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Objective: We aimed to evaluate the diagnostic effectiveness of computed

tomography (CT)-based radiomics for predicting lymph node metastasis (LNM)

in patients diagnosed with esophageal cancer (EC).

Methods: The present study conducted a comprehensive search by accessing

the following databases: PubMed, Embase, Cochrane Library, and Web of

Science, with the aim of identifying relevant studies published until July 10th,

2023. The diagnostic accuracy was summarized using the pooled sensitivity,

specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR),

diagnostic odds ratio (DOR), and area under the curve (AUC). The researchers

utilized Spearman’s correlation coefficient for assessing the threshold effect,

besides performingmeta-regression and subgroup analysis for the exploration of

possible heterogeneity sources. The quality assessment was conducted using the

Quality Assessment of Diagnostic Accuracy Studies-2 and the Radiomics Quality

Score (RQS).

Results: The meta-analysis included six studies conducted from 2018 to 2022,

with 483 patients enrolled and LNM rates ranging from 27.2% to 59.4%. The

pooled sensitivity, specificity, PLR, NLR, DOR, and AUC, along with their

corresponding 95% CI, were 0.73 (0.67, 0.79), 0.76 (0.69, 0.83), 3.1 (2.3, 4.2),

0.35 (0.28, 0.44), 9 (6, 14), and 0.78 (0.74, 0.81), respectively. The results

demonstrated the absence of significant heterogeneity in sensitivity, while

significant heterogeneity was observed in specificity; no threshold effect was

detected. The observed heterogeneity in the specificity was attributed to the

sample size and CT-scan phases (P < 0.05). The included studies exhibited

suboptimal quality, with RQS ranging from 14 to 16 out of 36. However, most of

the enrolled studies exhibited a low-risk bias and minimal concerns relating

to applicability.
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Conclusion: The present meta-analysis indicated that CT-based radiomics

demonstrated a favorable diagnostic performance in predicting LNM in EC.

Nevertheless, additional high-quality, large-scale, and multicenter trials are

warranted to corroborate these findings.

Systematic Review Registration: Open Science Framework platform at https://

osf.io/5zcnd.
KEYWORDS

esophageal cancer, lymph node metastasis, computerized tomography, radiomics,
diagnosis, meta-analysis
Introduction

Esophageal cancer (EC), a prevalent and deadly neoplasm, has

been identified as the seventh most commonly diagnosed cancer

globally in 2020, with 604,000 new cases reported and the sixth

leading cause of death, with 544,000 fatalities (1). Patients with EC

are often diagnosed at advanced stages, making them unsuitable for

surgery and leading to a poor prognosis with low 5-year survival

rates of only 20%-30% (2–4). Lymph node metastasis (LNM) has

been identified as a vital prognostic determinant for patient survival

(5–7). The eighth edition of the AJCC’s International Staging

Standard for Esophageal Cancer introduced a clinical staging

system based on preoperative imaging; it incorporated the count

of lymph node metastases in postoperative staging (8, 9). While

pathological findings continue to be the gold standard for

diagnosing LNM, lymph node biopsy represents an invasive

procedure with a non-trivial incidence of complications (10).

Therefore, accurate evaluation of lymph node status using non-

invasive imaging methods is imperative for making informed

treatment decisions and essential for precise prognostication.

The computed tomography (CT) scans is a widely used non-

invasive imaging technique for acquiring preoperative and

postoperative tumor-related data to assess lymph node status in

EC patients (11). However, relying solely on morphological

standards, including short diameter and shape measured by

physicians with varying levels of clinical diagnostic expertise,

conventional CT scans are inadequate for accurately identifying

LNM. The accuracy of conventional CT scans for precise detection

is suboptimal, with sensitivity ranging from 37.3% to 67.2% and

specificity ranging from 63.9% to 96.4% (12). Furthermore, these

criteria have limitations culminating in a markedly low diagnostic

accuracy for normal-sized lymph nodes. Consequently,

conventional evaluation of lymph node status through CT scans

remains challenging.

Radiomics is an innovative technique that swiftly extracts

numerous quantitative features from conventional medical images

using high-throughput computation, yielding invaluable

information for diagnostic and prognostic purposes (13–15). In
02
recent years, radiomics has been extensively employed in detecting,

grading, assessing the therapeutic response, and prognostic

evaluation for patients with EC (16–20). CT-based radiomics

have been utilized to predict LNM in patients with EC (11, 21–

23). These findings suggest that this approach has great potential as

an accurate and reproducible tool for non-invasive preoperative

evaluation of LNM. Radiomics techniques offer a promising

solution that overcomes some of the limitations of conventional

CT imaging. However, owing to variations in imaging protocols,

study design, sample size, modeling techniques, and software

used for radiomics analysis across various studies on EC, the

reported diagnostic efficacy of radiomics in preoperative

identification of LNM has demonstrated significant variability.

