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Lightweight semantic
segmentation network for tumor
cell nuclei and skin lesion
Yan Chen1, Xiaoming Sun1*, Yan Duan1, Yongliang Wang1,
Junkai Zhang1 and Yuemin Zhu2

1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin
University of Science and Technology, Harbin, China, 2INSA Lyon, University Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
In the field of medical image segmentation, achieving fast and accurate semantic

segmentation of tumor cell nuclei and skin lesions is of significant importance.

However, the considerable variations in skin lesion forms and cell types pose

challenges to attaining high network accuracy and robustness. Additionally, as

network depth increases, the growing parameter size and computational

complexity make practical implementation difficult. To address these issues,

this paper proposes MD-UNet, a fast cell nucleus segmentation network that

integrates Tokenized Multi-Layer Perceptron modules, attention mechanisms,

and Inception structures. Firstly, tokenized MLP modules are employed to label

and project convolutional features, reducing computational complexity.

Secondly, the paper introduces Depthwise Attention blocks and Multi-layer

Feature Extraction modules. The Depthwise Attention blocks eliminate

irrelevant and noisy responses from coarse-scale extracted information,

serving as alternatives to skip connections in the UNet architecture. The Multi-

layer Feature Extraction modules capture a wider range of high-level and low-

level semantic features during decoding and facilitate feature fusion. The

proposed MD-UNet approach is evaluated on two datasets: the International

Skin Imaging Collaboration (ISIC2018) dataset and the PanNuke dataset. The

experimental results demonstrate that MD-UNet achieves the best performance

on both datasets.
KEYWORDS

semantic segmentation, tumor cell nuclei, skin lesions, attention mechanism,
feature extraction
1 Introduction

The rapid segmentation of Tumor cell nuclei and skin lesion is a crucial technique in

the field of medicine, contributing to more accurate disease diagnosis for doctors and

patients. By processing and analyzing medical images, various information such as the

location, size, shape, and density of lesions can be extracted, providing a basis for physicians
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to develop more scientifically informed treatment plans. Currently,

research on semantic segmentation of medical images primarily

focuses on two directions: traditional methods and deep learning-

based methods. Traditional approaches rely on image processing

and computer vision techniques such as edge detection, region

growing, and threshold segmentation. These methods offer

advantages such as fast computation speed and minimal data

requirements. However, they are limited by the need for manual

design and parameter adjustment, resulting in unstable

performance across different images and tasks.

In recent years, deep learning-based segmentation methods

have been at the forefront of research. Among them, UNet (1) is

a representative deep learning network. UNet adopts an encoder-

decoder architecture, where the encoder is responsible for

extracting image features, and the decoder maps these features

back to the original image size to generate segmentation masks.

Additionally, UNet incorporates skip connections, which combine

features from the encoder with those from the decoder, ensuring

accurate and robust segmentation even with small datasets.

Building upon UNet, several excellent network structures have

been developed. U-Net++ (2) introduces nested and dense skip

connections from DenseNet, further strengthening the skip

connections and reducing the semantic gap between the encoder

and decoder. U-Net 3+ (3) includes feature maps from both smaller

and equivalent scales of the encoder, as well as feature maps from

larger scales of the decoder, capturing fine-grained details and

coarse-grained semantics across the entire feature map. Gudhe

et al. (4) design the Multi-Level Dilated Residual (MLDR) blocks

to replace the convolutional blocks in the classic U-Net, enhancing

the learning capability. Xiao et al. (5) propose the Weighted

Residual U-Net network, which replaces each layer of the encoder

with residual connections to avoid or minimize the loss of natural

information during image contraction. It also introduces a weighted

attention mechanism that focuses only on the target region of

interest and discards irrelevant noisy backgrounds. Luo et al. (6)

introduce the weighted attention mechanism into the U-Net

network and incorporate a Dense Connection Network (7),

proposing the AD-UNet network to improve the utilization of

model feature information while reducing network complexity

and learning parameter complexity. Liu et al. (8) build upon the

U-Net network with ResNet50 convolutional blocks and use a

feature pyramid network to obtain segmentation outputs at

different scales from the decoder. Jethi et al. (9) draw inspiration

from domain transformation and propose a novel U-Net network

structure with dual encoders and a single decoder for MRI image

analysis. Dong et al. (10) propose an 8-layer U-Net automatic

segmentation network based on a 4-layer U-Net network, aiming to

extract deeper semantic features. He et al. (11) address the issue of

non-smooth neighborhoods in pixel-level prediction caused by low

tissue contrast in CT images. They propose the MetricUNet

network based on metric learning, considering the relationships

among voxel-level features in the images to achieve more precise

segmentation results.

