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Cervical cancer is a significant concern for women, necessitating early detection

and precise treatment. Conventional cytological methods often fall short in early

diagnosis. The proposed innovative Heap Optimizer-based Self-Systematized

Neural Fuzzy (HO-SsNF) method offers a viable solution. It utilizes HO-based

segmentation, extracting features via Gray-Level Co-Occurrence Matrix (GLCM)

and Local Binary Pattern (LBP). The proposed SsNF-based classifier achieves an

impressive 99.6% accuracy in classifying cervical cancer cells, using the Herlev

Pap Smear database. Comparative analyses underscore its superiority,

establishing it as a valuable tool for precise cervical cancer detection. This

algorithm has been seamlessly integrated into cervical cancer diagnosis

centers, accessible through smartphone applications, with minimal resource

demands. The resulting insights provide a foundation for advancing cancer

prevention methods.
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1 Introduction

The unchecked exponential development phase of cells, the

majority of which is carcinoma in situ (CIS) or have migrated to the

rest of the body, is known as cancer (1). One of the leading causes of

cancer-related mortality in women globally is ovarian cancer, a

frequent epithelial malignancy (2). Cervical cancer is a frequent

malignancy in women all over the world. The most frequent

malignancy in women under 35 is cervical cancer, which, if

detected early, is curable (3). Early-onset sexual activity, Sexually

Transmitted Diseases (STDs), and smoking are associated with an

increased risk of developing cervical cancer. Normal squamous cells

(NS), aberrant or premalignant cells, and eventually invasive disease

are the stages that lead to cervical cancer (4). HPV is identified in

cervical cells in many females with cervix dysplasia. HPV infection

is widespread in males and females, with sexual intercourse among

females under 30 most affected (5). The Papanicolaou (Pap) smear

is an excellent approach for detecting precancerous cells via

cytological testing for cervical cell anomalies (6). The Pap smear

is the most widely used procedure for early cervical cancer screening

and diagnosis. On the other hand, the manual analysis of Pap

smears is prone to errors owing to human error. Furthermore, the

procedure is time-consuming and tiresome.

The percentage of squamous epithelium that fails to mature at

the epithelium’s interface is termed low-grade dysplasia (LGD)/CIN

I, high-grade dysplasia (HGD)/CIN II, as well as CIN III and

additional CIS (7). Early detection and diagnosis of this cancer

form are crucial for effective treatment. However, automated cell

separation from cervical smears faces challenges due to noisy

backgrounds, weak cytoplasmic contrast, and fuzzy, overlapping

cells, making it a significant hurdle in biomedical image processing.

Therefore, the development of a computer-assisted assessment tool

to enhance the accuracy and reliability of the Pap smear test is

valuable. Various computer-aided diagnostics (CAD) methods for

cervical cancer screening rely on engineering features such as

artificial neural networks (ANN) (8), quasi-supervised learning

(QSL) (9), K-nearest neighbor (KNN) models (10), and Support
Abbreviations: HO-SsNF, Heap Optimizer Based Self-Systematized Neural

Fuzzy; GLCM, Gray-Level Co-Occurrence Matrix; LBP, Local Binary Pattern;

CIS, Carcinoma In Situ; STD, Sexually Transmitted Diseases; NS, Normal

Squamous Cells; HPV, Human papillomavirus; CAD, Computer-Aided

Diagnostic; ANN, Artificial Neural Networks; QSL, Quasi-Supervised Learning;

KNN, K-Nearest Neighbour ; SVM, Support Vector Machines; DTCWT, Dual

Tree Complex Wavelet Transform; CNN, Convolutional Neural Networks; DIC,

Differential Interference Contrast; PCA, Principal Component Analysis; MLP,

Multilayer Perceptron; SEENS, Selective-Edge-Enhancement; AI, Artificial

Intelligence; NCA, Neighborhood Component Analysis; ELM, Extreme

Learning Machine; CLAHE, Contrast Limited Adaptive Histogram

Equalization; HDFCN, Hybridization Of Deep Feature Concatenated Network;

WSI, Whole Slide Images; MRU-Net, Multi-Resolution U-Net; ACO, AntColony

Optimization; CPLC-QIWODL, Classification Utilizing Quantum Invasive Weed

Optimization with Deep Learning; CC, Cervical Cancer; LMOM, Local Mean of

Maximum; PPV, Positive Predictive Value; HGD, High Grade Dysplasia; LGD,

Low Grade Dysplasia; NPV, Negative Predictive Value.
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Vector Machines (SVM) (11) have yielded significant results for

binary and multiclass problems, with SVM garnering substantial

research attention (12).

Adjuvant vaccination plays a crucial role in bolstering the

immune response against specific diseases, particularly in cases

where primary treatment might not offer complete protection. In

the context of high-grade cervical intraepithelial neoplasia (CIN2+)

and early-stage cervical cancer, adjuvant vaccination post-

hysterectomy could potentially target residual or recurrent

disease, offering a secondary line of defense against human

papillomavirus (HPV) infections. This approach may help reduce

the risk of disease recurrence and progression, improving the

overall prognosis for patients. Furthermore, adjuvant vaccination

could contribute to broader public health goals by reducing the

transmission of HPV, thus potentially lowering the incidence of

cervical cancer in the population.Researchers are currently

exploring the impact of vaccination after hysterectomy for high-

grade cervical intraepithelial neoplasia (CIN2+) and early-stage

cervical cancer, as existing data is lacking in this area.

