro-calcification. For this type of

macro-calcification, our algorithm achieved the highest Dice score

of 0.921, with most algorithms attaining Dice scores in the range of

0.88 to 0.91. From the two figures, we can see that in the private data

set, our algorithm has better segmentation of muddy calcification,

micro-calcification, and macro-calcification and has almost no

false positives.

We conducted experiments on the test set in private dataset.

Segmentation performance is presented in Table 3. The Pro UNeXt

algorithm achieved a Dice score of 0.811 (95% CI 0.737–0.892),
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outperforming other methods. After optimization with Aug and

loss functions, the Pro UNeXt+Aug+Loss model improved the Dice

score to 0.838 (95% CI 0.769–0.911). The Pro_UNeXt algorithm

was 0.057 better than the UNeXt series algorithm. It was also 0.028

better than the UNet series algorithm. Additionally, Pro_UNeXt

demonstrated superior IoU, specificity, and recall versus all other

segmentation algorithms.

In this section, we selected three typical case images from two

data sets and compared the results of different segmentation

algorithms. The Pro_UNeXt algorithm can accurately segment
FIGURE 7

The mammogram of a breast cancer patient in the private dataset. The first on the left is the result of the pro_UNeXt+Aug+Loss, where green is the
segmented calcification point. The second on the left is the CC view of the patient, where the area in the light blue box is compared for
segmentation effect. Others are cut image, GT, and segmentation results of different algorithms.
FIGURE 8

The mammogram of a patient with benign lesions. The first on the left is the CC view of the patient, where the area in the light blue box is
compared for segmentation effect. Others are cut image, GT, and segmentation results of different algorithms.
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both micro-calcification and macro-calcification. In terms of

performance, the Pro_UNeXt algorithm of optimization with Aug

and loss functions, customized for breast calcification lesions,

attained the best results on both the DDSM and private

datasets. This confirms its capability in detecting small lesions

like micro-calcification. Despite the performance gains,

Pro_UNeXt retained excellent computational efficiency. Relative

to UNet+EfficientNet (19 ms), it reduced the runtime by over 60%

to 7 ms per image.
4 Data analysis

Breast calcification segmentation can effectively solve the

problem of difficulty in detecting calcification. However, breast

calcification has the characteristics of diffuse distribution, small

size, blurred edges, and uneven density. Therefore, imaging doctors

still need to make subjective judgments after segmentation. This

subjective and experience-dependent judgment method can easily

lead to missed diagnosis and misdiagnosis. Therefore, this article

will perform statistical analysis on two datasets after segmentation.
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To analyze the characteristics, the segmented images were divided

into training and test sets at a 4:1 ratio. Then, quantitative features

are calculated for each segmented image, and machine learning is

used to classify the features into benign and malignant. The

algorithms assessed were DT, LR, SVM, KNN, RF, XGB, and

AdaBoost. After training, model performance was evaluated on

the test set.

Figure 9 shows the ROC curves of different machine learning

algorithms for MB classification in the private dataset. The AUC

values, 95% CI, and accuracy rates of the algorithms were as follows:

DT’s AUC = 0.93 (95% CI: 0.90–0.97, accuracy rate of 90%), KNN’s

AUC = 0.92 (95% CI: 0.89–0.97, accuracy rate of 87%), LR’s AUC =

0.95 (95% CI: 0.93–0.98, accuracy rate of 89%), SVM’s AUC = .95

(95% CI: 0.92–0.98, accuracy rate of 91%), XGB’s AUC = 0.96 (95%

CI: 0.94–0.98, accuracy rate of 91%), RF’s AUC = 0.95 (95% CI:

0.93–0.98, accuracy rate of 90%), and AdaBoost’s AUC = 0.97 (95%

CI: 0.96–0.99, accuracy rate of 93%). To further understand the

importance of each feature, we performed feature importance

analysis on the AdaBoost algorithm model. The results are shown

in Figure 10, which indicates that the density of calcification

clusters, calcification density, size, and the density around
TABLE 3 The segmentation results of different algorithms tested in private dataset.

