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Gliomas are prevalent malignant tumors in adults, which can be categorized as

either localized or diffuse gliomas. Glioblastoma is the most aggressive and

deadliest form of glioma. Currently, there is no complete cure, and the median

survival time is less than one year. The main mechanism of regulated cell death

involves organisms coordinating the elimination of damaged cells at risk of tumor

transformation or cells hijacked by microorganisms for pathogen replication.

This process includes apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis,

necrosis, parthanayosis, entosis, lysosome-dependent death, NETosis, oxiptosis,

alkaliptosis, and disulfidaptosis. The main goal of clinical oncology is to develop

therapies that promote the effective elimination of cancer cells by regulating cell

death are the main goal of clinical oncology. Recently, scientists have utilized

pertinent regulatory factors and natural small-molecule compounds to induce

regulated cell death for the treatment of gliomas. By analyzing the PubMed and

Web of Science databases, this paper reviews the research progress on the

regulation of cell death and the role of natural small-molecule compounds in

glioma. The aim is to provide help for the treatment of glioblastoma.
KEYWORDS

regulated cell death, glioma, natural small-molecule compounds, regulatory
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1 Introduction

The most prevalent malignant primary brain tumor in adults is glioma, which is typically

categorized into limited glioma, which is benign type that can be cured through complete

surgical excision, and diffuse glioma, which is more malignant and incurable after surgical

excision alone. According to the 2021 World Health Organization classification, gliomas are

categorized into four grades (1–4) (1) (Table 1). High grade glioma includes anaplastic

astrocytoma, anaplastic oligodendroglioma and glioblastoma (GBM), which are classified as
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grade 3 to 4 by WHO. Unfortunately, more than 50% of glioma

patients progress to the most malignant form of glioma, GBM with a

median survival time of less than 8 months (2). Gliomas have many

causes, mainly classified as environmental factors and cellular control

at the cell level. Environmental factors, include exposure to therapeutic

ionizing radiation, as well as exposure to substances such as vinyl

chloride or pesticides, smoking, petroleum refining or production

work, and employment in the synthetic rubber manufacturing

industry (3). Numerous uncontrolled cellular processes exist, such as

cell cycle regulation, growth factor expression, angiogenesis, invasion,

migration barriers, genetic instability, and apoptosis (4). The

complexity of GBM is evident at the cellular and genomic levels, and

they exhibits significant inter- and intra-tumor heterogeneity (5). The

standard treatment for glioma primarily involves surgical resection,

along with radiotherapy, chemotherapy, and other comprehensive

therapies. The most common approach worldwide is the

combination of temozolomide and radiation therapy, which has

become the standard treatment for adults newly diagnosed with

GBM (6). However, this treatment remains ineffective. Interestingly,

immunotherapy, targeted therapy (6), and electric field therapy have

been investigated recently in preclinical studies, suggesting a promising

approach in the treatment of glioma. Cell proliferation and apoptosis

are balanced in healthy organisms, but in disease conditions such as

tumors, cell proliferation exceeds apoptosis (7). The primary objective

of clinical oncology has been to develop therapies that facilitate the

effective elimination of cancer cells through regulated cell death. In

recent years, research has continued to identify various mechanisms of

programmed cell death.

Over the past decades, apoptosis has been extensively studied as an

important cancer defense mechanism and has been used in the

development of targeted anti-cancer drugs. However, because cancer

cells have endogenous or acquired apoptotic resistance, the therapeutic

effect of related drugs is not ideal, so it is necessary to explore non-

apoptotic cell death pathways that can be used to kill drug-resistant

cancer cells. Regulated cell death (RCD) during development or tissue

renewal, depends on specific molecular mechanisms and is regulated.
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Many of the fundamental processes include organogenesis and tissue

remodeling, the removal of unnecessary structures or cells, and the

regulation of cell numbers, which are facilitated by is done with the

participation of RCD. Moreover, it is the primary mechanism through

by which organisms eliminate damaged cells at risk of tumor formation

or cells hijacked by microorganisms for pathogen replication. This

process can be induced by developmental programs and stress-induced

signals that stimulate membrane-bound and cytoplasmic proteins

through a complex cascade of transcriptional changes and post-

translational protein modifications (8). RCD, particularly apoptosis

and necroptosis, serves as a natural barrier that restricts the survival

and dissemination of malignant cells. However, cancer cells have

evolved various strategies to evade this process by generating genetic

mutations or epigenetic modifications in key regulators of the pathway

(9). RCD has introduced new approaches and strategies for cancer

treatment. Drugs and other interventions can inhibit the cancer

invasion, migration, and spread by targeting RCD, or they can

cancer cell death (Figure 1). The types of RCD for glioma can be

mainly divided into the following two categories. One type has made

research progress in the treatment of glioma and this review will also

introduce these findings in detail, such as apoptosis, necroptosis,

autophagy, ferroptosis, pyroptosis, parthanayos, entosis, lysosome-

dependent cell death and cuproptosis (Table 2); the other may play

the potential role for glioma treatment in furfure, for example, entosis

(109, 110), NETosis (102, 103), oxeiptosis (111), alkaliptosis (112, 113)

and disulfidptosis (114) (Figure 2).

Small-molecule compounds are organic compounds with

molecular weights of less than 900 Da. Numerous studies have

conducted phenotypic, genomic, epigenomic, transcriptomic, and

proteomic analyses, utilized disease models to explore potential

inhibitors, and evaluated candidate small-molecule drugs in

clinical settings (115). Simultaneously targeting of small-

molecule compounds has become an effective approach for

treating cancer (116). For instance, in the management of triple-

negative breast cancer, DOT1L is crucial for developing an

aggressive phenotype by promoting EMT/CSC through its
TABLE 1 Classification of different glioma grades.

Tumor Classification Grade IDH Level Reference

Oligodendroglioma 1p/19q codeleted/coded or TERT promoter
Oligodendroglioma;

Anaplastic features or high mitotic index or
CDKN2A/B homozygous deletion Oligodendroglioma

(1) Grade 2; (2)
Grade 3

(1) IDH mutant;
(2) IDH mutant

(1) Low-grade glioma; (2)
High-grade glioma

(1)

Astrocytoma (1) ATRX loss or TP53 mutation astrocytoma;
(2) ATRX loss or TP53 mutation or anaplastic
features or high mitotic index astrocytoma;

ATRX loss or TP53 mutation or CDKN2A/2B
homozygous deletion or CDKN2A/B astrocytom;

Pilocytic astrocytoma

(1) Grade 2; (2)
Grade 3; (3)
Grade4; (4)
Grade 1

(1) IDH mutant;
(2) IDH mutant;
(3) IDH mutant

(1) Low-grade glioma; (2)
High-grade glioma; (3) High-

grade glioma; (4) Low-
grade glioma

(1)

Diffuse
hemisheric glioma

H3.3 G34R/V-mutant diffuse hemisheric glioma;
H3 K27M-mutant or loss of H3K27me3 diffuse

midline glioma

Grade 4 IDH mutant High-grade glioma (1)

Glioblastoma Chromosome 7 gain or chromosome 10 loss or
homozygous loss CDKN2A/2B or TERT promoter

mutation or ATRX retained or EGFR
amplification glioblastoma

Grade 4 IDH wild High-grade glioma (1)
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FIGURE 1

Different Forms of RCD and related regulatory factors created with BioRender.com. Different regulatory factors inhibit tumor growth by up-
regulating or down-regulating different ways of cell regulatory death.
TABLE 2 The types of RCD and their related morphology, immunological characteristics and regulating factors.

