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Objective: The aim of this study was to assess the ability of a multiparametric

magnetic resonance imaging (MRI)-based radiomics signature model to predict

disease-free survival (DFS) in patients with rectal cancer treated by surgery.

Materials and methods: We evaluated data of 194 patients with rectal cancer

who had undergone radical surgery between April 2016 and September 2021.

The mean age of all patients was 62.6 ± 9.7 years (range: 37–86 years). The study

endpoint was DFS and 1132 radiomic features were extracted from preoperative

MRIs, including contrast-enhanced T1- and T2-weighted imaging and apparent

diffusion coefficient values. The study patients were randomly allocated to

training (n=97) and validation cohorts (n=97) in a ratio of 5:5. A multivariable

Cox regression model was used to generate a radiomics signature (rad score).

The associations of rad score with DFS were evaluated using Kaplan–Meier

analysis. Three models, namely a radiomics nomogram, radiomics signature, and

clinical model, were compared using the Akaike information criterion.

Result: The rad score, which was composed of four MRI features, stratified rectal

cancer patients into low- and high-risk groups and was associated with DFS in

both the training (p = 0.0026) and validation sets (p = 0.036). Moreover, a

radiomics nomogram model that combined rad score and independent clinical

risk factors performed better (Harrell concordance index [C-index] =0.77) than a

purely radiomics signature (C-index=0.73) or clinical model (C-index=0.70).

Conclusion: An MRI radiomics model that incorporates a radiomics signature

and clinicopathological factors more accurately predicts DFS than does a clinical

model in patients with rectal cancer.
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Introduction

Being one of the major causes of cancer-related death

worldwide, rectal cancer is a global health problem (1, 2). About

70% of rectal cancer patients are successfully treated surgically.

However, the prognosis is poor, distant metastases or local

recurrence being detected in up to 30% of patients, often within a

few years of surgery (3, 4). Identifying tumor characteristics that are

associated with a high-risk of adverse outcomes is therefore

extremely important in enabling devising risk-adapted

personalized treatment strategies for rectal cancer patients.

Nowadays, the TNM classification is routinely used in clinical

practice for preoperative risk stratification and treatment allocation

(5, 6). However, this classification ignores tumoral spatial

heterogeneity, which indicates hemorrhage, necrosis, and cell

density and thus provides important guidance for decisions

concerning administration of radio- and/or chemo-therapy.

Radiomics involves extracting a large set of quantitative features

from a series of radiological images. In particular, radiomics based

on multiparametric MRI (mpMRI) has emerged as a reproducible,

non-invasive means of characterizing intratumor features and

assessing risk and treatment response (7).

To the best of our knowledge, only one study on using mpMRI,

diffusion kurtosis imaging in particular, to predict the response to

therapy in patients with rectal cancer has been published (8).

Because this is rarely performed in clinical practice, there are no

established standard scan parameters; thus, its generalizability and

usefulness need to be further verified. Diffusion weighted imaging

(DWI), a functional MRI technique, has been widely used in

clinical practice.

The apparent diffusion coefficient (ADC), which is derived from

DWI sequencing, reflects heterogeneity at the microscopic level,

such as cell density of tumors (9). The aim of our study was to

establish a model for predicting the disease-free survival (DFS) of

rectal cancer treated by surgery by combining contrast-enhanced

(CE)-T1WI, T2WI, ADC radiomics features, and clinical factors.
Methods

Patients

This study was approved by our institution’s ethics review

board, who waived the need for patient approval and informed

consent because this was a retrospective study.

This study cohort comprised 194 patients (121 men and 73

women; mean age: 62.6 ± 9.7 years; age range: 37–86 years) with

histologically confirmed rectal cancer who had undergone resection

in our institution between April 2016 and September 2021. The

inclusion criteria were as follows: (a) preoperative conventional

MRI and DWI sequences performed within 3 weeks before

resection; (b) pathologically confirmed rectal cancer; and (c)

follow-up at our hospital. Exclusion criteria were: (a)

administration of preoperative chemoradiotherapy; (b) another
Frontiers in Oncology 02
cancer in addition to rectal cancer; and (c) failure to attend for

follow up.

All patients were randomly allocated to training (n=97) and

validation groups (n=97) in a ratio of 5:5.
Follow-up

We set the DFS, defined as the time from CT examination until

either the date of disease progression, including distant metastasis,

local tumor recurrence, or death from any cause, or until the last

date known to be free of relapse (censored) as the main endpoint.

All disease progression was diagnosed on the basis of findings on

imaging such as abdominal CT and MRI, clinical examination, or

biopsy. Our institution’s follow-up protocol is every 3–6 months

during the first 2 years after surgery, every 6–9 months for the

following 2–3 years, and annually thereafter. The median follow-up

period of the whole cohort was 32 months (range, 4–99 months).
Image acquisition

Rectal MRI imaging was obtained on a 3T system (Verio,

Siemens, Germany) equipped with a 12-channel body coil. The

MRI scanning sequence included high-resolution axial T2-

weighted, DWI, and enhanced T1-weighted sequences. Detailed

information concerning the acquisition parameters is provided in

Supplementary Materials.
Tumor segmentation and
feature extraction

Manual segmentation of each tumor was performed using

open-source ITK-SNAP software (www.itksnap.org) on data

obtained from axial T2WI, ADC, and CE-T1WI slices. Region of

interest (ROI) segmentation was performed by two experienced

radiologists who examined the whole tumor and avoided necrotic

tissue and bleeding (Figure 1).