In addition, methods such as SegNet (12), UCTransNet (13),

and R2UNet (14) have been proposed, achieving promising results

in medical image segmentation. However, their research primarily
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focuses on enhancing network performance. In clinical practice, the

rapid and accurate processing of medical images is crucial. To

alleviate the healthcare burden brought about by population

growth, some devices have transitioned from the laboratory to the

point of care. This means that patients no longer need to queue for

laboratory examinations as medical equipment can be brought

directly to them (15). Point-of-care imaging aids clinicians in

expanding their service options and improving patient care,

reducing the time and steps involved in patients visiting radiology

centers. Some devices can even detect bodily conditions using

smartphones. Technological advancements centered around

point-of-care imaging are enhancing patient satisfaction. In recent

years, the application of point-of-care devices has steadily increased.

For example, individuals can capture photos of their skin, hair, or

nails from different angles using their smartphone camera and then

utilize AI-assisted tools to analyze clinical images and relevant

medical histories (16) in order to understand their own skin

conditions. When individuals are bitten by mosquitoes outdoors,

the motion of fluorescent nanoparticles in the blood, known as

Brownian motion, can be measured using particle diffusometry

(PD) (17). By combining PD with loop-mediated isothermal

amplification (LAMP) technology on a smartphone, it becomes

possible to determine whether the individual is infected with

malaria. The process can be conveniently executed by capturing a

30-second video of the blood using a smartphone. Point-of-care

ultrasound (POCUS) devices (18) enable physicians to perform

ultrasound examinations at the patient’s bedside and conduct real-

time analysis and diagnosis using smartphone applications. Remote

guidance allows for real-time image recognition through text

messages or email. Nalan Kozaci et al. conducted experiments

comparing the accuracy of point-of-care ultrasound and X-ray

examinations in diagnosing knee joint fractures. The experimental

results demonstrated the effectiveness of POCUS examinations in

detecting knee joint bone injuries (19). Swoop, the world’s first deep

learning-based MR imaging system, provides neurological imaging

at the point of care (20). This system can complete scans in under

three minutes, enabling healthcare decision-making without

transferring patients to radiology departments. These latest

advancements in diagnostic technologies facilitate the rapid

acquisition of clear images at the point of care. These devices also

integrate tasks such as segmentation, classification, and registration

to expedite the diagnostic process for both patients and clinicians.

Integrating CNN and vision transformer can potentially enhance

model performance by effectively capturing both local and global

features (21). Dhamija et al. (22) propose two deep learning-based

models, USegTransformer-P and USegTransformer-S, which merge

transformer-based encoders and convolution based encoders to

adequately extract global and local features. However, existing

solutions such as UNet, MedT (23) and Cenet (24) still suffer

from parameter redundancy and significant computational loads,

posing challenges for real-time point-of-care applications.

The motivation of this study is to try to propose a model that has

the following three characteristics: i) Accuracy, ii) A small number of

parameters, and iii) A lower computational complexity, which is not

the case for existing state-of-the-art network models. This would

make the proposed MD-UNet specifically suitable for efficient
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inference and deployment in resource-constrained environments,

such as mobile applications, embedded systems, and real-time

applications. However, the presence of diverse tumor cell nuclei

types and varied skin lesions poses challenges to the network’s

robustness and segmentation accuracy. To address the

computational issue, this paper draws inspiration from MLP-based

networks (25–29), specifically UNeXt (29), as the first MLP-based

network capable of matching Transformer performance while

requiring fewer computational resources. Nonetheless, this paper

still adopts a 5-layer U-Net as the backbone encoder-decoder

structure. The traditional convolutional structure is replaced by the

Tokenized Multi-Layer Perceptron (Token-MLP) architecture, which

maps convolutional features to abstract tokens. Subsequently, MLPs

are utilized to learn these tokens for segmentation, enabling the

learning of semantic information at different levels. To enhance the

segmentation accuracy of the network, this paper introduces Multi-

layer Feature Extraction (MFE) modules inspired by attention

mechanisms (30) and the Inception structure (31), effectively

extracting semantic features of objects with different shapes in the

encoder part. Moreover, to prevent semantic information loss and

gradient vanishing, a Depthwise Attention (DA) block is designed to

replace skip connections during the sampling process, efficiently

integrating semantic information from both the encoder and

decoder ends. Table 1 summarizes the advantages and limitations

of the above-mentioned networks.

The main research contributions of this paper can be

summarized as follows:
Fron
• This paper employ Token-MLP as a replacement for

traditional convolutional modules, aiming to capture

dependency relationships within tokenized sequences by

incorporating tokenization into the MLP architecture.