Classification Morphology Immunological
characteristic

Regulating factors Reference

Apoptosis Nuclear chromatin condensation and fragmentation, endoplasmic
reticulum expansion, organelle retention, and
cytoplasmic contraction

ICD (1) Inhibitor of apoptosis:
P53、FLIPs、IAPs, et al. (2)
Bcl-2 family.

(10–28)

Necroptosis Cell swelling, supracellular membrane pore formation, plasma
membrane rupture and moderate chromatin condensation

ICD (1) PRK1 and RIPK3 (2)
lncRNA (3) MLKL

(29–37)

Autophagy The Golgi apparatus and other organelles swell, the nucleus
solidifies, a large number of phagocytic vesicles are formed, and
the cytoplasmic membrane undergoes specialization

ICD PTEN; EGFR; ATG family;
Beclin1and mTOR, et al.

(38–47,
48–56)

Ferroptosis Mitochondrial cristae reduction (disappearance), mitochondrial
outer membrane rupture, wrinkling, dark mitochondrial color,
iron-dependent nucleus without rupture and cell
membrane rupture

ICD Erastin; RSL3; RAS; FSP1;
SLC7A11; NRF2; Ferrostatin-1;
Liproxstatin-1, et al.

(55, 57–74)

Pyroptosis Cells continue to swell until the cell membrane ruptures ICD Cystathione aspartase -1/2/3/4/
5/6/7/8/9/10/11

(75–79)

Necrosis Cell distension, rupture of the cell membrane, spillage of cell
contents, slower nuclear changes, inadequate DNA degradation,
causing severe local inflammatory reactions

ICD TNF receptor superfamily; T
cell receptor; Interferon
receptor; Toll-like receptor
(TLR), et al.

(80–96)

Parthanayos Chromosome condensation, DNA fragmentation ICD PARP1; PARG; ARH3; AIF;
MIF, et al.

(97–99)

Lysosome-
dependent
cell death

Lysosomal rupture ICD Cathepsins; STAT3; TP53; NF-
kB; MCOLN1, et al.

(100, 101)

NETosis Chromatin deprotonation, nuclear membrane disruption and
release of chromatin fibers

ICD ELANE; MMP; MPO; CAMP/
LL37; PADI4, et al.

(102–104)

(Continued)
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interaction with c-Myc and p300 acetyltransferases (117). Natural

small-molecule compounds are animal, plant, and mineral-

derived drugs that have been recognized by modern medical

systems for their specific pharmacological activities. Plants have

been utilized as medicinal remedies for at least 60,000 years due to

their capacity to generate combinations of secondary metabolites

with a broad spectrum of pharmacological properties, including

anti-cancer effects (118). Currently, many combination drugs,

such as statins, are not suitable for treating malignant gliomas

(119). Therefore, the study of natural drugs is particularly

important. Herbs have deep roots in many cultures and

traditions, and according to a study, and one in three cancer

survivors reports uses them (120). Natural small-molecule

compounds have been widely extensively utilized as drugs or

adjuvant chemotherapy agents in cancer treatment due to their

selective ability to kill cancer cells, reduce drug resistance, and
Frontiers in Oncology 04
alleviate side effects (121). At the same time, compounds derived

from plants have been shown to play a role in many cancers. For

example, lycopene, a carotenoid found in many fruits, and

resveratrol have been shown to play a role in breast and oral

cancers (122). Many natural small molecule compounds have been

studied and validated to play a role in GBM and can be categorized

mainly from marine organisms [e.g., antitumour (123)], proteins

(e.g., carnosine [b-alanyl-L-histidine) (124)], and plants [e.g.,

eucalyptal A (125), galbanic acid (126), gossypol (127), rupesin

E (127), Tectorigenin (128) and Withaferin A (129)], and also co-

administered (e.g. berberine and solid lipid curcumin particles

(130), propolis and bacopa monnieri (L.) wettst. (Brahmi) (131)).

By analyzing PubMed and Web of Science databases, this paper

reviews the research progress on the regulation of cell death and

the role of natural small-molecule compounds in glioma, hoping

to provide help for the treatment of glioma (Figure 3).
TABLE 2 Continued

Classification Morphology Immunological
characteristic

Regulating factors Reference

Cuproptosis Similar to Ferroptosis. ICD FDX1; Protein lipid acylation;
DLAT; LIAS; pyruvate; alpha-
ketoglutarate; HSP70, etc.

(105–108)

Apoptosis Nuclear chromatin condensation and fragmentation, endoplasmic
reticulum expansion, organelle retention, and
cytoplasmic contraction

ICD (2) Inhibitor of apoptosis:
P53、FLIPs、IAPs, et al.
(2) Bcl-2 family.

(10–28)

Necroptosis Cell swelling, supracellular membrane pore formation, plasma
membrane rupture and moderate chromatin condensation

ICD (2) PRK1 and RIPK3 (2)
lncRNA (3) MLKL

(29–35, 37)

Autophagy The Golgi apparatus and other organelles swell, the nucleus
solidifies, a large number of phagocytic vesicles are formed, and
the cytoplasmic membrane undergoes specialization

ICD PTEN; EGFR; ATG family;
Beclin1and mTOR, et al.

(38–56)

Ferroptosis Mitochondrial cristae reduction (disappearance), mitochondrial
outer membrane rupture, wrinkling, dark mitochondrial color,
iron-dependent nucleus without rupture and cell
membrane rupture

ICD Erastin; RSL3; RAS; FSP1;
SLC7A11; NRF2; Ferrostatin-1;
Liproxstatin-1, et al.

(55, 57–74)

Pyroptosis Cells continue to swell until the cell membrane ruptures ICD Cystathione aspartase -1/2/3/4/
5/6/7/8/9/10/11

(75–79)

Necrosis Cell distension, rupture of the cell membrane, spillage of cell
contents, slower nuclear changes, inadequate DNA degradation,
causing severe local inflammatory reactions

ICD TNF receptor superfamily; T
cell receptor; Interferon
receptor; Toll-like receptor
(TLR), et al.