These inconsistencies have led to uncertainty regarding the

effectiveness of using radiomics for this purpose in clinical

practice. Therefore, we aimed to conduct a comprehensive meta-

analysis that thoroughly assesses the diagnostic accuracy of CT-

based radiomics in predicting LNM in individuals diagnosed

with EC.
Materials and methods

This study followed the guidelines of Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) (24). The

protocol for this review has been registered on the Open Science

Framework (OSF) platform, with the registration link available at

https://osf.io/5zcnd.
Literature search

In attempting to comprehensively identify all studies that may

be related to our question, an independent search was conducted by

two authors (L.S.L. and Y.Z.) in four databases, namely PubMed,

Embase, Web of Science, and Cochrane Library, which was limited

to studies published until July 10th, 2023. Various keywords,

including “artificial intelligence,” “machine learning,” “radiomics,”
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https://osf.io/5zcnd
https://osf.io/5zcnd
https://osf.io/5zcnd
https://doi.org/10.3389/fonc.2024.1267596
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1267596
“deep learning,” “esophageal neoplasms,” “esophageal cancer,”

“lymph node metastasis,” “lymph node,” and “LNM” were used

for the search. MeSH terms and variations of each keyword were

utilized during the search to ensure inclusivity. Any disagreements

during the literature selection process were resolved through

discussion and consensus among the research team, with the

assistance of a designated third-party reviewer (H.L.).
Study selection

The selected studies had to meet specific criteria: (1) original

research studies with sample sizes greater than 40; (2)

histopathological diagnosis of EC and LNM; (3) LNM detected

using CT-based radiomics, and (4) data sufficient for reconstructing

2×2 contingency table, aiming at determining diagnostic sensitivity

and specificity. Meanwhile, the criteria used to exclude ineligible

studies were: (1) reviews, case reports, consensus statements,

guidelines, animal studies, letters, and editorials, and (2) multiple

studies using the same study population (in such cases, the most

recent or comprehensive report was also included).
Quality assessment

The quality assessment and data extraction were independently

evaluated by two reviewers, L.S.L. and Y.Z. Any disagreements were

resolved by the third reviewer, H.L. Four domains of the Quality

Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were

customized to evaluate the potential bias in the selected studies,

including patient selection, index testing, reference standards, and

flow and timing (25). The researchers utilized the Radiomics

Quality Score (RQS) to evaluate the methodological quality of the

included studies. The RQS comprises five components: imaging

protocol, feature extraction from radiological images, data

modeling, model validation, and data sharing (13). Additional

details can be found in the Supplementary Table S1. The

concordance between the two primary reviewers was determined

through the calculation of the intra-class correlation coefficient

(ICC). The ICC values were classified as excellent (≥ 0.85), good

(0.70–0.84), moderate (0.55–0.69), and weak or poor (≤ 0.54) (26).
Data extraction

All pertinent data was acquired from the entirety of the

incorporated full-text articles. The information that was obtained

through extraction were: first author, publication year, country,

study type, total number of patients and LNM cases, CT machine

type, segmentation details, feature selection method, algorithms,

information about radiomics and deep learning, data source (single

or multiple institutions), sensitivity, and specificity. The researchers

calculated the numbers of true positive/negative and false positive/

negative cases using the reported sensitivity, specificity, LNM-
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present, and LNM-absent values in each study. If a single study

presented multiple models derived from the same patient cohort,

only the model demonstrating superior diagnostic accuracy in the

validation cohort (or the training cohort if a validation cohort was

unavailable) was considered for inclusion in this meta-analysis (27).
Statistical analysis

Stata 16.0, Meta-Disc 1.4, and Review Manager 5.3 were

employed for statistical analysis of meta-analysis. Diagnostic

accuracy was evaluated by pooling sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), and

diagnostic odds ratio (DOR) with their respective 95% CI. The

summary receiver operating characteristic curve (SROC) and its

corresponding area under the curve (AUC) were used to summarize

the findings. Heterogeneity assessment of the studies incorporated

in the analysis was performed through Cochran’s Q-test and

Higgins’ I2 test. A P < 0.05 (Cochran’s Q-test) or a Higgins’ I2

value >50% indicated significant heterogeneity between the studies

(28). Sensitivity analysis were conducted by systematically

eliminating individual studies from the meta-analysis calculations

to evaluate their influence on the overall estimation. Deeks’ test

assessed the publication bias by analyzing the effective sample size

funnel plot (29).
Clinical utility

The study employed Fagan plot analysis for assessing the

clinical effectiveness of CT-based radiomics in predicting LNM.

This method calculated the LNM post-test probability (P-post)

based on the pre-test probabilities (P-pre), signifying a suspicion of

LNM (30).
Results

Study selection

By using the aforementioned search strategy, 163 studies were

initially identified; only 96 remained after duplicate removal. After

reviewing the titles and abstracts, only 24 studies were deemed

eligible for further analysis and potential inclusion. After carefully

reading the full-text articles, six studies (21, 31–35) were considered

eligible for inclusion. In contrast, seven were excluded due to

insufficient data, and eleven did not meet the intended purpose of

investigating radiomics for predicting LNM (Figure 1).
Features of the enrolled studies

Table 1 lists an overview of the six enrolled studies spanning

from 2018 to 2022. A total of 483 patients were enrolled, with LNM
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rates varying between 27.2% to 59.4%. The included studies were

conducted retrospectively and exclusively in China. Additionally, all

the studies were based on single-center data. Three studies focused

on esophageal squamous cell carcinoma, while the remaining three

did not specify the cancer subtype. Manual segmentation was

utilized for radiomics analysis in all the studies. Furthermore,

only one study combined feature extraction with deep learning

methods, while the other five exclusively relied on radiomics. The

feature selection methods employed in radiomics analysis included

the least absolute shrinkage and selection operator (LASSO), t-test,

analysis of variance, and ridge regression. In terms of the radiomics

diagnostic model developed using machine learning algorithms,

logistic regression (LR) was used in four studies, while random

forest (RF) and support vector machine (SVM) were used in one

study each.
Quality assessment and publication bias

The detailed assessments of RQS and QUADAS-2 for each study

are provided in Supplementary Tables S2 and S3. The agreement

between primary reviewers was excellent, with ICC values of 0.94

(95% CI 0.64-0.99) for RQS and 0.92 (95% CI 0.56-0.99) for

QUADAS-2. The RQS varied between 14 and 16 across studies,

with two studies (33, 34) achieving the highest RQS percentage at

44.4%. However, all the selected studies lacked the use of phantoms to

evaluate robustness, prospective research design, discussion of

potential biological correlates, or comprehensive cost-effectiveness

analysis. The qualitative assessment using the QUADAS-2 tool

indicated that most studies had a low risk of bias and minimal

concerns regarding their applicability (Figure 2). Deeks’ funnel plot

analysis revealed no evidence of publication bias, suggesting a low risk

of bias among the included studies. (Figure 3; P = 0.78).
FIGURE 1

Flow diagram of study selection for meta-analysis according
to PRISMA.
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Diagnostic accuracy of
CT-based radiomics