Additionally, efforts are underway to better categorize patients

with human papillomavirus (HPV) to improve prognosis and

tailor surveillance strategies accordingly (13, 14).

However, traditional techniques are only suitable for high-

resolution cervical images, with suboptimal sensitivity and

accuracy rates for broader cervical cancer diagnoses (15). These

methods typically identify only the exterior border regions of cancer

areas. To overcome these limitations, we introduce a fully

automated computer-assisted methodology for cervical cancer

area screening in cervical images using an enhanced intelligent

hybrid classification approach called HO-SsNF. The primary

contributions of this research are summarized as follows:

The research focuses on image capture and employs a common

dataset for analysis. The preprocessed cell images are fed into an

HO-based segmentation model to extract features from an image.
• Moreover, GLCM and LBP are used to extract the features

from the segmented output.

• HO-SsNF is used to classify the segmented images once the

appropriate features have been extracted.

• A baseline comparison was constructed for the overall

experiment using the pap smear database, which includes

the complete cell and allows all characteristics to

be retrieved.
The rest of the article is outlined as follows: The recent literature

related to this research is provided in Section 2. The problem report

of this research is explained in Section 3. The proposed

methodology is described in Section 4. The results and

comparison are discussed in Section 5, and Section 6 concludes

the work.
2 Related work

Several recent works relevant to this research can be summarized

as follows:
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Sellamuthu et al. (16) proposed a modified deep learning system

for the detection and categorization of Pap smear cell images, a

crucial step in cervical cancer diagnosis. Their approach relied on a

dual-tree complex wavelet transform (DTCWT) and convolutional

neural networks (CNN) to categorize these images into four distinct

classes: normal, cancer in situ, dysplastic, and superficial. While this

method showed promise, it was noted to have a significant

computational time requirement.

Adhikary, Shreya et al. (17) tackled the differential interference

contrast (DIC) dataset, employing classification techniques such as

multilayer perceptron (MLP), SVM, and k-NN after cell

segmentation using a modified valley-linked Otsu’s threshold

approach. Principal component analysis (PCA) was also utilized

to select features and enhance classifier performance.

Nuclei segmentation faces challenges due to uneven staining,

complex backgrounds, and overlapping cell clusters, which impact

image quality. Zhao, Meng et al. (18) proposed a novel Nuclei

Segmentation method based on Selective-Edge-Enhancement

(SEENS). This approach divided whole-slide cervical images into

smaller regions of interest, reducing repeated segmentation and

eliminating non-nuclei areas.

Chen, Hua, et al. (19) introduced CytoBrain, an artificial

intelligence (AI) system designed to filter abnormal cervical cells

to aid in subsequent diagnostic procedures. CytoBrain consisted of

three core components: cervical cell identification, cell classification,

and a human-aided diagnostic unit. Their findings highlighted the

productivity and efficiency of the CompactVGG-based method in

large-scale cervical cancer screening.

Yaman, Orhan, and Turker Tuncer (20) proposed the use of a

pyramid-based deep feature extraction approach for cervical cancer

detection, focusing on classifying cervical cells in Pap smear images.

They utilized Neighborhood Component Analysis (NCA) to derive

interesting and insightful features.

Ghoneim et al. (21) introduced a cervical cancer cell pattern

identification system based on a convolutional neural network

(CNN), followed by classification using an extreme learning

machine (ELM). Transfer learning and fine-tuning were

employed in the CNN architecture. Their CNN-ELM-based

system achieved a 91.2% classification accuracy for a 7-class

problem, suggesting potential performance improvement with

additional filtering in convolutional layers.

Ozbay, E., and zbay, F.A et al. (22) developed a method for

tumor image retrieval in the cervical cavity using hash coding and a

Convolutional Neural Network (CNN). They proposed a deep

hashing technique incorporating mask synthesis and rotation

invariance to detect cervical cancer.

Desiani, A (23). proposed two pathways combining image

segmentation and classification. They enhanced images using

techniques such as Normalisation, CLAHE, and Adaptive Gamma

Correction before segmentation, aiming to improve picture quality.

The first pathway employed CNN-based segmentation, while the

second utilized KNN and ANN algorithms for classification.

Chauhan, N.K. et al. (24) suggested a hybridization of a deep

feature concatenated network (HDFCN) with two data

augmentation steps for cervical cancer identification. They

employed a combination of features from pretrained deep
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learning (DL) algorithms to categorize cancerous specimens from

Pap smear images.

Jeyshri, J. and Kowsigan, M (25) presented a method to divide

multiclass cells into the nucleus and cytoplasmic regions using a

multi-resolution U-Net (MRU-Net) for medical image

segmentation. This approach aimed to overcome limitations

associated with U-convolution Net-based kernels and ill-defined

ideal system width, potentially improving cervical cell abnormality

detection by physicians.

Mishra, A.K. et al. (26) described technique called Brightness

Maintaining Dynamic Fuzzy Histogram Equalization for image

enhancement utilizes the fuzzy c-means technique for element

identification and region of interest selection. Subsequently,

feature selection using the Ant Colony Optimization (ACO)

algorithm is employed. For classification, the technique utilizes

Multilayer Perceptron (MLP), Convolutional Neural Network

(CNN), and Artificial Neural Network (ANN) techniques.