(80–96)

Parthanayos Chromosome condensation, DNA fragmentation ICD PARP1; PARG; ARH3; AIF;
MIF, et al.

(97–99)

Lysosome-
dependent
cell death

Lysosomal rupture ICD Cathepsins; STAT3; TP53; NF-
kB; MCOLN1, et al.

(100, 101)

NETosis Chromatin deprotonation, nuclear membrane disruption and
release of chromatin fibers

ICD ELANE; MMP; MPO; CAMP/
LL37; PADI4, et al.

(102–104)

Cuproptosis Similar to Ferroptosis. ICD FDX1; Protein lipid acylation;
DLAT; LIAS; pyruvate; alpha-
ketoglutarate; HSP70, etc.

(105–108)
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FIGURE 2

Mechanisms associated with RCD in glioma created with BioRender.com. At present, only apotosis, necroptosis, necrosis, LCD, ferroptosis,
autophagy and cuprotosis have been studied in gliomas, and other programmed modes of death have not been demonstrated.
FIGURE 3

Literature search method/strategies (databases and keywords involved). We searched and screened 138 articles through Pubmed and web of science
for classification and summary, and reported the research of RCD in glioma.
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2 Different forms of RCD involved
in glioma

2.1 Apoptosis

Apoptosis is the process by which cells automatically terminate

their lives under certain physiological or pathological conditions, and it

is controlled by intrinsic genetic mechanisms. Apoptosis eliminates

redundant cells, non-functional cells, cells that have developed

abnormally, or harmful cells. The key characteristics of apoptosis

include the condensation and fragmentation of nuclear chromatin,

expansion of the endoplasmic reticulum, retention of organelles, and

cytoplasmic shrinkage. The treatment of glioma patients involves

promoting the apoptosis of cancer cells, thereby inhibiting the

proliferation of glioma cells. Apoptosis is initiated by apoptotic

signals, followed by the interaction of apoptosis regulatory molecules

to activate protein hydrolases (caspases), leading to a continuous

cascade of reactions. Numerous molecules regulate apoptosis,

including the following: (1) apoptosis inhibitory molecules such as

P35, FLIPs, and Inhibitors of Apoptosis (IAPs); and (2) the Bcl-2 family

which includes Mcl-1, NR-B, A1, Bcl-w, and Bcl-x.

2.1.1 P53
Mutation and/or inactivation of the tumor suppressor P53 is

essential for tumorigenesis. Malignant tumors often have mutations

in TP53, leading to the development of an oncogenic phenotype.

Inactivation of P53 is crucial for the development of gliomas,

particularly GBM (10). Furthermore, MDM2 plays a significant

role as a negative regulator of P53 by binding to P53 and forming a

stable complex to regulate its activity. A study by Jiacheng Lou et al.

demonstrated that the cyclic RNA CDR1as disrupts the P53/MDM2

complex to inhibit GBM (11). In addition, prostate apoptosis

response-4 regulates apoptosis to induce GBM cell death by

upregulating p53 and BNIP3 (28).

2.1.2 Fas-associated death domain (FADD)-like
IL-1b-converting enzyme-inhibitory
proteins (FLIPs)

FLIPs, known for its role in cystathione-8, are multifunctional

proteins that play a role in regulating important cellular processes

that includes apoptosis, necroptosis, autophagy, inflammation, innate

immunity (12) adaptive immunity, and embryonic development (13).

FLIP plays a role in numerous pathways, including the Wnt (14),

NFkB (15), and mitogen-activated protein kinase (MAPK) pathways

(16), et al. A study found that targeting Karyopherin b1 (KPNb1) can
overcome tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) resistance by modulating FLIP in GBM cells. The study also

suggested that this combination therapy may soon enter clinical trials

for anti-cancer treatment (17).

2.1.3 IAPs
IAPs are often overexpressed in cancer cells, where they inhibit

caspase activation and apoptosis, ultimately leading to drug

resistance (18). In addition to regulating RCD, IAPs also control

MAPK and both typical and atypical NF-kB pathways, which in
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turn leads to the transcription of target genes. Previous studies have

found that the synthesis of the compound Derivative 3-

[(decahydronaphthalen-6-yl)methyl]-2,5-dihydroxycyclohexa-2,5-

diene-1,4-dione (RF-Id) inhibits IAP family proteins and the NFkB
pathway, inducing apoptosis in GBM cells. This makes it a

promising lead compound for the development of a new class of

anti-cancer drugs with multiple targets (19).

2.1.4 B-cell lymphoma 2 (Bcl2) family
Bcl2 is an anti-apoptotic member of the Bcl-2 family that

isupregulated in many human cancers. Multiple members of the Bcl-2

family of apoptosis-regulating proteins include six anti-apoptotic agents,

three structurally similar pro-apoptotic proteins, and several structurally

varying pro-apoptotic interacting proteins that act as upstream agonists

or antagonists (20). The Bcl-2 family acts in mitochondria, endoplasmic

reticulum, and lysosomes, and is the biological “guardian” of cellular

organelles. However, members of the Bcl-2 family are not effective in

treating tumor cells (21). The pyruvate kinase M2 isoform (PKM2)

phosphorylates Bcl2 and directly inhibits apoptosis, demonstrating that

the HSP90-PKM2-Bcl2 axis is a potential target for therapeutic

intervention in GBM (22). In addition, the combination of ABT-263

and MLN8237 reduced mitotic slippage and polyploidy and promoted

the elimination of mitosis-deficient cells through the BAX/BAK-

dependent cysteinase-mediated apoptotic pathway. WEHI-539, a B-cell

lymphoma extra-large (BCL-XL) antagonist, significantly enhanced

tumor cell killing when combined with MLN8237 and resistant brain

tumor cells sensitive to the novel BAX activator SMBA1. In addition,

siRNA-mediated Bcl-xL sensitizes pGBM and medulloblastoma cells to

MLN8237 replicates the beneficial effects of combined drug

treatments (23).

Recent studies have shown that the action of regulatory factors

such as P53, FLIPs, IAPs, and members of the Bcl-2 family members

may promote apoptosis through other regulatory factors, pathways,

enzymes, or increased drug sensitivity in cancer cells. This provides

more opportunities more possibilities for anti-cancer experiments.
2.2 Necroptosis

Necroptosis is a programmed lytic cell death pathway believed

to be involved in eliminating pathogen-infected and/or damaged

cells in specific degenerative or inflammatory diseases. It shares key

morphological features with apoptosis, leading to cell swelling,

formation of pores in the suprabasal layer cell membrane, rupture

of the plasma membrane, and moderate chromatin condensation.