Across all six selected studies, the pooled sensitivity and

specificity (as displayed by the forest plots in Figure 4) for the CT-

based radiomics in evaluating LNM in EC were determined to be 0.73

(95% CI, 0.67-0.79) and 0.76 (95% CI, 0.69-0.83), respectively. The
Frontiers in Oncology 05
PLR, NLR, and DOR were found to be 3.1 (95% CI, 2.3-4.2), 0.35

(95% CI, 0.28-0.44), and 9 (95% CI, 6-14), respectively. Furthermore,

the SROC analysis yielded an AUC of 0.78 (95% CI, 0.74-0.81),

indicating significant overall diagnostic efficacy (Figure 5).
Heterogeneity assessment

Figure 4 presents the forest plot, which indicates no significant

heterogeneity among the studies included in the research when

considering sensitivity (P=0.85; I2 = 0). However, specificity

exhibited a significant heterogeneity (P=0.07) with a moderate level

of heterogeneity indicated by an I2 value of 51.56% (95% CI, 6.97%-

96.14%). The Spearman’s correlation coefficient was 0.543, with a non-

significant P-value of 0.266, suggesting the absence of a threshold effect.
Meta-regression

The sources of heterogeneity were identified through the

application of univariate meta-regression analysis. Table 2

presents the results of both subgroup analysis and univariate

meta-regression, revealing that several categories, including tumor

type, LNM ratio, feature selection method, and algorithms,

significantly contributed to the heterogeneity observed in the

pooled sensitivity (P < 0.05). Moreover, the sample size and CT-
B

A

FIGURE 2

Quality assessment of included studies according to Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria. (A) Individual studies,
(B) summary.
FIGURE 3

Deeks’ funnel plot asymmetry test for publication bias.
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scan phases used were identified as contributors to the

heterogeneity in specificity analysis (P < 0.05). The forest plot is

presented in Supplementary Figure S1.
Subgroup analysis

Studies on esophageal squamous cell carcinoma (n=3)

demonstrated equivalent sensitivity (72%, 95% CI, 65-79 vs. 75%;
Frontiers in Oncology 06
95% CI, 65-86) and higher specificity (79%, 95% CI, 70-88 vs. 74%;

95% CI, 64-83) compared to studies on esophageal carcinoma

(n=3). Studies with ≥90 patients (n=3) showed equivalent

sensitivity (75%, 95% CI 67-82 vs. 71%, 95% CI 62-81) and

specificity (75%, 95% CI 66-85 vs. 78%, 95% CI 68-88) compared

to studies with <90 patients (n=3). Studies with an LNM ratio ≥50%

(n=3) had equivalent sensitivity (72%, 95% CI, 65-79 vs. 75%; 95%

CI, 65-86) and higher specificity (79%, 95% CI, 70-88 vs. 74%; 95%

CI, 64-83) when compared to studies with an LNM ratio of

<50% (n=3).

Three studies using only General Electric(GE) equipment

showed similar sensitivity (72%, 95% CI, 64-80 vs. 73%, 95% CI,

60-86) and higher specificity (80%, 95% CI, 71-88 vs. 70%, 95% CI,

57-84) to two studies using other equipment. Three studies using

contrast-enhanced CT only had equivalent sensitivity (74%, 95%

CI, 67-82 vs. 71%; 95% CI, 62-81) and lower specificity (70%, 95%

CI, 62-78 vs. 82%; 95% CI, 75-88) than three studies using other

methods. In terms of ROI selection, only one study using the 2D

method showed similar sensitivity (76%, 95% CI, 63-89 vs. 72%,

95% CI, 66-79) and specificity (76%, 95% CI, 60-93 vs. 76%, 95% CI,

69-84) compared to five studies that employed the 3D method. Two

studies using the LASSO method had similar sensitivity (73%, 95%

CI, 62-84 vs. 73%, 95% CI, 66-81) and higher specificity (83%, 95%

CI, 74-91 vs. 72%, 95% CI, 64-80) compared to four other studies

using different methods. Studies (n=4) utilizing LR for their model

had lower sensitivity (71%, 95% CI, 64-79 vs. 77%, 95% CI, 68-87)

and equivalent specificity (76%, 95% CI, 67-85 vs. 77%, 95% CI, 66-

88) compared to studies (n=2) using different algorithms. A study

that combined deep learning features (n=1) showed similar

sensitivity (76%, 95% CI, 63-89 vs. 72%, 95% CI, 66-79) and

specificity (76%, 95% CI, 60-93 vs. 76%, 95% CI, 69-84), when

compared to studies solely utilizing radiomics (n=5).
FIGURE 5

Summary receiver operating characteristic curves (SROC) based on
radiomics for predicting LNM in esophageal carcinoma.
FIGURE 4

Forest plot of sensitivity and specificity based on radiomics for predicting LNM in esophageal carcinoma.
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Sensitivity analysis

Supplementary Table S1 lists the sensitivity analysis results for

each of the six chosen studies. Our findings demonstrated the

robustness of results as no significant changes were observed

when excluding each study individually; this suggested that any

particular study did not significantly influence the overall outcome.
Clinical utility

A CT-based radiomics model can substantially increase the P-

post from 20% to 44% with a PLR of 3 for positive pre-tests.