Model Dice (95%CI) IoU SPE Recall

UNet+ResNet 0.779 (0.704-0.871) 0.603 0.999 0.747

UNet+EfficientNet 0.810 (0.736-0.878) 0.632 0.999 0.790

UNetPlus+ResNet 0.780 (0.702-0.834) 0.605 0.999 0.742

UNetPlus+EfficientNet 0.798 (0.718-0.877) 0.627 0.999 0.735

UNeXt_S 0.772 (0.710-0.852) 0.581 0.999 0.716

UNeXt 0.781 (0.715-0.876) 0.595 0.999 0.746

UNeXt_L 0.766 (0.709-0.834) 0.585 0.999 0.704

Pro_UNeXt 0.811 (0.737-0.892) 0.638 0.999 0.758

Pro_UNeXt+Aug 0.824 (0.753-0.910) 0.643 0.999 0.791

Pro_UNeXt+Aug+Loss 0.838 (0.769-0.911) 0.670 0.999 0.795
Bold numbers represent the optimal metric results.
FIGURE 9

ROC curves for feature classification of private datasets by different machine learning algorithms.
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calcification lesions play a significant role in distinguishing between

benign and malignant cases. This is consistent with radiologists’

daily assessment of calcification. Combined with the algorithm’s

AUC of 0.97, it directly demonstrates the effectiveness of our

quantified features in distinguishing MB cases.

To evaluate the ability of features to judge MB, we trained and

tested with the public dataset DDSM. The results are shown in

Figure 11. The AUCs values, 95% CI, and accuracy rates of the

algorithms were as follows: DT’s AUC = 0.83(95% CI: 0.73–0.90,

accuracy rate of 78%), KNN’s AUC = 0.82(95% CI: 0.74–0.90, accuracy

rate of 79%), LR’s AUC = 0.77(95% CI: 0.70–0.85, accuracy rate of

71%), SVM’s AUC = 0.81(95% CI: 0.72–0.90, accuracy rate of 79%),

XGB’s AUC = 0.81(95% CI: 0.74–0.90, accuracy rate of 76%), RF’s

AUC = 0.82(95% CI: 0.75–0.91, accuracy rate of 78%), and AdaBoost’s

AUC = 0.84(95% CI: 0.76–0.91, accuracy rate of 79%). Most classifiers

achieved AUCs above 0.80, with AdaBoost again showing the top

performance. The consistent results validate that the proposed

quantitative features are representative and highly useful for

identifying MB.

In this section, our study statistically analyzes two datasets post-

segmentation, dividing images into training and test sets (4:1 ratio).

Quantitative features are calculated, and machine learning (DT, LR,

SVM, KNN, RF, XGB, AdaBoost) classifies them as benign or
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malignant. AdaBoost exhibits superior performance (AUC =

0.97), emphasizing the importance of features like calcification

cluster density and size in distinguishing cases. From Table 1, it

can be seen that 21.1% of data in malignant cases are classified as

below IVa, whereas 42.2% of data in benign cases are classified as

above IVa. More than 33.1% cannot accurately determine the

condition. Our algorithm’s AUC is above 80%; evaluation on a

public dataset (DDSM) and the private dataset confirms the

accuracy of proposed features and the efficacy of quantified

features in identifying malignant breast calcifications.
5 Summary

Breast cancer is the most prevalent malignancy in women

globally. Assessing and quantifying breast calcification can inform

optimal patient management, thereby improving survival and

quality of life. However, the obscurity of calcification renders

them prone to oversight, depriving patients of timely treatment.