However, the precise role of necroptosis in glioma remains unclear.

Numerous regulators of necrotic cell death exist, including PRK1,

RIPK3, long non-coding RNA (lncRNAs), and mixed lineage kinase

domain-like pseudokinase (MLKL), among others.

2.2.1 RIPK1 and RIPK3
PRK1 and RIPK3 can assemble as oligomeric complexes known

as necrosomes, and necroptosis can occur downstream them (29).

In a cohort of over 60 cancer cell lines, it was observed that two-

thirds of the RIPK3 protein levels were reduced, suggesting that

necroptosis can effectively inhibit tumor growth. Furthermore, low
frontiersin.org
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expression of RIPK3 was found in patients with multiple cancers

with poor prognosis (30). Among the seven prognostic necroptosis

genes, especially RIPK1, RIPK3, FAS and FADD, can construct risk

profiles and predict the prognosis of glioma patients. The role of

this risk profile can be related to the immune response and

angiogenesis, enhancing inflammatory activity and attracting

immunosuppressive cell infiltration to form a chronic

inflammatory microenvironment, which promotes GBM

growth (37).

2.2.2 LncRNA
LncRNAs, as a class of RNA molecules with transcriptional

lengths greater than 200 nucleotides, do not encode proteins but are

involved in protein-coded gene regulation in the form of RNA.

lncRNAs play important roles in dosage compensation, epigenetic

regulation, cell cycle regulation, and cell differentiation regulation

(31). Some scientists have found predictive models for 12 lncRNAs

to help assess glioma patients’ prognosis and molecular

characteristics. For example, GSEA-GO is associated with Wnt,

inositol phosphate metabolism, butyrate metabolism, long-term

depression, and taste transduction, improving treatment modality

and potentially stimulating future exploration of glioma formation

and treatment (32). Search for specific biomarkers based on

markers of necroptosis may be more precise and effective in LGG

and GBM management, which may provide new clues for

immunotherapy and prognosis.

2.2.3 MLKL
MLKL undergoes rapid membrane permeabilization, thereby

mediating the release of intracellular contents, including

immunogenic Danger-Associated Molecular Patterns. Necroptosis

is thought to be a self-sacrificing strategy for tumor proliferation

and metastasis (33). MLKL promotes shikonin-induced necroptosis

in glioma cells by promoting chromatin lysis, and shikonin induces

positive feedback between MLKL and its upstream signals RIP1 and

RIP3, thereby promoting the death of glioma including GBM

cells (34).

The exact role of necroptosis in gliomas remains relatively

unknown, and the prognostic effect of necroptosis on gliomas is

still not particularly obvious according to current algorithms.
2.3 Autophagy

Autophagy (38) is a process in which damaged proteins or

organelles are enclosed in autophagic vesicles with a bilayer

membrane structure and then transported to lysosomes (in

animals) or vacuoles (in yeast and plants) for degradation and

recycling. Electron microscopy revealed that organelles such as the

Golgi apparatus had swollen, the nucleus had solidified, numerous

phagocytic vesicles had formed, and the cytoplasmic membrane had

undergone specialization. Cellular autophagy can be categorized into

macroautophagy, microautophagy, and molecular chaperone-

mediated autophagy (CMA). Autophagy occurs in five stages: (1)

phagocytosis or nucleation. (2) conjugation of the ATG5-ATG12
Frontiers in Oncology 07
complex, its interaction with ATG16L, and multimerization of the

phagocytic vacuole, (3) processing of LC3 and its insertion into the

swollen phagocytic mass membrane, (4) capture of selected targets

for degradation, and (5) fusion of the autophagosome with the

lysosome, followed by proteolytic degradation by the lysosomal

protease contained in the absorbed molecule undergoes proteolytic

degradation. The relationship between cellular autophagy and tumors

is more complex. On the one hand, normal cells with increased

autophagy can inhibit tumorigenesis. On the other hand, tumor cells

can enhance their stress response, including autophagy, to counter

hypoxia, metabolite and therapeutic agent induction. This response is

influenced by nutrient availability, microenvironmental stress,

pathogenic conditions, and the presence of the immune system (39,

40). Therefore, the inhibition of tumor cell growth through

autophagy needs to be analyzed on a case-by-case basis. The

regulatory factors that have been found to be associated with

glioma include Phosphatase and Tensin Homolog (PTEN),

Epidermal growth factor receptor (EGFR), ATG family, Beclin1,

and Mammalian target of rapamycin (mTOR).

2.3.1 PTEN
PTEN, a tumor suppressor frequently mutated in human

cancers with multiple cytoplasmic and nuclear functions, has

been identified as a tumor suppressor gene in various cancers

with frequent deletions on human chromosome 10q23 (41).

PTEN inactivation leads to the constitutive activation of the

PI3K-AKT pathway, resulting in increased protein synthesis, cell

cycle progression, migration, and survival (42). A drug screening of

GBM stem cells (GSC) revealed proteasome inhibition as a targeted

therapy. Proteasome inhibition specifically induces cell death in

three-dimensional (3D) PTEN-deficient GBM-like organs and

inhibits in situ tumor growth in murine PTEN-null GSC (43).

2.3.2 EGFR
EGFR, a member of the tyrosine kinase receptor (RTK) family,

regulates the development and maintenance of epithelial tissue. It is

typically a constitutively active receptor that does not depend on

ligands for its activity. This altered transport and downregulation

lead to abnormal downstream signaling, thereby promoting tumor

development (44). The combination of EGFR and autophagy

regulation impairs cell migration and enhances the radiosensitivity of

GBM, thereby improving treatment outcomes in patients with

gliomas (45).

2.3.3 mTOR
As a serine/threonine kinase, mTOR is a major regulator of

cellular metabolism that promotes cell growth in response to

environmental signals (46). mTOR exists in two distinct signaling

complexes, mTORC1 and mTORC2: (1) mTORC1 integrates

nutrient and growth factor signals to facilitate anabolic pathways

like protein and lipid synthesis, while also inhibiting catabolic

pathways such as lysosomal biogenesis and autophagy; (2)

mTORC2 regulates cell survival, metabolism, and cytoskeletal

organization through AGC family kinases. Given its role as a

significant regulator of cellular metabolism and autophagy,

mTORC1 has emerged as an appealing target for pharmacological
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manipulation of autophagy. Recently, a summary of several mTOR

inhibitors and their applications for inducing autophagy in

preclinical studies have been summarized (as presented in Table 3).