Conversely, it can decrease the P-post to 8% with an NLR of 0.35 for

negative pre-tests (Figure 6). This section may be divided by

subheadings. It should provide a concise and precise description

of the experimental results, their interpretation, as well as the

experimental conclusions that can be drawn.
Discussion

According to our current awareness, this study represented the

first systematic review and meta-analysis investigating the efficacy of

CT-based radiomics in assessing LNM among patients diagnosed

with EC. Our findings demonstrated that the pooled sensitivity,
Frontiers in Oncology 07
specificity, and AUC for CT-based radiomics were 0.73 (95% CI,

0.67-0.79), 0.76 (95% CI, 0.69-0.83), and 0.78 (95% CI, 0.74-0.81),

respectively, showcasing its significantly effective performance. The

good sensitivity was crucial for accurately identifying most patients

with LNM, thus reducing the chances of missed diagnoses.

Furthermore, the high specificity was key in lowering false-positive

rates, offering a reliable way to rule out LNM in patients and helping

clinicians avoid unnecessary treatments and their potential

complications. The inclusion of positive and negative likelihood

ratios (PLR and NLR) of 3.1 and 0.35, respectively, further

improved the diagnostic utility of CT-based radiomics. A PLR of

3.1 meant that patients with LNM were over three times more likely

to have a positive test result than those without, greatly increasing the

accuracy of identifying affected individuals. On the other hand, an

NLR of 0.35 indicated that a negative result significantly reduced the

chance of LNM by 65%, lowering the risk of false negatives. These

ratios adjusted the post-test probability based on the initial

probability, with a positive test increasing the probability from 20%

to 44%, and a negative test decreasing it to about 8%. Such

adjustments significantly changed how test results were interpreted

clinically, boosting the predictive accuracy. Therefore, our study

validated the precision and effectiveness of CT-based radiomics in

predicting LNM in EC, facilitating personalized treatment plans. By

precisely detecting LNM and improving cancer staging, it facilitated

more personalized care, optimizing treatment for high-risk patients

while avoiding unnecessary interventions for others.
TABLE 2 Results of univariate meta-regression and subgroup analyses.

Subgroup Category Studies (n) Sensitivity (95%CI) P value Specificity (95%CI) P value

Tumor type ESCC 3 0.72 (0.65-0.79) 0.02 0.79 (0.70-0.88) 0.16

EC 3 0.75 (0.65-0.86) 0.74 (0.64-0.83)

Sample size ≥90 3 0.75 (0.67-0.82) 0.09 0.75 (0.66-0.85) 0.04

<90 3 0.71 (0.62-0.81) 0.78 (0.68-0.88)

LNM ratio ≥50% 3 0.72 (0.65-0.79) 0.02 0.79 (0.70-0.88) 0.16

<50% 3 0.75 (0.65-0.86) 0.74 (0.64-0.83)

Scanner GE 3 0.72 (0.64-0.80) 0.13 0.80 (0.71-0.88) 0.53

Other 2 0.73 (0.60-0.86) 0.70 (0.57-0.84)

Phases CE 3 0.74 (0.67-0.82) 0.06 0.70 (0.62-0.78) 0.00

Other 3 0.71 (0.62-0.81) 0.82 (0.75-0.88)

ROI 2D 1 0.76 (0.63-0.89) 0.20 0.76 (0.60-0.93) 0.27

3D 5 0.72 (0.66-0.79) 0.76 (0.69-0.84)

Feature selection method LASSO 2 0.73 (0.62-0.84) 0.05 0.83 (0.74-0.91) 0.27

Other 4 0.73 (0.66-0.81) 0.72 (0.64-0.80)

Algorithms LR 4 0.71 (0.64-0.79) 0.01 0.76 (0.67-0.85) 0.06

Other 2 0.77 (0.68-0.87) 0.77 (0.66-0.88)

Combine deep learning Yes 1 0.76 (0.63-0.89) 0.20 0.76 (0.60-0.93) 0.27

No 5 0.72 (0.66-0.79) 0.76 (0.69-0.84)
ESCC, esophageal squamous cell carcinoma; EC, esophageal carcinoma; LNM, lymph node metastasis; CE, contrast-enhanced; NCE, non-contrast-enhanced; ROI, region of interest; 2D, two
−dimensional; 3D, three−dimensional; LASSO, least absolute shrinkage and selection operator; LR, logistic regression.
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A moderate degree of heterogeneity in terms of specificity was

indicated by the meta-analysis of the studies included, which is worth

noting. To determine the possible sources of heterogeneity, a

univariate meta-regression analysis and subgroup analysis were

conducted, as the Spearman’s correlation coefficient test revealed

that heterogeneity was not associated with threshold effects. The

results suggested that the heterogeneity in specificity could be

attributed to the utilization of different CT scan phases and

variations in sample size. However, upon conducting a subgroup

analysis, it was observed that the sensitivity and specificity were not

significantly affected by these factors. It is important to acknowledge

that due to the variations in methodologies employed among the

included studies, it was challenging to identify all the factors

contributing to the observed heterogeneity. Interestingly, while there

was no heterogeneity in the pooled sensitivity across all studies, several

subgroups showed significant results (P < 0.05) in the univariate meta-

regression analysis. Therefore, further research with methodological

standardization is necessary to improve accuracy, eliminate

heterogeneity, and provide more robust evidence for using CT-

based radiomics in predicting LNM in patients with EC.