Radiomics feature extraction was preprocessed by a

pyradiomics package (http://www.PyRadiomics.readthedocs.io/en/

latest/) that comprises four groups of features. In total, 1132

radiomic features, including ROI shape, intensity, texture, and

wavelet features, were then extracted from multiple image

sequences from each patient. To obtain a standardized normal

distribution of the MRI image intensities, multiple images were

normalized by z-score after manual ROI segmentation of the tumor.
Radiomic feature selection and radiomics
signature building

We used a four-step process for feature selection and to

identify robust DFS-associated radiomic features. Intraclass
frontiersin.org

http://www.itksnap.org
http://www.PyRadiomics.readthedocs.io/en/latest/
http://www.PyRadiomics.readthedocs.io/en/latest/
https://doi.org/10.3389/fonc.2024.1255438
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mao et al. 10.3389/fonc.2024.1255438
correlation coefficients of >0.75 were considered to denote high

inter-/intra-observer stability and kept for subsequent analyses.

Univariate Cox regression analyses were then conducted to

identify statistically significant DFS-related radiomic features

(p ≤ 0.05). Next, Spearman’s correlation analysis with r≥0.90 was

used to eliminate redundancy. Finally, multivariate Cox analysis

was performed to develop independent predictors of DFS.

Radiomics signatures (defined as rad scores) were computed

through a linear combination of each selected feature with non-

zero coefficients.
Statistical analysis

All statistical analyses were analyzed with R software, version

3.6.3 (http://www.R-project.org). Continuous and categorical

variables were compared between the training and validation sets

by using an independent samples t-test, Mann–Whitney U-test, or

c2 test as appropriate. DFS probabilities were assessed by Kaplan–

Meier analysis and the differences between high- and low-risk

groups were compared with the log-rank test. The optimal cutoff

value according to the rad score and X-tile was used to divide

patients into low- and high-risk groups. The Harrell concordance

index (C-index) was calculated to quantify the model’s ability to

discriminate. Decision curve analysis was used to evaluate the

clinical usefulness of various models. A two-sided p<0.05 was

regarded as denoting statistical significance.
Frontiers in Oncology 03
Results

Clinical characteristics and DFS

Selected clinico-radiological characteristics of the 194 study

patients are shown in Table 1.

The median follow-up period of the whole cohort was 32

months (range, 4–99 months). The relationships between survival

time, age, and rad-score are shown in Figure 2.
Radiomics score construction and
validation of radiomics signature

Four potential predictors including one, one, and two features

were selected from the T2WI, ADC and CE-T1WI to build a

radiomics signature based on a formula for calculating radiomics

score (Supplementary Materials).

According to the rad score optimum cut-off point generated by

X-tile plot, we further classified patients into high- (rad

score ≥ −0.7) and low-risk groups (rad-score < −0.7), and

performed Kaplan–Meier analysis in the training and validation

sets to determine the ability of the rad score to predict prognosis.

The distributions of the high- and low-risk rad scores of the

included four features are shown in Figure 3.

Lower rad scores were associated with better DFS in both the

training (p = 0.0026) and validation sets (p = 0.036) (Figure 4).
FIGURE 1

MR images of a 53-yearold man with rectal cancer. Examples of tumors with MRI (A, C) and 3D segmentation (B, D).
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Assessment of the radiomics nomogram
model on DFS prediction

Three models (radiomics nomogram, clinical, radiomics

signature) were assessed in the training and validation sets. The

ability of each model to discriminate was then evaluated by the C-

index in the validation set. Only three clinical features, namely age,

CA199, and pN, were used in the clinical model. The abilities of the

radiomics nomogram and clinical models to predict DFS are shown

in Figure 5. The clinical and radiomics signature models alone had

similar discriminatory capability (C-index: 0.70 vs. 0.73). However,

a radiomics nomogram model incorporating the radiomics

signature and clinical model was better able to discriminate DFS

in the validation cohort (C-index, 0.77) than was either the

radiomic signature or clinical model alone (Table 2).

Decision curve analysis also revealed that the radiomics

nomogram model achieved a higher net benefit than did the

clinical model or radiomics signature in predicting DFS (Figure 6).