The relationship between autophagy and tumors is unique and

has two sides. Therefore, the inhibition of tumor cell growth

through cellular autophagy also needs to be continuously

analyzed based on the specific circumstances. Numerous studies

have shown that the role of autophagy in tumors can be effectively

leveraged, and several regulatory factors, such as PTEN and EGFR,

can not only inhibit growth but also enhance tumor sensitivity to

drugs, offering new avenues for future glioma treatment.
2.4 Ferroptosis

Ferroptosis is a regulated form of cell death characterized by the

iron-dependent accumulation of lipid peroxidation to lethal levels.

When cellular cysteine transport proteins are inhibited (e.g.,

erastin), intracellular glutathione (GSH) is depleted, which

eventually leads to the inactivation of glutathione peroxidase

(GPX4). This leads to the buildup of lipid peroxidation to a level

that triggers cell death, which can also be directly caused by the

inhibition of GPX4 enzymes (e.g., GSH peroxidase 4 inhibitors like

RSL3) (57). The morphological features of ferroptosis are quite

specific, including a reduction (disappearance) of the mitochondrial

cristae, rupture of the outer mitochondrial membrane, wrinkling,

darkening of the mitochondria, iron-dependent nuclei without

rupture, and cell membrane rupture. Ferroptosis can inhibit

tumor growth in several ways. For example, it sensitizes GBM to

Anti-PD1/L1 immunotherapy and promotes M2 to M1 polarization

(70). Numerous factors regulate ferroptosis, including Erastin,

RSL3, RAS, FSP1, circular RNAs (circRNAs), SLC7A11, NRF2,

GPX4, Ferrostatin-1, and Liproxstatin-1.
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2.4.1 Erastin
Erastin, the first ferroptosis activator identified in 2003, was

found to play a significant role. Erastin, the first ferroptosis activator

identified in 2003, exhibits significant lethality in human tumor cells

carrying mutations in the HRAS, KRAS, and BRAF oncogenes (58).

Chen et al. utilized transmission electron microscopy to analyze the

sensitivity of circCDK14 to erastin-induced ferroptosis in glioma

cells. They also conducted mitochondrial, iron, and reactive oxygen

species assays. The study revealed that overexpression and elevated

levels of circCDK14 in glioma tissues and cell lines were associated

with a poor prognosis in glioma, including GBM patients (59).

2.4.2 RAS and RSL3
The most commonly mutated gene families in cancer include

the RAS gene family (KRAS, NRAS, and HRAS) (60). The direct

inhibition of mutant RAS by allele-specific inhibitors is the best

therapeutic approach. Therapies targeting the RAS activation

pathway or RAS effector pathway can be combined with direct

RAS inhibitors, immune checkpoint inhibitors, or T cell-targeting

approaches to treat RAS-mutant tumors. RAS-selective lethal 3

(RSL3) is a widely recognized inhibitor of GPX4 that triggers

ferroptosis by suppressing GPX4 expression (61, 62). A study

found that RSL3 induces ferroptosis by activating the NF-kB
pathway and depleting GPX4 in GBM (63).
2.4.3 SLC7A11
SLC7A11 is a cysteine/glutamate antiporter protein that

synthesizes GSH and neutralizes oxidized substances in cell

membranes (64). It was recently discovered to play an anti-cancer

role in various cancers, including malignant glioma, by inhibiting

SLC7A11-activated ferroptosis (65). In glioma, hypoxia upregulates

SLC7A11 via the PI3K/AKT/HIF-1a axis to enhance glioma

resistance to salazosulfapyridine-induced ferroptosis (66). Zhao

et al. found that the ubiquitin hydrolase OTUB1 inhibits

ferroptosis by stabilizing the SLC7A11 protein and promoting

glioma cell stemness (67).

2.4.4 Circular RNA
As a class of non-coding RNAs, circular RNAs (circRNAs) form

circular structures via covalent bonds (71). CircRNAs play a crucial

role in tumor progression, metastasis, and other malignant

phenotypes. For example, circNHSL1 promotes gastric cancer

progression through the miR-1306-3p/SIX1/vimentin axis (72).

CircRNAs regulate iron and glutathione metabolism, lipid

peroxidation, and mitochondria-associated proteins, all of which

play key roles in iron-related death. Jiang et al. found that

CircLRFN5 inhibited the growth of GBM through PRRX2/GCH1-

mediated ferroptosis (73).

2.4.5 GPX4
As an enzyme member of the GPX family, GPX4 protects cells

from oxidative damage caused by ROS, thereby maintaining cellular

lipid homeostasis. GPX4 not only acts as an important regulator of

ferroptosis but also converts lipid hydroperoxides to lipid alcohols

and prevents these molecules from triggering lipid peroxidation (74).
TABLE 3 Small-molecule compounds of mTOR inhibitors to induce
autophagy and related pathways.

Small-
molecule
compounds

Pathways Reference

Celastrol ROS / JNK and Akt / mTOR (49)

Sino-wcj-33 (SW33) PI3K/AKT/mTOR and
AMPK/mTOR

(50)

Xanthatin PI3K-Akt-mTOR (47)

Sempervirine (SPV) Akt/mTOR (51)

Flavokawain B ATF4-DDIT3-TRIB3-AKT-
MTOR-RPS6KB1

(52)

Amentoflavone (AF) AMPK/mTOR (53)

Prucalopride AKT-mTOR (54)

Triptolide ROS/JNK and Akt/mTOR (55)

b-asarone P53/Bcl-2/Bclin-1 and P53/
AMPK/mTOR

(56)

Arctigenin AKT/mTOR (48)
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As a potential therapeutic target for glioma, recent studies have

shown that RAS-selective lethal 3 drives iron death through NF-kB
pathway activation and GPX4 depletion in GBM (63).

Ferroptosis, a recently popular topic, has made great progress in

the treatment of glioma, and its regulators Erastin, RSL3, RAS, and

SLC7A11 have been studied in glioma. In conclusion, our

experimental results provide relevant targets and treatment plans

for future glioma treatment.
2.5 Pyroptosis

Pyroptosis, also known as cellular inflammatory necrosis, is a

form of RCD characterized by continuous cellular distention until the

cell membrane ruptures. This leads to the release of cellular contents,

activating a strong inflammatory response (75). Cystathione

activation is linked to necrosis and apoptosis. Initially, scorch death

was thought to be related to cysteine-1 related cell death (76). Recent

studies have shown that other cystathionases, such as cystathione-2/

3/4/5/6/7/8/9/10/11, also induce damage in various cells and play

significant roles in innate immunity and tumorigenesis.