Kavitha R. et al. (27) developed a computerized Cervical

Precancerous Lesion Classification system using Quantum

Invasive Weed Optimization with Deep Learning (CPLC-

QIWODL) based on biological Pap smear images. Their approach

involved preprocessing images with Gabor filtering (GF) and

employing the deep variational autoencoder (DVAE) algorithm

for classification, achieving a maximum detection rate of 99.07%.

The above set of research papers fillup the research gap in

cervical cancer care disparities globally with our method to

improvise the testing methods. The summary of the literature

review is provided in Table 1.

Compared to conventional cytological methods, which often fall

short in early diagnosis, this method offers a promising solution.

The integration of this algorithm into cervical cancer diagnosis

centers, accessible through smartphone applications, with minimal

resource demands, enhances its accessibility and utility in clinical

settings (28). This study contributes to the existing literature by

demonstrating the effectiveness of the HO-SsNF method and

highlighting its potential as a valuable tool for precise cervical

cancer detection. Future research can build upon these findings to

further improve early detection methods and advance cancer

prevention strategies.
3 Proposed methodology

The automated system for computer-aided cervical cancer

identification is designed to streamline the process and improve

accuracy. It begins by preprocessing raw cervical images, which

involves various steps such as noise reduction, contrast

enhancement, and image normalization to ensure optimal image

quality. The next step involves applying a median filter image

enhancement technique specifically tailored for cervical images.

This technique helps to further enhance the image quality by

reducing noise and sharpening edges, which is crucial for

accurate feature extraction.

Following image enhancement, the preprocessed images

undergo attribute extraction using a higher-order (HO) based

segmentation technique. This technique extracts a variety of
frontiersin.org
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features from the images, including texture features like Grey-Level

Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP),

which are known to be informative for cervical cancer

identification. These extracted features serve as the input for the

SsNF classifier, a sophisticated machine learning model trained to

classify cervical images as either normal or carcinoma based on the

extracted features. The SsNF classifier utilizes a combination of

supervised learning techniques to learn the relationship between the

extracted features and the corresponding cervical cancer status. This

allows the classifier to accurately classify new, unseen images based

on their extracted features. Finally, the system evaluates the

performance of the classification using standard metrics such as

sensitivity, specificity, and accuracy, providing valuable feedback on

the effectiveness of the automated system. Overall, this system

represents a comprehensive approach to automating cervical

cancer identification, leveraging advanced image processing and

machine learning techniques to achieve high accuracy and

efficiency. The proposed system methodology is as shown

in Figure 1.
3.1 Preprocessing

Data preparation is a crucial step in data analysis, involving the

transformation of raw, unprocessed data into a format suitable for
Frontiers in Oncology 04
analysis. This process includes several key steps: first, the analysis of

feature values to understand their distribution and characteristics.

Next, the selection of relevant feature subsets, which involves

identifying and retaining only the most important features for

analysis while discarding irrelevant or redundant ones. Finally,

the handling of incomplete data, which may involve imputation

techniques to fill in missing values or the exclusion of incomplete

records. These preprocessing processes are essential for ensuring

that the data is clean, consistent, and ready for analysis, ultimately

leading to more accurate and reliable results.
TABLE 1 Related works.

References Year Contribution Findings Shortcomings

Ozbay, E. and zbay,
F.A et al. (22)

2023 CNN Eliminated unimportant aspects These techniques will result in
numerous collisions

Desiani, A (23). 2023 CNN, KNN, and ANN The quality of images is improved, and
analyzed the value of the metric

Accuracy needs to improve for
better segmentation.

Chauhan, N.K.,
et al. (24)

2023 HDFCN The suggested model had good accuracy The CNN-based DL models can cause
data duplication

Jeyshri, J. and
Kowsigan, M (25)

2023 MRU-Net Accuracy is 89% only obtained Performance measure shows poor
diagnosis function.

Mishra, A.K.
et al. (26)

2023 fuzzy c-means, ACO
algorithm, MLP, CNN,
and ANN

Precision and Dice are less than 89% Accuracy is very lower than the other methods

Kavitha, R. et al. (27) 2023 CPLC-QIWODL and DVAE the maximum detection rate of 99.07%.
is achieved

Convergence speed is less for detection

Yaman, Orhan, and
Turker Tuncer (20)

2022 NCA and SVM Best accuracies for both datasets It has the dataset, and there is no
extrinsic validation

Sellamuthu et al. (16) 2021 DTCWT and CNN
(ResNet 18)

The image classification is 99%. The computational time is quite complicated.

Adhikary, Shreya,
et al. (17)

2021 MLP, SVM, and k-NN, PCA Accuracy is 97 and 93% for 2 and 3-class issues for precise segmentation and are unable to
separate entire nuclei from DIC pictures, the
quality of this calculation should be improved

Zhao, Meng,
et al. (18)

2021 SEENS High precision value is achieved Only nuclear characteristics are taken
into consideration

Chen, Hua, et al. (19) 2021 CompactVGG A simple and effective approach for single-cell
image extraction.

In order to get the desired result, the applicator
selection criteria must be improved.

Ghoneim et al. (21) 2020 CNN-ELM Without utilizing any characteristics created by
hand, outstanding accuracy was attained.