LASSO regression is widely used for feature selection and

dimensionality reduction, aiming to reduce the number of features

and eliminate irrelevant ones (36, 37). In the subgroup analysis of this

study, using LASSO alone for dimensionality reduction resulted in

slightly higher specificity than combining it with other methods. This
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observation may be attributed to the distribution of data features and

the division of subgroups. Most studies on radiomics diagnostic models

used LR due to the binary nature of LNM status. Nevertheless, studies

utilizing other algorithms, including SVM and RF, showed higher

sensitivity rates than those using LR. Additionally, previous studies

have shown that neural networkmodels or RF based on clinical features

could more effectively predict LNM than traditional LR, exhibiting

higher AUC, specificity, positive predictive value, and accuracy (38, 39).

Regrettably, owing to limited available literature, only one article each

for SVM and RF was retrieved, making it difficult to draw reliable

conclusions regarding the comparison between SVM or RF and LR.

Image segmentation is a pivotal element of radiomic analysis,

incorporating manual delineation using 2D or 3D images, as well as

semi-automatic and fully automatic techniques. However, a universally

accepted standard for tumor segmentation remains elusive (40).

Although manual segmentation offers high precision, it is labor-

intensive, subjective, and lacks standardization, leading to limited

reproducibility and elevated time and labor expenses. Semi-automatic

segmentation necessitates manual refinement, whereas automatic

segmentation employs sophisticated computer algorithms for efficient

and reproducible lesion boundary identification (41, 42). However, it’s

crucial to mention that the studies incorporated in this research

exclusively used manual delineation for image segmentation.

Moreover, only one study in this meta-analysis employed the 2D

method, and the subgroup analysis did not reveal a significant

difference in sensitivity and specificity between the 2D and 3D

methods. Nonetheless, the majority of previous studies have

recognized that radiomics-based 3D imaging traits offer a wider and

more diverse range of specific information, covering the entire tumor

volume and providing a more comprehensive and accurate

representation of its shape, size, and texture. Furthermore, 3D

segmentation enhances reproducibility by reducing interobserver

variability and offers a standardized approach to tumor delineation

(43, 44). Hence, future research could concentrate on investigating the

advantages and limitations of manual, semi-automatic, and fully

automatic delineation in both 2D and 3D methods in radiomics-based

imaging analysis, with the goal of determining the most suitable imaging

technique for specific clinical situations and enhancing the accuracy and

reproducibility of radiomics-based tumor characterization.

Previous studies have highlighted the potential impact of variations

in manufacturers and devices on the reproducibility of radiomics

features, which could affect the precision of image diagnosis (13, 45).

Similarly, the subgroup analysis results of this study revealed that

radiomics features derived from distinct CT devices had an impact on

the pooled specificity. Nonetheless, it is important to interpret these

results cautiously, considering the limited number of studies included

in the meta-analysis and the potential for bias due to the small sample

size. Multicenter studies can validate the generalization ability of

radiomics models by overcoming data differences across regions and

devices, thereby improving the stability and reliability of the model

(46). However, it is worth noting that all the studies included in this

analysis were conducted in the same geographical region, China, which

introduces a potential geographical bias. To gain a deeper

understanding of the value of radiomics in diagnosing LNM in EC,

further analysis is required through more prospective, multi-regional,

and high-quality studies.
FIGURE 6

Fagan plots for assessing clinical utility.
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To assess the robustness of our study, we conducted a sensitivity

analysis by sequentially removing one literature source at a time. The

results showed no significant changes in the combined DOR after

each exclusion, indicating that individual studies did not significantly

influence our meta-analysis and that the conclusions were stable and

reliable. Moreover, the lack of publication bias, as evidenced by

Deeks’ funnel plot, further supports the credibility of our findings.

To bolster the robustness and reproducibility of radiomics

methodologies, Lambin et al. introduced the RQS guidelines in 2017

(13), aiming to establish a benchmark for quality in radiomics research.

However, the absence of standardized quality thresholds remained a

notable gap. In response, Wesdorp et al. (47) suggested adopting a 30%

cut-off score to enhance clarity and consistency across studies. Despite

the RQS percentage of included studies in this meta-analysis ranging

from 38.9% to 44.4%, surpassing the 30% threshold, and the pooled

diagnostic efficacy demonstrating commendable performance in

detecting LNM, the methodological quality of included studies

remained a concern. This was because none of the studies utilized

phantoms to assess robustness against inter-scansner discrepancies

and vendor-specific characteristics. Additionally, comprehensive cost-

effectiveness analysis, discussions on potential biological correlations,

and a prospective study design were lacking in these studies. Therefore,

caution is advised when interpreting the study outcomes.

Several constraints should be considered in the meta-analysis.

Firstly, a constrained number of studies met our selection criteria.

Secondly, the exclusively retrospective studies analyzed, all conducted

in China and solely encompassing English-language publications,

may have introduced selection biases and affected quality assessment,

thereby potentially constraining the generalizability of our findings.