Researchers conducted a comprehensive analysis of pyroptosis in

glioma, utilizing the CGGA and TCGA databases, GDSC database,

and GSVAR software. They concluded that pyroptosis-related genes

effectively classified glioma patients well into two-dimensional

distribution and that prognostic features based on these genes hold

high clinical value. Finally, the expression of neuro CASP8 expression

was higher in glioma compared to controls. The highest expression

was observed in WHO IV, followed by WHO III, and the lowest in

WHO II. Elevated CASP8 expression was associated with poor

overall survival. These results suggest that CASP8 plays an

oncogenic role in gliomas (77). Pyroptosis levels strongly indicate

that the thermal tumor immune microenvironment has a high

presence of CD8 + T cells and other T cell subtypes, as well as

activation of P53 pathway, DNA repair, KRAS signaling, epithelial-

mesenchymal transformation (EMT), IL6 JAK STAT3 signaling, IL2

STAT5 signaling, PI3K signaling, AKT signaling, mTOR signaling,

and oncogenic pathways are enriched in the pyroptosis-Hi subgroup

of cancer (132).

However, the role of pyroptosis in glioma has been less studied,

and a comprehensive analysis of pyroptosis regulators in glioma,

their correlation with clinical features, and their prognostic value

has not yet been reported.
2.6 Necrosis

Necrosis is the death of local tissue cells in vivo and is characterized

by changes in enzymatic solubility. Its morphological features include

cell expansion, cell membrane rupture, release of cell contents, gradual

nuclear changes, and incomplete DNA degradation, all of which

contribute to a severe local inflammatory response. Necroptosis can

be induced by the TNF receptor superfamily (80), T-cell receptors (81),

interferon receptors, Toll-like receptors (TLR) (82), cellular
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metabolism, genotoxic stress, or the activation of various anticancer

drugs, such as necrosis inhibitor-1 (Nec-1) (83).

2.6.1 TNF receptor superfamily
Tumor necrosis factor (TNF/TNFa) is a type II transmembrane

protein, with its intracellular amino terminus located at position

(84). There are two types of TNF receptors: TNFR1 and TNFR2.

TNFR1, which is present in most cells of the body, is activated by

soluble ligands. TNFR2, which is mainly expressed in hematopoietic

cells, primarily binds to the transmembrane TNF. The malignant

cell-autonomous network of inflammatory cytokines includes TNF,

the chemokine stromal cell-derived factor (SDF1, also known as

CXCL12) and CCL2 (C-C chemokine ligand 2), cytokines IL-6 and

macrophage inhibitory factor (MIF), and vascular endothelial

growth factor (VEGF) (85). The TNF family has been shown to

play a role in various types of tumors, including lung cancer (86)

and ovarian cancer (87), and Tengfeng Yan et al. have demonstrated

that TGF-b activates the TNF-a/NF-kB signaling pathway by

inducing GBM mesenchymal transition through the upregulation

of CLDN4 and nuclear translocation (88).

2.6.2 TLR
The Toll-like receptor (TLR) family activates inflammatory

response pathways that are crucial for effective immune cell

recruitment. In the context of cancer, TLRs have tumor- and cell-

type-specific pro- and antitumorigenic effects (89). The

antitumorigenic effect of TLR is typically attributed to the

stimulation of antitumor immunity through the activation of

dendritic cells. This effect has been demonstrated to play a role in

various cancers, including colorectal cancer (96) and bladder cancer

(90). Alvarado et al. demonstrated that GBM cancer stem cells gain

a survival advantage in challenging environments by diminishing

their capacity to detect damage signals and activate innate immune

responses through TLR4 (91).

Recent studies have shown that many regulatory factors such as

the TNF family, TLR, and other drugs may induce necrosis, and the

role of necrosis in lung cancer (86), ovarian cancer (87), colorectal

cancer (96), bladder cancer (90), and glioma (91) has been shown to

be evident in various research experiments.
2.7 Parthanayos

Parthanayos is a PARP1-dependent, cysteine-dependent cell

death pathway characterized by chromosome condensation and

DNA fragmentation. Many molecules, including PARP1, PARG,

ARH3, AIF, and MIF (97).

PARP-1, also known as poly (ADP-ribose) synthase 1 or poly

(ADP-ribose) transferase 1, exhibits higher basal levels in glioma

cells compared to neurons and is positively associated with glioma

malignancy and poor patient survival (98). Inhibiting PARP-1 has

been a strategy for developing new drugs to overcome the resistance

of glioma cells to radiotherapy or chemotherapy-induced apoptosis.

Deoxypodophyllotoxin (DPT), the primary lignan and active

component of the traditional plant camphor, suppresses the
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viability of glioma cells and induces their death by generating an

excess of reactive oxygen species (ROS), which leads to abnormal

germination of glioma cells (99).

Parthanayos is mainly dependent on PARP1-dependent and

cysteine aspartic proteases, and recent studies have shown a clear

role of PPAR1 in neurons. Inhibiting PARP-1 has been a strategy

for developing new drugs to overcome the resistance of glioma cells

to radiation- or chemotherapy-induced apoptosis. Current studies

show that drugs like DPT (99) also play a role in treating GBM,

offering the potential for glioma treatment.
2.8 Lysosome-dependent cell death

Lysosome-dependent cell death (LCD), also known as

lysosomal cell death, is a form of RCD mediated by hydrolases

(histones) or iron released by lysosome membrane permeabilization

(LMP), characterized by lysosomal rupture (100), including

Cathepsins, STAT3, TP53, NF-kB, MCOLN1 and other regulators

(100). The results of Wei Zhou et al. showed that a newly

synthesized lysosomal biological agent, Lys05, induced lysosomal

membrane permeabilization in an LMP-dependent manner and

increased radiosensitivity in GBM (101), thereby enhancing the

therapeutic efficacy for glioma.
2.9 Cuproptosis

The main process of cuproptosis depends on the accumulation

of intracellular Cu ions. Cu ions can directly bind to the lipid-

acylated components of the tricarboxylic acid (TCA) cycle, leading

to blockage. As a result, the accumulation and dysregulation of
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these proteins can lead to proteotoxic stress and ultimately cell

death (105, 106). The primary regulators of coproptosis include

FDX1, proteolipid acylation, DLAT, LIAS, pyruvate, a-
ketoglutarate, and HSP70.

Cuproptosis has now been shown to have a role in cancers such

as breast cancer (106). Wang et al. predicted that cuproptosis would

likely help predict the prognosis, biological characteristics, and

appropriate treatment of patients with glioma (107). Cuproptosis

provides new targets and approaches for glioma treatment. Human

H-ferritin (HFn), regorafenib, and Cu2+ were rationally designed as

brain-targeted nanoplatforms (HFn-Cu-REGO NPs), with the aim

of enhancing the effectiveness of Cu2+ and regorafenib in the

treatment of GBM by modulating autophagy and prolapse (108).