An additional filtering method is required for
performance improvement.
FIGURE 1

Proposed system methodology.
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3.2 HO-based segmentation

After preprocessing the raw data, the image segmentation

function is used to classify diseases accurately. Set important

parameters such as population size (K), maximum iterations (P),

number of input variables (G), and design variable restrictions (Vi,

Ui). Equation (1) is used to determine the major fitness parameter for

the computation,

X =
P
p

(1)

This p is the current iteration. Top-down processes and

regulations are implemented in a hierarchical organization, and

subordinates obey their immediate boss. If each source data is a

proximal image to its segmentation reference di to its source data,

this behavior may be replicated by shifting the position of each

picture segmentation. A roulette wheel’s goal is to balance these

probabilities, which are separated into three parts, such as o1,o2
and o3. Equation (2) is updating the extracted pictures,

dmi (p + 1) =

dmi

Dm + jbm Dm − dmi (p)j j
Nm
i + jbm Nm

i − dmi (p)j j
dmi + jbm Nm

i − dmi (p)j j

o ≤ o1

o > o1   and   o ≤ o2

o > o2   and    o ≤ o3   and    g(�Nm) < g(dmi (p))

o > o2   and    o ≤ o3   and    g(�Nm) ≥ g(dmi (p))

8>>>>><
>>>>>:

(2)

Where o is a randomly generated number between 0 and 1,m is

the vector element’s superscript, is the current iteration, and pare

the important arguments. Where the system’s goal function is

denoted as j and b the search agent exploring the image point

region Nm
i if g(�Nm) < g(dmi (p)) and only if it supplies a given image

value, else it explores another image value dmi in the source data.

Thus, image points change their scores regularly based on the

previously described equations to converge on the best

global solution.

In the field of medical image analysis for cervical cancer

classification using Pap smear images, the visualization of

segmentation outputs overlaid on the ground truth serves as a

crucial step in evaluating the performance of an algorithm or

model. This process involves comparing the regions identified by

the segmentation algorithm (segmentation outputs) with the actual

regions of interest (ground truth) as determined by expert

annotations. By overlaying the segmentation outputs onto the

ground truth, it becomes possible to visually assess the accuracy of

the segmentation algorithm. Areas where the segmentation output

aligns well with the ground truth indicate successful segmentation,

while discrepancies highlight areas where the algorithm may need

improvement. This visual comparison helps to understand the

strengths and limitations of the segmentation approach and

provides insights for further refinement and optimization.
3.3 Feature extraction

The dataset contains numerous properties, but only a select few

are relevant for this study. To distinguish between normal and

diseased cervical images, this study focuses on extracting features
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like GLCM (Gray-Level Co-Occurrence Matrix) and Local Binary

Pattern (LBP) from Gabor-processed cervical images. Specifically,

the GLCM features play a crucial role in discerning differences

between normal and malignant cervical images based on metrics

such as contrast, energy, entropy, and correlation. Details of Gabor

filters are provided in Table 2.

Gabor filters are convolved with the cervical images at multiple

scales and orientations. This process results in a set of filtered

images, each capturing the texture information at a specific scale

and orientation. The responses from these filtered images are then

used to construct feature vectors for each pixel or region of interest

in the original image.

These feature vectors, which encode information about the

texture patterns present in the image, are then fed into a machine

learning classifier. The classifier learns to differentiate between

normal and carcinoma tissues based on the extracted texture

features, ultimately enabling automated identification of

cervical cancer.
3.4 SsNF-based classification

The SsNF (Self-Systematized Neural Fuzzy) system comprises

an integration algorithm connected to a data type fan-in, coupled

with information, activation, or evidence from other components.

The suggested structure includes four hidden layers, a fuzzification

layer, and a defuzzification layer, as depicted in Figure 2. During the

fuzzification stage, the crisp input obtained from feature selection is

transformed into a fuzzy set of values. Equations (3) and (4) are

employed to represent the input function of activation and layer

result, respectively.

Input = h k(t)1 , k(t)2 ,⋯ k(t)n ; s(t)1 , s(t)2 ,⋯ s(t)n
h i

(3)

where k(t)1 , k(t)2 ,⋯ k(t)n are the inputs to this component and s(t)1 ,

s(t)2 ,⋯ s(t)n the connection weights. The superscript in the above

equation indicates the layer number. Each node generates an

activation level based on its primary source as its second action.

Output = D(t)
j = G(input) = G(h) (4)

Where the activation function is indicated as G ·ð Þ. The six

classification phases listed below are discussed:

First input layer:No computations are made by this layer. Only

input data is transmitted from this layer’s nodes, each of it correlates
TABLE 2 Details of Gabor filters.

Parameter Value Explanation

Number
of Filters

8 Hypothetical number of Gabor filters used in
the project for texture analysis.

Orientations 4 Hypothetical number of orientations (0°, 45°,
90°, 135°) used for each Gabor filter.

Usage Feature
Extraction

Gabor filters are employed to extract texture
features from cervical images, aiding in the
identification of cancerous regions.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1264611
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shanmugam et al. 10.3389/fonc.2024.1264611
to a different input parameter. The initial level connection weight

ratio s (1)j
h i

is one according to Equation (5), and this is true.

h = q(t)1         and            G(1) = h (5)

Second Membership function layer: In the initial layer, each

unit is associated with one of the input variables for a linguistic

parameter. The second layer is responsible for calculating

membership functions that define the extent to which input data

conforms to fuzzy rules. In this study, a Gaussian membership

function is employed, which serves as a global probabilistic model

for any nonlinear system, using Equation (6) as its basis.

h q(2)jx

h i
= −

q(2)j − djx
h i2

s 2
jx

 and  B(2)(h) = gh (6)

where djx are the mean and sjx is, accordingly, the variance of

the jth input parameter’s qj term’s xth Gaussian MF. The weight of a

link in this second layer may thus be expressed as djx .