The cumulative 3-year DFS rates were 42.7% versus 63.6%,

respectively, (p < 0.05), for high- versus low-risk patients in the

training set, and 48.1% versus 60.0%, respectively, (p < 0.05) in the

validation set. Subsequently, the cumulative 5-year DFS rates were

10.7% versus 36.4%, respectively, (p < 0.05), for high- versus low-

risk patients in the training set and 13.0% versus 45.0%,

respectively, (p < 0.05) in the validation set.
Discussion

Radiomics features, which are noninvasively acquired high-

dimension features from radiological images, are closely

associated with treatment response (10), prognosis (11), and

molecular phenotypes (12). Previous studies have found that

radiomics can predict individual responses to neoadjuvant

therapy for rectal cancer (13–15). Several studies have shown that

radiomics models have promising prognostic value in patients with

rectal cancer (8, 16). However, because diffusion kurtosis imaging is

rarely used in clinical practice, there is a lack of standard scan

parameters. This means that the generalizability and clinical

relevance of using radiomics models based on features identified

by this modality to predict responses to therapy require further

verification. Furthermore, the above-cited studies did not examine

all stages of rectal cancer treated by surgery.

Giving this background, we constructed a multi-feature-based

radiomics signature extracted from mpMRI to evaluate the

prognostic value of radiomics in patients with rectal cancer. Our

clinical and radiomics signature models had similar discriminatory

capability (C-index: 0.70 vs. 0.73). However, a combination of the

radiomics nomogram model incorporating the radiomics signature

and our clinical model improved the discriminating power for DFS

in the validation cohort, as evidenced by a higher C-index (0.77),

lower Akaike information criterion (781.5), and improvement in

reclassification. This is in line with previous research (13, 17, 18)

and demonstrates that the radiomics signature has an incremental

value in risk stratification for predicting DFS.
TABLE 1 Clinical characteristics of patients with rectal cancer in the
training data set and validation data set.

Characteristic Training
set(n=97)

Validation
set(n=97)

P

Age (years)
(mean±SD)

63.4±8.8 62.0±10.5 0.468

Sex

male 61 60 0.882

female 36 37

CEA (ng/ml)

≥5.5 38 43 0.467

<5.5 59 54

CA199 (ng/ml)

≥30 76 75 0.863

<30 21 22

Ki67 40(30,50) 70(45,70) 0.126

Tumor
differentiation

0.198

Well 10 8

Mediate 67 58

Poor 20 31

Adjuvant
chemotherapy

Yes 12 16 0.414

No 85 81

tumor size(mm) 64.3±20.6 43.4±16.1 0.525

MRF

Positivity 59 47 0.351

Negativity 38 40

EVI

Positivity 13 10 0.505

Negativity 84 87

pT

T1 7 7 0.925

T2 21 23

T3 47 47

T4 22 18

pN

N0 63 70 0.362

N1 20 19

N2 14 8

Follow-up
time (mo)

36.3±22.4 38.1±23.3 0.591
MRF, mesorectal fascia; EVI, extramural venous invasion.
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FIGURE 2

The relationships between survival time, age, and rad-score.
A B

DC

FIGURE 3

Plots (A–D) illustrate the distributions of the high- and low-risk rad scores of the included four features.
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Additionally, rad scores can stratify patients into high- and low-

risk groups. Lower rad scores (< −0.7) in patients with rectal cancer

were generally associated with better DFS, suggesting that some high-

risk patients should receive risk-adapted personalized treatment
Frontiers in Oncology 06
strategies such as neoadjuvant chemoradiotherapy or adjuvant

chemoradiotherapy. Moreover, rad scores were significantly

associated with DFS (p<0.05), showing that they can be a useful tool

for individualized estimation of survival of patients with rectal cancer.
A B

FIGURE 4

Kaplan–Meier survival analysis based on high risk and low risk rad scores in training set (A) and validation set (B).
A

B

FIGURE 5

Plots illustrate radiomics nomogram (A) and clinical model nomogram (B) for the prediction of predicting DFS.
TABLE 2 Performance of models.

Model
Training set Validation set AIC

C-index 95%CI C-index 95%CI

Radiomics nomogram 0.76 0.71-0.79 0.77 0.71-0.82 781.5

Radiomics signature 0.72 0.69-0.75 0.73 0.70-0.78 793.4

Clinical model 0.71 0.68-0.75 0.70 0.69-0.79 788.6
AIC, Akaike information criterion.
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Intriguingly, the four radiomics features selected for the

integrated radiomics model were all wavelet-based, which is

consistent with recent studies (19–21). This shows that almost all

high-dimensional features are wavelet-based. Wavelet

transformation enables quantification of high-dimensional tumor

information, which is difficult to explain intuitively (21, 22). In one

study (7), the researchers constructed two types of radiomics

signatures: with and without wavelet features. However, there was

no evidence that the model with wavelet features improved the

accuracy of prediction; this may be attributable to redundant

radiomics features (23). Most high-dimensional features are not

perceptible visually; however, they have been used successfully in

radiomics-based prediction of survival (24, 25), recurrence (26),

and gene expression (27).

The present study had several limitations. First, the sample size

was relatively small. Second, because this was a retrospective, single-

center study, our findings need to be further validated by drawing

prospectively on a large-scale multicenter database. Finally,

stratification of other risk factors derived from staging and

pathologic type may provide more accurate estimation of risk of

survival and recurrence.

In conclusion, mpMRI radiomics improves prediction of

prognosis in patients with rectal cancer. Our comprehensive

model including clinical features provides additional prognostic

information beyond a clinical model alone. Further prospective

studies and clinical validation are required.
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