Cuproptosis is an RCDmodality that has only been proposed in

the past two years and induces cell death through the TCA cycle in

the mitochondria. Various researchers have predicted that

cuproptosis may influence the prognosis and drug effectiveness in

patients with glioma, offering a new target and approach for treating

the condition.
3 Natural small-molecule compounds
inhibit glioma through the modulation
of different types of RCD

The diversity of natural compounds provides a wide range of

structures that can be used to develop libraries of compounds that

can be used for future drug development. New technologies such as

combinatorial synthesis and high-throughput screening have approved

more than 50 percent of natural cancer drugs (133). Many natural

drugs, such as quercetin (134) a role in gliomas. Next, we discuss how

natural drugs (Figure 4, Table 4) inhibit glioma by inducing RCD.
FIGURE 4

Natural small-molecule compounds for the treatment of glioma through different types of RCD.
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TABLE 4 The anti-cancer natural small-molecule compounds in glioma by different types of RCD.

Natural
small-molecule

Suppressive effect Types
of RCD

Function
study

Stage Cancer
types

Reference

Rosmarinic acid

Inhibit proliferation, invasion, and
induce apoptosis

Apoptosis In vitro Pre-
clinical

GBM (24)

Matrine Induce apoptosis and autophagy Apoptosis In vitro Pre-
clinical

GBM (25)

Xanthatin Induce apoptosis and inhibits tumor growth Apoptosis In vitro and
in vivo

Pre-
clinical

GBM (26)

Polyphyllin VII Induces cells death and autophagy Apoptosis In vitro Pre-
clinical

Astrooblastoma
and GBM

(27)

Shikonin Induce apoptosis and necroptosis Necroptosis In vitro Pre-
clinical

Astrooblastoma (35)

Dehydrobastidine Induce apoptosis, autophagy, and necroptosis Necroptosis In vitro Pre-
clinical

Astrooblastoma
and GBM

(36)

Pseudolaric acid B Inhibit the viabilities and induce ferroptosis Ferroptosis In vitro and
in vivo

Pre-
clinical

Astrooblastoma
and GBM

(68)

Plumbagin Inhibit the viabilities and induce ferroptosis Ferroptosis In vitro and
in vivo

Pre-
clinical

Astrooblastoma
and GBM

(69)

Benzimidazoles Induce apoptosis and pyroptosis and block the
cell cycle

Pyroptosis In vitro Pre-
clinical

GBM (78)

(Continued)
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3.1 Natural small-molecule compounds
suppress glioma through apoptosis

Apoptosis is one of the most extensively researched forms of

RCD. Several natural compounds have been found to induce

apoptosis and inhibit the growth of glioma, including rosmarinic

acid (RA) (24), matrine (25), xanthatin (26), and Polyphyllin VII

(PP7) (27), etc. RA, a natural compound primarily found in the

leaves of Rosmarinus officinalis, has demonstrated efficacy in

inhibiting proliferation, invasion, and inducing apoptosis of GBM

cells through the PI3K/Akt/NF−kB pathway (24). Matrine that has

a variety of pharmacological properties, such as anti-inflammatory,

antioxidant, and anti-fibrotic effects. It can also inhibit the growth

of various cancer cells, including those of stomach cancer, chronic

myelogenous leukemia, and breast cancer, by inducing apoptosis

and autophagy. This is achieved through the downregulation of

circ-104075 and Bcl-9 expression, which inhibits the PI3K/AKT

and Wnt-b-catenin pathways in GBM cells (25). Xanthatin, a

natural bioactive sesquiterpene lactone that has anti-angiogenic,

antiviral, anti-inflammatory, antifungal, antibacterial effects and

plays an anti-cancer role in non-small cell lung cancer, stomach

cancer, breast cancer, melanoma and leukemia isolated from the

aerial part of Xanthium strumarium L., induces apoptosis and

inhibits tumor growth via activating the endoplasmic reticulum

stress-dependent CHOP pathway (26). PP7, a class of saponins that

has anti-cancer effects in liver, lung, breast and colorectal cancer

cells isolated from Paris polyphylla var. yunnanensis induces

astrooblastoma and GBM cells death and autophagy via AKT/

mTORC1 signaling (27). These natural drugs can inhibit the

growth of gliomas by inducing apoptosis, and thus become

backup drugs for the treatment of gliomas.
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3.2 Natural small-molecule compounds
restrain glioma growth via necroptosis

Furthermore, multiple studies have demonstrated that drugs

can trigger necroptosis and effectively suppress the growth of

gliomas. For example, Shikonin, a natural naphthoquinone

isolated from the roots of Lithospermum erythrorhizon, can

induce apoptosis and necrotic of GBM cells (35) by inhibiting

EGFR phosphorylation and decreasing phosphorylation of EGFR

downstream molecules, including AKT, P44/42MAPK and PLCg1.
Dehydrobastidine, a natural tumor seserpene lactone from

Artemisia douglassiana Besser (Argentina) and Gynoxys verrucosa

(Ecuador), has been shown to induce the phosphorylation of the

tumor protein TP73. This process regulates apoptosis, autophagy,

and necroptosis in astroblastoma and GBM cells (36), providing

prospects for the treatment of glioma.
3.3 Natural small-molecule compounds
inhibit glioma through ferroptosis

Furthermore, numerous natural products effectively inhibit the

growth of gliomas and promote ferroptosis. For example, pseudolaric

acid B (PAB), a diterpenoid acid that has anti-cancer effects in prostate

cancer, cervical cancer and breast cancer isolated from the roots and

bark of the trunk of the cortex of Pseudolaric pine, has been shown to

trigger ferroptosis in astroblastoma and GBM cells by activating Nox4

and inhibiting xCT (68). Plumbagin (PLB; 5-hydroxy-2-methyl-1,4-

naphthoquinone) inhibits GBM growth in vitro and in vivo through

ferroptosis mediated by targeting NAD(P)H quinone dehydrogenase 1

(NQO1) and GPX4 (69).
TABLE 4 Continued

Natural
small-molecule

Suppressive effect Types
of RCD

Function
study

Stage Cancer
types

Reference

Isobavitazarone Inhibit proliferation, migration, and invasion
and induce pyroptosis

Pyroptosis In vitro and
in vivo

Pre-
clinical

GBM (79)

Pristimerin

Inhibit the viabilities and growth and
induce necrosis

Necrosis In vitro Pre-
clinical

Astrooblastoma
and GBM

(94)

2-methoxy-6-acetyl-7-
methyljuanone

Inhibit the viabilities and growth and
induce necrosis

Necrosis In vitro and
in vivo

Pre-
clinical

GBM (95)
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3.4 Natural small-molecule compounds
show promise in inducing pyroptosis in
glioma cells