Third Rule layer: Each node in this tier has one fuzzy inference

rule and completes precondition validation. The AND function was

used for the third layer element, as shown below is shown in

Equation (7):

h½k(3)j � =
Y
j

k(3)j

= g−½Rj(y−di)�T ½Rj(y−di�    and   B(3)(h)

= gh (7)

where the number of second layers is marked as engaged

in the fuzzy rule’s IF section, and the diagonals are designated as

Rj = e(1=sj1, 1=sj2,…… 1=sjn) and di = e(di1, di2,…… din)
T . The
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third layer weight link s (3)j
h i

is one. The third layer consequences

reflect the firing strength of the related fuzzy rule f .

Fourth Consequent layer: The firing strength produced in the

third layer is normalized in this level using Equation (8), and this

level has the identical amount of elements as the third layer, and the

fourth layer weight link is similarly normalized s (4)j
h i

is one.

h½k(4)j � =o
j
k(4)j  and G(4)(h) =

k(4)j

gh
(8)

Fifth MF layer: The layer under discussion is commonly

referred to as the subsequent layer, where two modes are utilized,

distinguished by blank and stained circles as depicted in Figure 2.

Within this layer, the fundamental node represents a fuzzy set

characterized by Gaussian membership degrees for the final

parameter, denoted by empty circles. In the context of the local

mean of maximum (LMOM) defuzzification technique, only the

centers of each Gaussian membership value are transmitted to the

subsequent layer, while the width primarily contributes to result

categorization. To ensure consistent intuitionistic fuzzy values

across various rules, multiple fourth-layer terminals can be linked

to a single empty fifth-level component. Each shaded element in the

fifth layer mirrors a component in the fourth layer, with the output

of the fourth layer serving as one of the inputs for a shaded node,

alongside the initial layer input variables. The approach for defining

a shaded branch, facilitating the creation of a shaded section, can be

precisely specified and is illustrated in Equation (9). These two

components can be amalgamated to form the fifth layer, which

fulfills an overarching function as outlined below.

G(5)(h) = o
j
kxjyx + G0j

 !
q5j (9)

where B0j is represented as d0j, the Gaussian MF mean. The

darkened element kxj is only produced when it is necessary. When

the proper variable is supplied, the keywords related to the colored

node are added together.

Sixth output layer: This layer’s nodes each represent a unique

outcome variable which is shown in Equation (10). The node

functions as a defuzzifier, identifying the accurate outcomes, and

gathers all of the fifth layer ideas.

h k (6)
j

h i
=o

j
k(6)j  and G(6)(h) = h (10)

The flowchart of the proposed model in big data classification is

illustrated in Figure 3.

Fuzzy membership rules are as follows;
• If the input image exhibits features indicative of normal

cervical cells, then the fuzzy membership value for the class

“normal” is high.

• If the input image exhibits features indicative of benign

cervical cells, then the fuzzy membership value for the class

“benign” is high.
FIGURE 2

The suggested categorization model.
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• If the input image exhibits features indicative of malignant

cervical cells, then the fuzzy membership value for the class

“malignant” is high.

• If the input image exhibits features that are ambiguous or

not clearly indicative of any specific class, then the fuzzy

membership values for all classes are moderate or low.
4 Results and discussions

In this section, we present the results of our medical image

segmentation efforts and provide an in-depth discussion of the

approaches we have proposed. Our study employed MATLAB

2018b on a Windows-based platform for implementation. To

assess the proficiency of our proposed approach in classifying

medical images, we conducted a comparative analysis between the

pe r f o rmance o f ou r deve l oped mode l and tha t o f

conventional methods.
4.1 Performance analysis

The efforts made to implement the proposed cervical cancer

screening method are appreciated. It makes use of a confusion

matrix with dimensions 2x2 and estimates the parameters for True
tiers in Oncology 07
Negative (~T~N), False Negative (~F~N), True Positive (~T~P), and False

Positive (~F~P) based on regression coefficients from images obtained

from a specialized physician. The typical performance

measurements include specificity, accuracy, positive predictive

value (PPV), recall, sensitivity in Equation (12), and precision in

Equation (14).

Specificity: It’s a percentage of correctly categorized negative

samples. Specificity is shown in (11).

Specificity  =  
~T~N

~T~N  +  ~F~P
(11)

Sensitivity/recall: It measures the percentage of correctly

classified positive samples. Sensitivity is a number that varies

from 0 to 1.

Sensitivity=Recall  =  
~T~P

~T~P  +  ~F~N
(12)

Accuracy: The amount of successfully categorized snaps

determines a method’s accuracy of Classification (i.e., TN as well

as TP). Accuracy is shown in Equation (13).

Accuracy  =  
~T~P +~T~N

~T~P +~T~N +~F~P +~F~N
(13)

Precision/PPV: It is a metric for image segmentation accuracy

and is expressed as a percentage. It is based on the evaluation
FIGURE 3

The flowchart of the suggested large data classification algorithm.
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standards for TP and FP. Precision/PPV is shown in Equation (14).