To address this, a technique for detecting breast calcification lesions

is needed. Building on calcification characteristics and the state-of-

the-art UNeXt segmentation algorithm, this study proposes the Pro

UNeXt algorithm. The key innovation are: (1) an improved UNeXt
FIGURE 11

ROC curves for classifying features in the DDSM public dataset using various machine learning algorithms.
FIGURE 10

Feature Importance of AdaBoost in private datasets.
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segmentation network using convolutional multilayer perceptron

architecture. Pro_UNeXt first adds a micro-calcification learning

block at input to improve segmentation performance. Fused-

MBConv and Tok-MLP modules replace original convolution

modules to boost feature learning and speed. (2) The Pro_UNeXt

training process, with focal loss + Dice loss as the initial loss

function, followed by fine-tuning with Hausdorff distance loss to

refine microcalcification segmentation. (3) Effective data

augmentation strategies to reinforce microcalcification

segmentation. Experiments demonstrate Pro_UNeXt achieves

superior performance on the DDSM and private datasets based

on breast calcification lesions. It delivers highly accurate

calcification segmentation result at 7 ms per image.

To analyze the characteristics of calcification, the characteristics

were quantified for each calcification lesion after segmentation. MB

classification of lesions was achieved using machine learning

methods. The machine learning algorithms included DT, LR,

SVM, KNN, RF, XGB, and AdaBoost. After training, different

models were derived from these algorithms. With the private

dataset, AdaBoost achieved an AUC of 0.97, demonstrating its

superior analytical capability. For the public DDSM dataset, the

AUC of AdaBoost was 0.84. Compared with other methods,

AdaBoost consistently delivered the best classification accuracy on

both datasets. These results validate that the quantitative features

proposed in this study are representative and highly discerning for

MB identification.

Although the Pro UNeXt algorithm conducts comprehensive

analysis of calcification, the private dataset only contained 178

cases. The selective use of calcification lesions likely introduced

biases, which may explain the lower accuracy on the private dataset.

Additionally, calcification is just one of the four major breast

lesions. The sole focus on calcification in this study presents

limitations for real-world usage. Therefore, incorporating other

types of lesions for holistic analysis will be necessary to better

serve clinical needs and improve diagnostic performance. Next, we

will carry out the following three tasks: 1. Combined with other

lesion characteristics, further analyze the benign and malignant

lesions, Bi-Rads grading and molecular classification. 2. Add multi-

modal data for joint analysis, including DBT, MLO, and CC, clinical

information, etc., to improve model performance. 3. Combined

with the follow-up data, compare and analyze the changes in

calcification to study the changing characteristics of different

types of breast calcification.

In summary, this paper proposes a novel and comprehensive

breast calcification lesion segmentation and analysis scheme,

consisting of three modules: segmentation, feature quantification,

and feature analysis. The first is the calcification lesion

segmentation module. The module designs a Pro_UNeXt

algorithm with high accuracy and good performance based on the

characteristics of calcification. Compared with other calcification

segmentation algorithms, the Pro_UNeXt algorithm can quickly

and accurately segment calcification lesions, reduce false positives,

improve diagnostic efficiency, and reduce the diagnostic time of
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radiologists. Next is the calcification lesion feature quantification

module. To better describe breast calcification, this paper

introduces a method for quantifying calcification features,

including quantity, shape, size, density, peripheral density, cluster,

and blurriness. The quantification results effectively inform

radiologists about various features, reducing the risk of oversight

and facilitating post-analysis comparisons of feature changes.

Finally, the calcification feature analysis module employs the

AdaBoost machine learning algorithm to classify quantified

features, providing a comprehensive assessment of lesion MB.

The algorithm exhibits excellent classification accuracy on two

datasets, demonstrating the precision of our quantified

calcification features in assessing calcification MB. This capability

aids radiologists in making more informed decisions and planning

for patient care. The proposed scheme offers a comprehensive

solution for breast calcification segmentation and quantitative

analysis. It enhances radiologists’ ability to visually inspect

lesions, perform more effective analyses, and efficiently interpret

mammographic images, ultimately reducing diagnostic errors.

Patients benefit from follow-up and retrospective comparisons of

calcification lesions. The solution has the potential to alleviate

radiologists’ workload, decrease misdiagnosis rates, and improve

the quality of life for breast cancer patients, with significant clinical

application value.
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