Understanding the mechanisms that underlie pyroptosis in

cancer will contribute to developing new therapeutic strategies

and clinical transformations. For drug effects, the compound

benzimidazoles can induce apoptosis and pyroptosis of human

GBM cells by blocking the cell cycle (78), while the natural drug

isobavitazarone (IBC). as a compound isolated from Psoralea

corylifolia Linn seeds, can relieve pyroptosis and thus contribute

to enhancing apoptosis of GBM cells (79). Moreover, IBC exerts an

anti-cancer effect on leukemia, colorectal cancer, liver cancer, breast

cancer, prostate cancer, stomach cancer, cervical cancer, ovarian

cancer, tongue squamous cell carcinoma and myeloma.
3.5 Natural small-molecule compounds
display a suppressive effect on glioma
through necrosis

In the field of drug research, numerous studies have

demonstrated that natural compounds can trigger necrosis and

inhibit the growth of cancer. For example, berberine was isolated

from Aim. For example, berberine was isolated from Aim. Rosin can

induce necrosis in prostate cancer cells (92) and Icaritin can trigger

the necrosis of colorectal cancer cells (93). In gliomas, the natural

product pristimerin, a natural quinonemethide triterpenoid isolated

from various plant species in the Celastraceae and Hippocrateaceae

families, activates c-Jun terminal kinase to induce apoptosis in

astroblastoma and GBM cells, leading to programmed necrosis (94).

Pristimerin also has anti-cancer effects in ovarian cancer,

hepatocellular carcinoma, cervical cancer and breast cancer. 2-

methoxy-6-acetyl-7-methyljuanone (MAM) that induced necrotic

apoptosis of lung cancer and colorectal cancer cells inhibited glioma

growth by inducing programmed necrosis of GBM cells by targeting

NQO1 (95). This finding also offers potential for future

glioma treatment.

Some naturally sourced compounds with specific molecular

targets have shown promising therapeutic effects by blocking

signaling proteins that promote cancer development. We

summarized the relationship between natural drugs and RCD

(such as apoptosis, necroptosis, pyroptosis, necrosis and

ferroptosis) to achieve better precise treatment and clinical effects.

These RCD related targeting drugs have been proven in the

treatment of GBM, and the effect of other regulatory methods on

glioma remains to be proven. Therefore, natural small molecule

compounds may become clinical agents of GBM by regulating RCD.
4 Conclusion and perspective

Glioma, a persistent form of cancer, still has a low survival rate

and poor prognosis. RCD is the primary mechanism through which

organisms eliminate damaged cells that are at risk of tumor
Frontiers in Oncology 13
transformation or cells hijacked by microorganisms for pathogen

replication. This process involves apoptosis apoptosis, and

necroptosis, which act as natural barriers that limit the survival

and propagation of malignant cells. Previous studies have shown

that gliomas can be treated with RCD. RCD includes apoptosis,

necroptosis, autophagy, ferroptosis, pyroptosis, necrosis,

parathyroid hormone, entosis, lysosome-dependent cell death,

NETosis, oxiptosis, alkaliptosis, cuproptosis, and disulfideptosis.

In addition to the different forms of RCD that inhibit glioma growth

described in this review, other forms of RCD have been found to

have in gliomas, such as entosis (109, 110), NETosis (102, 103),

oxeiptosis (111), alkaliptosis (112, 113) and disulfidptosis (114).

Particularly, disulfidoptosis, a newly discovered RCDmode in 2022,

may target the weakness of cancer metabolism (135). Although

these forms of RCD have not been shown to be effective against

gliomas, they have been shown to be effective against diseases such

as breast cancer (136, 137), endometrial cancer (104), and

pancreatic cancer (112, 113). Given their role in modulating

cancer development and oncogenes in various types of cancer, the

therapeutic potential of these compounds extends to other tumors,

particularly gliomas, making them promising subjects for further

research and potential treatment.

None of the treatments for glioma have been able to provide a

complete cure. In the case of glioma treatment candidates, recent

studies have found that, in addition to the commonly used drug

temozolomide, numerous natural drugs such as RA (24), matrine

(25), xanthatin (26, 47), PP7 (27), Shikonin (36), PAB (68), PLB

(69), IBC (79), Pristimerin (94), MAM (95), DPT (99), etc. inhibit

the growth of interlacing and inhibiting glioma by inducing

apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, necrosis

and parthanayos. The therapeutic potential of these natural small-

molecule compounds in treating glioma makes them promising

candidates for targeted therapeutic intervention. Future research

may lead to a cure for gliomas. Although many drugs targeting RCD

have not yet been approved, future therapeutic effects in gliomas

can be anticipated based on previous analyses of the PubMed and

Web of Science databases, as well as the effects observed in other

tumors. In this review, we focus on the research progress of RCD in

glioma. The aim is to develop new strategies and approaches for the

treatment of glioma with the ultimate goal of achieving a cure in

the future.
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Bcl2 B-cell lymphoma 2

Caspase cysteinyl aspartate specific proteinase

CMA Chaperone-Mediated Autophagy

EMT epithelial-mesenchymal transformationr

GSC Glioblastoma stem cells

HFn H-ferritin

IAPs Inhibitors of Apoptosis

LCD lysosome-dependent cell death

MAM 2-methoxy-6-acetyl-7-methyljuanone

MLKL Mixed Lineage Kinase Domain Like Pseudokinase

NETs neutrophil extracellular traps

PLB Plumbagin, 5-hydroxy-2-methyl-1,4-naphthoquinone

PTEN phosphatase and tensin homolog

RTK the tyrosine kinase receptor

TCA the tricarboxylic acid

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

BCL-XL B-cell lymphoma extra-large

CCL2 C-C chemokine ligand 2

DPT deoxypodophyllotoxin

FADD Fas-associated death domain

GSH glutathione

HFn-Cu-
REGO NPs

H-ferritin (HFn), regorafenib, and Cu2+ were rationally
designed as brain-targeted nanoplatforms

IBC isobavitazarone

LMP lysosome membrane permeabilization

MAPK mitogen-activated protein kinase

mTOR mammalian target of rapamycin

NQO1 NAD(P)H: quinone oxidorereductase 1

PKM2 pyruvate kinase M2 isoform

RCD regulated cell death

RA Rosmarinic acid

TLR Toll-like receptor

VEGF vascular endothelial growth factor

CA9 carbonic anhydrase 9

circRNAs circular RNAs

EGFR epidermal growth factor receptor

GBM glioblastoma

GPX4 glutathione peroxidase 4

IBC isobavitazarone
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KPNb1 Karyopherin b1

lncRNA long-stranded non-coding RNAs

MIF macrophage inhibitory factor

Nec-1 necrosis inhibitor-1

PAB pseudolaric acid B

PP7 Polyphyllin VII

RSL3 RAS selective lethal 3

RAS KRAS, NRAS, and HRAS

TNF/TNFa tumor necrosis factor
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