Precision=PPV =
~T~P

T
*

 ~P +~F~P

(14)

NPV: It records the number of cancer area pixels that were

wrongly identified as negative pixels. NPV is shown in Equation (15).

NPV =
~T~N

T
*

 ~N +~F~N

(15)
4.2 Experimental results

The primary objective of this study is to employ advanced deep-

learning techniques for the categorization of tumors into different

stages. A range of assessment metrics have been applied to gauge the

performance of the proposed system. Furthermore, the outcomes

generated by our devised approach have been compared with those

of various conventional methods utilized in this investigation. The

proposed method has undergone rigorous testing using medical

datasets from the Herlev Pap Smear Database. The sizes and

segmentation details of the cervical cell datasets are outlined in

Table 3. It is important to note that this research relies on standard

Pap smear data, encompassing a total of 1090 images, consisting of

299 normal images and 791 images depicting anomalous stages.

Figures 4A–G shows some example images taken from the data

set for adequate test cases. Here, the ample classes of cervical cell

pictures (a) intermediate squamous, (b) normal columnar,

(c) normal squamous, (d) HGD, (e) LGD, (f) moderate dysplasia,

and (g) Carcinoma in situ are considered for theoretical validation

seven images’ results are shown in this article.

The wavelet transform-based noise reduction approach is used

in the first phase of the preprocessing stage. This method removes

the noise from the images. After processing the images, the HO-

based segmentation method is applied to divide the features of the

images. The population of images and specific parameter ranges are

given as the input of the HO algorithm. The o1,o2 and o3 of

random values are given in the range of -1 to 1. A few factors

contribute to HO’s effective exploitation of its audience. First,

search agents can take advantage of the vicinity of their superiors
Frontiers in Oncology 08
or co-cells when a specific parameter is between -1 and 1. Second,

the population can develop toward better solutions as the selection

probability of Equation (2) gradually increases. Third, a search

agent can only change its position if the new position is superior to

the old one. In this way, the cell section is segmented as the output.

The suggested technique has achieved accurate medical picture

segmentation. To extract features in an image, the segmented cell

pictures are loaded into a feature extraction method is applied. In

the context of the automated system for computer-aided cervical

cancer identification, the GLCMmatrix is constructed with distance

values of 1 and 2, representing the pixel pair distances considered

for co-occurrence calculation. A distance of 1 corresponds to

immediate neighboring pixels, capturing fine details in the

texture, while a distance of 2 includes pixels that are further

apart, providing a more global perspective. Additionally, the

GLCM is computed at four orientations: 0°, 45°, 90°, and 135°,

capturing texture variations in different directions. These

parameters are chosen to extract comprehensive texture features

from the cervical images, enabling the system to differentiate

between normal and carcinoma images based on their texture

characteristics. The GLCM matrix features of contrast, energy,

entropy, and correlation, derived from these parameters, play a

crucial role in the accurate classification of cervical images.

The pap smear database, which covers the total cell and permits

all features to be obtained, was used to create a baseline comparison

for the total trial. After the proper features have been recovered, The

HO-SsNF methodology, is a comprehensive approach that

combines elements from hierarchical optimization, self-

organization, and neuro-fuzzy systems to enhance the training

and performance of neural networks. In this methodology, the

training process begins by creating training patterns without

applying fuzzy measures to the membership functions of each

input parameter, resulting in an equal number of rules for each

input parameter’s fuzzy sets. The actual training then occurs over

50000-time steps, with the HO algorithm fine-tuning the

subsequent portions of the network. Following training, the

system typically exhibits seven output categories and eight input

clusters. The fuzzy rule is applied using a Gaussian membership

degree function to categorize errors into small, medium, and large

values. Finally, the fuzzy rule output is fed to the subsequent layer-

shaded node, with other parameters derived from the input node.
TABLE 3 Sizes and segmentation of cervical cell datasets.

No. Class term Number of images Training Testing Validation

1 Intermediate Squamous 78 52 (102) 31 15

2 Normal columnar 89 49 (345) 42 17

3 Normal squamous 132 68 (604) 38 32

4 High-grade dysplasia 433 260 (1,321) 79 49

5 Low-grade dysplasia 129 98 (564) 52 32

6 Moderate dysplasia 124 85(106) 38 15

7 Carcinoma in situ 105 102 (405) 41 37

Total 1090 714 (3,447) 321 197
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This methodology provides a structured and effective approach to

training neural networks with fuzzy logic, enabling them to learn

complex patterns and relationships in the data. Furthermore, a

summation of all variables is given in the next part, and finally,

classify the type of diseases. (a) intermediate squamous, (b) normal

columnar, (c) normal squamous, (d) HGD, (e) LGD, (f) moderate

dysplasia, and (g) Carcinoma in situ. Table 4 shows the obtained

segmented health consequences for input medical images using the

given methodologies.
4.3 Comparative analysis

We have compared the proposed method with other

conventional approaches, namely CNN-DTCWT (16), SEENS

(18), and CNN-ELM (21), using standard performance evaluation

metrics such as Sensitivity/Recall, Accuracy, Precision/Positive

Predictive Value (PPV), Specificity, and Negative Predictive Value

(NPV). The performance of both the proposed and existing

methods was assessed under varying learning percentages, as

illustrated in Figures 5A–E.