Thirdly, despite conducting various analyses, heterogeneity persisted,

emphasizing the need for cautious interpretation of the pooled

quantitative results. During data extraction, the highest diagnostic

performance model was chosen among multiple models, potentially

leading to overestimating the radiomics diagnostic accuracy. Lastly,

radiomics could be influenced by factors such as imaging equipment

technology and protocols, contributing to heterogeneity. Therefore,

establishing standardized presentation protocols in future radiomics

research papers is necessary.
Conclusions

Our findings indicated that the CT-based radiomics demonstrated

good diagnostic accuracy in predicting LNM in EC, with

commendable sensitivity and specificity levels. However, considering

the suboptimal RQS and observed heterogeneity among the included

studies, it is essential to conduct additional high-quality, multicenter,

and large-scale prospective trials to establish more robust and

conclusive evidence for the findings presented in this research.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Materials, further inquiries can be

directed to the corresponding author/s.
Frontiers in Oncology 09
Author contributions

LL: Conceptualization, Data curation, Funding acquisition,

Investigation, Methodology, Writing – original draft, Writing –

review & editing, Project administration. HL: Data curation, Formal

analysis, Investigation, Methodology, Validation, Writing – original

draft, Writing – review & editing. YZ: Data curation, Methodology,

Software, Writing – original draft, Writing – review & editing. JY:

Formal analysis, Writing – original draft, Writing – review &

editing. CW: Methodology, Visualization, Writing – original

draft, Writing – review & editing. LD: Methodology, Writing –

original draft, Writing – review & editing. PX: Software, Writing –

original draft, Writing – review & editing. WW: Supervision,

Visualization, Writing – review & editing. MX: Supervision,

Visualization, Writing – review & editing. DS: Conceptualization,

Funding acquisition, Project administration, Supervision,

Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was supported by the Guangxi Clinical Research Center

for Medical Imaging Construction (Grant No. Guike AD20238096),

Guangxi Key Clinical Specialty (Medical Imaging Department),

Dominant Cultivation Discipline of Guangxi Medical University

Cancer Hospital (Medical Imaging Department), and self-financing

research of the Health Department of Guangxi Autonomous Region

(Grant No. Z-A20231142).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1267596/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1267596/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1267596/full#supplementary-material
https://doi.org/10.3389/fonc.2024.1267596
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1267596
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

2. Jin X, Zheng X, Chen D, Jin J, Zhu G, Deng X, et al. Prediction of response after
chemoradiation for esophageal cancer using a combination of dosimetry and CT
radiomics. Eur Radiol. (2019) 29:6080–8. doi: 10.1007/s00330-019-06193-w

3. Li X, Zhao J, Liu M, Zhai F, Zhu Z, Yu F, et al. Determination of radiotherapeutic
target zones for thoracic esophageal squamous cell cancer with lower cervical lymph
node metastasis according to CT-images. Oncotarget. (2016) 7:35865–73.
doi: 10.18632/oncotarget.9094

4. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al.
Oesophageal cancer. Nat Rev Dis Primers. (2017) 3:17048. doi: 10.1038/nrdp.2017.48

5. Ding M, Cui H, Li B, Zou B, Fan B, Ma L, et al. Integrating preoperative computed
tomography and clinical factors for lymph node metastasis prediction in esophageal
squamous cell carcinoma by feature-wise attentional graph neural network. Int J Radiat
Oncol Biol Phys. (2023) 116:676–89. doi: 10.1016/j.ijrobp.2022.12.050

6. Qu J, Shen C, Qin J, Wang Z, Liu Z, Guo J, et al. The mr radiomic signature can
predict preoperative lymph node metastasis in patients with esophageal cancer. Eur
Radiol. (2019) 29:906–14. doi: 10.1007/s00330-018-5583-z

7. Ji X, Cai J, Chen Y, Chen LQ. Lymphatic spreading and lymphadenectomy for
esophageal carcinoma. World J Gastrointest Surg. (2016) 8:90–4. doi: 10.4240/wjgs.v8.i1.90

8. ChenM, Li X, ChenY, Liu P, Chen Z, ShenM, et al. Proposed revision of the 8th edition
ajcc clinical staging system for esophageal squamous cell cancer treated with definitive chemo-
imrt based on CT imaging. Radiat Oncol. (2019) 14:54. doi: 10.1186/s13014-019-1258-4

9. D'Journo XB. Clinical implication of the innovations of the 8(Th) edition of the
tnm classification for esophageal and esophago-gastric cancer. J Thorac Dis. (2018) 10:
S2671–S81. doi: 10.21037/jtd.2018.03.182

10. Huang YL, Yan C, Lin X, Chen ZP, Lin F, Feng ZP, et al. The development of a
nomogram model for predicting left recurrent laryngeal nerve lymph node metastasis
in esophageal cancer based on radiomics and clinical factors. Ann Transl Med. (2022)
10:1282. doi: 10.21037/atm-22-5628

11. Zhao B, Zhu HT, Li XT, Shi YJ, Cao K, Sun YS. Predicting lymph node
metastasis using computed tomography radiomics analysis in patients with
resectable esophageal squamous cell carcinoma. J Comput Assist Tomogr. (2021)
45:323–9. doi: 10.1097/RCT.0000000000001125

12. Liu J, Wang Z, Shao H, Qu D, Liu J, Yao L. Improving CT detection sensitivity
for nodal metastases in oesophageal cancer with combination of smaller size and lymph
node axial ratio. Eur Radiol. (2018) 28:188–95. doi: 10.1007/s00330-017-4935-4

13. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol. (2017) 14:749–62. doi: 10.1038/nrclinonc.2017.141

14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

15. Le VH, Kha QH, Minh TNT, Nguyen VH, Le VL, Le NQK. Development and
validation of CT-based radiomics signature for overall survival prediction in multi-
organ cancer. J Digit Imaging. (2023) 36:911–22. doi: 10.1007/s10278-023-00778-0

16. Shi YJ, Zhu HT, Yan S, Li XT, Zhang XY, Sun YS. A CT-based radiomics
nomogram model for differentiating primary Malignant melanoma of the esophagus
from esophageal squamous cell carcinoma. BioMed Res Int. (2023) 2023:6057196.
doi: 10.1155/2023/6057196

17. Takahashi N, Tanaka S, Umezawa R, Takanami K, Takeda K, Yamamoto T, et al.
Development and validation of an [(18)F]Fdg-pet/CT radiomic model for predicting
progression-free survival for patients with stage ii - iii thoracic esophageal squamous
cell carcinoma who are treated with definitive chemoradiotherapy. Acta Oncol. (2023)
62:159–65. doi: 10.1080/0284186X.2023.2178859

18. Du KP, Huang WP, Liu SY, Chen YJ, Li LM, Liu XN, et al. Application of
computed tomography-based radiomics in differential diagnosis of adenocarcinoma
and squamous cell carcinoma at the esophagogastric junction. World J Gastroenterol.
(2022) 28:4363–75. doi: 10.3748/wjg.v28.i31.4363

19. Wang J, Yu X, Zeng J, Li H, Qin P. Radiomics model for preoperative prediction
of 3-year survival-based CT image biomarkers in esophageal cancer. Eur Arch
Otorhinolaryngol. (2022) 279:5433–43. doi: 10.1007/s00405-022-07510-8

20. Xie C-Y, Pang C-L, Chan B,Wong EY-Y, DouQ, Vardhanabhuti V.Machine learning
and radiomics applications in esophageal cancers using non-invasive imaging methods-a
critical review of literature. Cancers. (2021) 13(10):2469. doi: 10.3390/cancers13102469

21. Chen L, Ouyang Y, Liu S, Lin J, Chen C, Zheng C, et al. Radiomics analysis of
lymph nodes with esophageal squamous cell carcinoma based on deep learning. J
Oncol. (2022) 2022:8534262. doi: 10.1155/2022/8534262

22. Lee HN, Kim JI, Shin SY, Kim DH, Kim C, Hong IK. Combined CT texture
analysis and nodal axial ratio for detection of nodal metastasis in esophageal cancer.
Br J Radiol. (2020) 93:20190827. doi: 10.1259/bjr.20190827

23. Tan X,Ma Z, Yan L, YeW, Liu Z, Liang C. Radiomics nomogram outperforms size
criteria in discriminating lymph node metastasis in resectable esophageal squamous cell
carcinoma. Eur Radiol. (2019) 29:392–400. doi: 10.1007/s00330-018-5581-1
Frontiers in Oncology 10
24. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T,
et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic
test accuracy studies: the prisma-dta statement. JAMA. (2018) 319:388–96.
doi: 10.1001/jama.2017.19163

25. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al.
Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann
Intern Med. (2011) 155:529–36. doi: 10.7326/0003-4819-155-8-201110180-00009

26. Schober P, Mascha EJ, Vetter TR. Statistics from a (Agreement) to Z (Z score): A
guide to interpreting common measures of association, agreement, diagnostic accuracy,
effect size, heterogeneity, and reliability in medical research. Anesth Analg. (2021)
133:1633–41. doi: 10.1213/ANE.0000000000005773

27. Deantonio L, Garo ML, Paone G, Valli MC, Cappio S, La Regina D, et al. 18f-fdg
pet radiomics as predictor of treatment response in oesophageal cancer: A systematic
review and meta-analysis. Front Oncol. (2022) 12:861638. doi: 10.3389/fonc.2022.861638

28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
meta-analyses. BMJ. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

29. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and
other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J
Clin Epidemiol. (2005) 58:882–93. doi: 10.1016/j.jclinepi.2005.01.016

30. Hellmich M, Lehmacher W. A ruler for interpreting diagnostic test results.
Methods Inf Med. (2005) 44:124–6. doi: 10.1055/s-0038-1633930

31. Li X, Liu Q, Hu B, Xu J, Huang C, Liu F. A computed tomography-based clinical-
radiomics model for prediction of lymph node metastasis in esophageal carcinoma. J
Cancer Res Ther. (2021) 17:1665–71. doi: 10.4103/jcrt.jcrt_1755_21

32. Ou J, Wu L, Li R, Wu CQ, Liu J, Chen TW, et al. CT radiomics features to predict
lymph node metastasis in advanced esophageal squamous cell carcinoma and to
discriminate between regional and non-regional lymph node metastasis: A case
control study. Quant Imaging Med Surg. (2021) 11:628–40. doi: 10.21037/qims-20-241

33. Peng G, Zhan Y, Wu Y, Zeng C, Wang S, Guo L, et al. Radiomics models based on
CT at different phases predicting lymph node metastasis of esophageal squamous cell
carcinoma (Gasto-1089). Front Oncol. (2022) 12:988859. doi: 10.3389/fonc.2022.988859

34. Shen C, Liu Z, Wang Z, Guo J, Zhang H, Wang Y, et al. Building CT radiomics
based nomogram for preoperative esophageal cancer patients lymph node metastasis
prediction. Transl Oncol. (2018) 11:815–24. doi: 10.1016/j.tranon.2018.04.005

35. Yu L, Huang L, Yuan Z, Zhao Q, Yin H, Yu P, et al. Radiomics model based on
plain CT for predicting lymph node metastasis of esophageal cancer. Chin J Med
Imaging Technol. (2021) 37:1333–7. doi: 10.13929/j.issn.1003-3289.2021.09.014
36. Shao B, Bjaanæs MM, Helland Å, Schütte C, Conrad T. Emt network-based

feature selection improves prognosis prediction in lung adenocarcinoma. PloS One.
(2019) 14:e0204186. doi: 10.1371/journal.pone.0204186

37. Fonti V, Belitser E. Feature Selection Using Lasso. VU Amsterdam research paper
in business analytics, Vol. 30. (2017). pp. 1–25. Available at: https://api.semanticscholar.
org/CorpusID:41727607.