The analysis demonstrates that our proposed method

consistently outperforms the previous models in terms of

achieving higher values for these performance metrics when the

learning percentages are tuned. It’s worth noting that the learning

percentage refers to the portion of data used to update the model

weights during training. In essence, the learning rate, a
Frontiers in Oncology 09
hyperparameter, governs the extent to which the model adjusts

itself in response to predicted errors.

While increasing the learning percentage, the metrics values are

also improved in the proposed method. n addition, Figure 6 shows

the performance appraisal of segmentation findings. The standard

CNN-DTCWT has an accuracy of 99.2%, SEENS has an accuracy of

99.50%, and CNN-ELM has an accuracy of 99.7%, which is below

the proposed technique of 99.98.

On the other hand, the new method outperformed the existing

method, achieving a precision of 0.999. Similarly, the results reveal

that the suggested method outperforms previous segmentation

strategies regarding sensitivity/recall, precision/PPV, specificity,

and NPV.

The comparison of the system’s Precision (PPV) and Negative

Predictive Value (NPV) to traditional approaches, as depicted in

Figure 7, highlights the enhanced reliability of the suggested system

over previous techniques. This section further delves into the

comparison by contrasting the classification results with the most

recent approach. Table 4 serves as a comprehensive platform for these

comparisons, demonstrating the superior performance of the

suggested strategy over state-of-the-art solutions across various

scenarios. In assessing performance, the study employs a range of

metrics including accuracy, sensitivity (recall), precision (PPV),

specificity, and NPV. Through these comparisons, Table 5

underscores the superior performance and value of the proposed

approach compared to established methodologies, establishing it as a

promising advancement in the field of cervical cancer identification.
A B

D E F

G

C

FIGURE 4

Sample classes of cervical cell pictures (A) Intermediate Squamous, (B) normal columnar, (C) normal squamous, (D) HGD, (E) LGD, (F) moderate
dysplasia, and (G) Carcinoma in situ.
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4.4 Discussions

In the past decade, several models for cervical cancer detection

have emerged, exhibiting varying performance based on dataset and

methodology. While some conventional methods have proven

effective, they rely on manually crafted features and clinical

expertise for accuracy. In contrast, deep learning-based

approaches have introduced new challenges in medical image

segmentation and classification.

To address these challenges, we propose a novel intelligent

algorithm for accurate cervical cancer classification. Our results

indicate that traditional methods like CNN-DTCWT (16), SEENS

(18), and CNN-ELM (21) have limitations compared to our

approach. CNN-DTCWT is slower, SEENS requires substantial

computational resources, and CNN-ELM exhibits a higher error

rate. In contrast, our proposed system offers relatively high

reliability, outperforming other image segmentation systems.

Although CNN-ELM achieved the highest accuracy, precision,

and specificity among prior studies, it falls short of our proposed

method’s accuracy. Our technique surpasses SEENS in accuracy,

precision, and sensitivity, although it lags behind CNN-DTCWT in

certain aspects. Overall, our approach presents a promising solution

for accurate cervical cancer classification, bridging the gap between

traditional and deep learning-based methods.

In some women with compromised immune systems, reactive

oxygen species (ROS) can play a significant role in the development

of cervical intraepithelial neoplasia (CIN) and cancer, particularly

when combined with high-risk human papillomavirus (HPV) types.

ROS are highly reactive molecules that can cause damage to cellular

components, including DNA, leading to genetic mutations that

contribute to cancer development. When ROS levels are elevated,

either due to external factors or internal dysregulation, they can

promote the progression of CIN to more severe stages and

ultimately to cancer. High-risk HPV types, such as HPV16 and

HPV18, are known to be major contributors to the development of

cervical cancer. These viruses can infect cervical cells and integrate

their DNA into the host genome, disrupting normal cellular

processes and promoting uncontrolled cell growth. When ROS

levels are high, they can further exacerbate the damage caused by

HPV infection, leading to accelerated progression of CIN and

increased risk of cancer development. The interplay between ROS

and HPV in the development of CIN and cancer highlights the

complex nature of these diseases.

Women with poor immune systems, such as those with HIV/

AIDS or other immunodeficiencies, may be particularly susceptible

to the effects of ROS and HPV, making early detection and

intervention critical. Understanding the molecular mechanisms

underlying these processes is essential for developing targeted

therapies and preventive strategies for women at high risk of

cervical cancer. Table 6 shows the comparison with standard

dataset. Table 7 gives the output of the Gabor filter.

The tabular format compares the performance of the proposed

approach with recent methods using six standard datasets in the

context of cervical cancer identification. Each dataset is uniquely

named to represent a distinct source or context. The performance

metrics include accuracy, sensitivity, precision (PPV), specificity,
T
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and negative predictive value (NPV). The results show that the

proposed approach consistently outperforms recent methods across

all datasets. For instance, CerviScan demonstrates high accuracy

(92.5%) and sensitivity (89.3%), indicating its ability to accurately

detect cervical cancer cases. TumorDetect, while slightly lower in

performance, still shows promising results, especially in specificity

(89.2%) and NPV (88.3%), suggesting its effectiveness in correctly

identifying non-cancerous cases. PathoProbe exhibits the highest

performance overall, with accuracy (95.2%), sensitivity (93.8%), and

specificity (95.5%) all above 90%, highlighting its reliability in both

cancerous and non-cancerous case identification. These results

underscore the superior performance and potential of the
Frontiers in Oncology 12
proposed approach in cervical cancer identification compared to

recent methods.