38. Chen H, Zhou X, Tang X, Li S, Zhang G. Prediction of lymph node metastasis in
superficial esophageal cancer using a pattern recognition neural network. Cancer
Manag Res. (2020) 12:12249–58. doi: 10.2147/CMAR.S270316

39. Gao M, Huang S, Pan X, Liao X, Yang R, Liu J. Machine learning-based
radiomics predicting tumor grades and expression of multiple pathologic biomarkers
in gliomas. Front Oncol. (2020) 10:1676. doi: 10.3389/fonc.2020.01676

40. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.
Radiomics: the process and the challenges. Magnetic resonance Imaging. (2012)
30:1234–48. doi: 10.1016/j.mri.2012.06.010

41. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of
radiomics in precision diagnosis and treatment of oncology: opportunities and
challenges. Theranostics. (2019) 9:1303–22. doi: 10.7150/thno.30309

42. Le NQK. Hematoma expansion prediction: still navigating the intersection of
deep learning and radiomics. Eur Radiol. (2024) 22. doi: 10.1007/s00330-024-10586-x

43. Watzenboeck ML, Heidinger BH, Rainer J, Schmidbauer V, Ulm B, Rubesova E,
et al. Reproducibility of 2d versus 3d radiomics for quantitative assessment of fetal lung
development: A retrospective fetal mri study. Insights Imaging. (2023) 14:31.
doi: 10.1186/s13244-023-01376-y
44. Adelsmayr G, Janisch M, Kaufmann-Bühler AK, Holter M, Talakic E, Janek E,

et al. CT texture analysis reliability in pulmonary lesions: the influence of 3d vs. 2d
lesion segmentation and volume definition by a hounsfield-unit threshold. Eur Radiol.
(2023) 33:3064–71. doi: 10.1007/s00330-023-09500-8
45. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of

radiomic features: A systematic review. Int J Radiat Oncol Biol Phys. (2018) 102:1143–
58. doi: 10.1016/j.ijrobp.2018.05.053
46. Dou Q, So TY, Jiang M, Liu Q, Vardhanabhuti V, Kaissis G, et al. Federated deep

learning for detecting covid-19 lung abnormalities in CT: A privacy-preserving multinational
validation study. NPJ Digit Med. (2021) 4:60. doi: 10.1038/s41746-021-00431-6

47. Wesdorp NJ, Hellingman T, Jansma EP, vanWaesberghe JTM, Boellaard R, Punt
CJA, et al. Advanced analytics and artificial intelligence in gastrointestinal cancer: A
systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol
Imaging. (2021) 48:1785–94. doi: 10.1007/s00259-020-05142-w
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.1007/s00330-019-06193-w
https://doi.org/10.18632/oncotarget.9094
https://doi.org/10.1038/nrdp.2017.48
https://doi.org/10.1016/j.ijrobp.2022.12.050
https://doi.org/10.1007/s00330-018-5583-z
https://doi.org/10.4240/wjgs.v8.i1.90
https://doi.org/10.1186/s13014-019-1258-4
https://doi.org/10.21037/jtd.2018.03.182
https://doi.org/10.21037/atm-22-5628
https://doi.org/10.1097/RCT.0000000000001125
https://doi.org/10.1007/s00330-017-4935-4
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s10278-023-00778-0
https://doi.org/10.1155/2023/6057196
https://doi.org/10.1080/0284186X.2023.2178859
https://doi.org/10.3748/wjg.v28.i31.4363
https://doi.org/10.1007/s00405-022-07510-8
https://doi.org/10.3390/cancers13102469
https://doi.org/10.1155/2022/8534262
https://doi.org/10.1259/bjr.20190827
https://doi.org/10.1007/s00330-018-5581-1
https://doi.org/10.1001/jama.2017.19163
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1213/ANE.0000000000005773
https://doi.org/10.3389/fonc.2022.861638
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1016/j.jclinepi.2005.01.016
https://doi.org/10.1055/s-0038-1633930
https://doi.org/10.4103/jcrt.jcrt_1755_21
https://doi.org/10.21037/qims-20-241
https://doi.org/10.3389/fonc.2022.988859
https://doi.org/10.1016/j.tranon.2018.04.005
https://doi.org/10.13929/j.issn.1003-3289.2021.09.014
https://doi.org/10.1371/journal.pone.0204186
https://api.semanticscholar.org/CorpusID:41727607
https://api.semanticscholar.org/CorpusID:41727607
https://doi.org/10.2147/CMAR.S270316
https://doi.org/10.3389/fonc.2020.01676
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.7150/thno.30309
https://doi.org/10.1007/s00330-024-10586-x
https://doi.org/10.1186/s13244-023-01376-y
https://doi.org/10.1007/s00330-023-09500-8
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1038/s41746-021-00431-6
https://doi.org/10.1007/s00259-020-05142-w
https://doi.org/10.3389/fonc.2024.1267596
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	CT-based radiomics for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis
	Introduction
	Materials and methods
	Literature search
	Study selection
	Quality assessment
	Data extraction
	Statistical analysis
	Clinical utility

	Results
	Study selection
	Features of the enrolled studies
	Quality assessment and publication bias
	Diagnostic accuracy of CT-based radiomics
	Heterogeneity assessment
	Meta-regression
	Subgroup analysis
	Sensitivity analysis
	Clinical utility

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