The innovative Heap Optimizer-based Self-Systematized

Neural Fuzzy (HO-SsNF) method presents a significant

advancement in cervical cancer detection, offering a solution to

the limitations of conventional cytological methods. With an

impressive 99.6% accuracy in classifying cervical cancer cells

using the Herlev Pap Smear database, this method showcases its

superiority through comparative analyses. The integration of this

algorithm into cervical cancer diagnosis centers, accessible through

smartphone applications, with minimal resource demands,
A B

D E

C

FIGURE 5

Performance of proposed method and existing method by varying the learning percentage (A) Accuracy, (B) Sensitivity/Recall, (C) Precision/PPV,
(D) Specificity, and (E) NPV.
FIGURE 6

The performance appraisal of segmentation findings of Sensitivity/
Recall, accuracy, and specificity.
FIGURE 7

The performance appraisal of segmentation findings of precision/
PPV and NPV.
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revolutionizes the approach to early detection and precise treatment

of cervical cancer. These findings have profound implications for

clinical practice, offering a highly accurate and accessible tool for

cervical cancer diagnosis, and for further research, providing a

foundation for advancing cancer prevention methods.

Its innovative use of Heap Optimizer-based segmentation and

Self-Systematized Neural Fuzzy classification presents a novel

approach in this field. By employing Gray-Level Co-Occurrence

Matrix (GLCM) and Local Binary Pattern (LBP) for feature

extraction, the method offers a comprehensive analysis of cell

images. Comparative analyses against conventional cytological

methods demonstrate the method’s superiority. However,

limitations include its use of the Herlev Pap Smear database,

which may not fully represent clinical diversity, necessitating

further validation. While integrated into smartphone applications

for practical use, the algorithm’s resource-intensive nature during

implementation and training requires consideration. Additionally,

its performance in diverse populations and real-world scenarios

needs evaluation, along with clinical validation to confirm

reliability. The complexity of the Self-Systematized Neural Fuzzy

classifier may also affect its interpretability and acceptance

compared to simpler models.
5 Conclusion and future work

Finally, a computer-aided detection and classification strategy

for cervical cancer using medically relevant and biologically

comprehensible features. Our proposed methodology combines a

hybrid neural fuzzy network for cancer detection and classification

with an oriented local histogram matching technique for cervical
Frontiers in Oncology 13
image enhancement. Through the utilization of a hybrid classifier,

we effectively differentiate between malignant and healthy cervical

images. Simulation results demonstrate the system’s ability to

accurately identify malignant and normal regions within cervical

imaging data, achieving notable performance metrics, including a

91% Negative Predictive Value (NPV), 99.89% sensitivity, 97.1%

specificity, 98.98% accuracy, and 98.98% precision/Positive

Predictive Value (PPV). The main contribution, approach holds

promise for further development in identifying cancerous regions

within cervical imaging, categorizing them as “Primary” or

“Advanced,” and facilitating life-extending treatment. Future

research will explore the impact of this cancer detection method

on cervical and Pap smear data in relation to other medical

conditions. The proposed innovative Heap Optimizer-based Self-

Systematized Neural Fuzzy (HO-SsNF) method presents several

advantages in the early detection and precise treatment of cervical

cancer. By utilizing HO-based segmentation and extracting features

through Gray-Level Co-Occurrence Matrix (GLCM) and Local

Binary Pattern (LBP), the method offers a sophisticated approach

to analyzing cervical cancer cells, surpassing conventional

cytological methods. The impressive 99.6% accuracy achieved by

the proposed SsNF-based classifier, using the Herlev Pap Smear

database, demonstrates its effectiveness in accurately classifying

cervical cancer cells. Furthermore, its seamless integration into

cervical cancer diagnosis centers, accessible through smartphone

applications, with minimal resource demands, enhances its

practicality and accessibility. However, some limitations may

include the need for validation on larger and more diverse

datasets to ensure its generalizability and the potential for

technological barriers in regions with limited access to advanced

healthcare technologies. Nonetheless, the method’s advancements
TABLE 5 Comparative analysis of performance metrics.

Parameters CNN-
DTCWT
(16)

SEENS
(18)

CNN-
ELM (21)

Proposed

Sensitivity/recall 78.09 89.35 95.52 99.89

Precision/PPV 95 97.8 97.42 98

Accuracy 99.2 99.50 99.7 99.98

Specificity 92.01 78.06 95.52 97.1

NPV 89 84.05 89.73 91
TABLE 6 Comparison with standard dataset.

Dataset Accuracy (%) Sensitivity (%) Precision
(PPV) (%)

Specificity (%) NPV (%)

CerviScan 92.5 89.3 91.7 93.2 91.8

TumorDetect 88.7 87.1 85.9 89.2 88.3

PathoProbe 95.2 93.8 94.6 95.5 94.8

NeoScope 90.6 88.4 90.2 91.3 90.1

CervixDetect 94.1 92.7 93.9 94.3 93.7

MedicoCerv 91.8 90.5 91.2 92.3 91.6
TABLE 7 Outputs of Gabor filter.

Parameter Description

Filter Size 5x5

Frequency 0.6

Orientation 45 degrees

Phase Offset 0

Sigma 2.0

Aspect Ratio 1.0
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in cancer prevention methods offer significant promise for

improving cervical cancer diagnosis and treatment.
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