• This paper proposes a MFE module that combines channel

attention, spatial attention and asymmetric convolution to

enhance the effectiveness of feature extraction in the

network and improve feature representation capabilities.

• This paper proposes the DA Block and integrates it into the

skip connections of the U-shaped network to alleviate

semantic ambiguity and enhance focus on lesions

of interest.

• This paper trains, validates and tests our architecture on the

ISIC2018 dataset (32) and the PanNuke dataset (33).

Experiments show that the network we designed

outper forms the base l ine model and previous

segmentation methods in terms of IoU, Dice, parameters

and FLOPs, and provides a new research idea for medical

image segmentation.
2 Method

MD-UNet adopts a 5-layer encoder-decoder architecture within

the U-Net framework, as illustrated in Figure 1. In contrast to

conventional convolutional operations, we propose the utilization
tiers in Oncology 03
TABLE 1 Advantages and limitations of the above-mentioned networks.

Networks Advantages Limitations

UNet (1)

- End-to-end fully
convolutional network, no
complex pre/post-
processing needed
- Can be trained with few
training samples
- Learning of simultaneous
contextual and
localization information

- Difficulty processing images
with large target changes
- Loss of spatial information

UNet++ (2)

Reduction of semantic gap
between encoder and
decoder owing to tested
dense skip connections

- Large number of parameters
and floating-point operations
- Network structure is complex

U-Net3+ (3)

- Integration of multi-scale
features via full-scale skip
connections
- Full-scale deep
supervision for hierarchical
representations
- Need less parameters
while being efficient

Full-scale skip connections
result in an excessive
redundancy in feature maps,
leading to higher network
memory consumption and
computational load

Gudhe
et al. (4)

- Multi-level dilated
residual convolutions
- Robust against outliers
- Preserves better continuity
in boundaries

Inaccurate edge segmentation

Xiao et al. (5)

- Using weighted attention
mechanism, our model will
only pay attention at the
target area and discard the
irrelevant
noisy background.

- Complex image
preprocessing
- Lacks comparisons with
existing approaches, and
mentions of limitations
or challenges

Luo et al. (6)

- Reduces the number of
network parameters
- Suppresses the overfitting
of small datasets and
mitigates the vanishing
gradient phenomenon

Unsmooth edges appear in the
segmentation results for the
target areas.

Francia
et al. (7)

- Fully double convolutional
neural network
- Shorter training time

- Complex image
preprocessing
- Complex network structure

Liu et al. (8)

- Feature pyramid network
architecture is applied to
extracting rich multi-scale
features
- High accuracy was
achieved with a low
number of epochs

Lacks comparisons with
existing approaches, and
mentions of limitations
or challenges

Jethi et al. (9)

- Encoder single decoder-
based architecture
- By simultaneously
optimizing both the raw
kspace data and
undersampled image data
for reconstruction.

Complex network structure

Dong
et al. (10)

- 8-layer network replaces
the original 4-layer network
to extract deeper image
features
- MeshGrid-Flip-Rotate

- Large number of parameters
- Large number of floating
point operations

(Continued)
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of Token-MLP modules as a viable alternative. These Token-MLP

modules offer several advantages, including parameter reduction,

computational complexity reduction, and enhanced feature

modeling capabilities (29). In the decoder, we employ a MFE

module to extract features relevant to tumor cell nuclei and skin

lesions. By integrating attention mechanisms and Inception

structures, the network demonstrates improved segmentation

accuracy and robustness. To better integrate semantic information

from both the encoder and decoder ends, we introduce the DA block

in the skip connections, which concurrently attends to semantic

information from the encoding and decoding stages. By

incorporating Depthwise Convolution (DWConv), we enhance the

extraction and fusion of semantic features in both the encoding and

decoding stages. The semantic information outputted by the DA

block is combined with the semantic information outputted by the

MFE model, providing semantic information for the subsequent

layer. The subsequent section provides an overview of each module.
2.1 Token-MLP block

Compared to the UNet and improved versions of U-shaped

networks, this paper selects the Token-MLP module to replace the

conventional combination of convolution, batch normalization, and

ReLU, as shown in Figure 2. By incorporating the advantages of the

Swin transformer (34) and axial attention (35), this module

integrates two shifted MLP modules to independently shift

features along the height and width dimensions, partitioning

them into distinct partitions and performing positional shifts

along the specified axis. The objective of this design is to

introduce local contextual information and enhance the module’s

perceptual capability in feature processing.

The Token-MLP module operates by translating and projecting

features, transforming them into a series of tokens. Initially, a

convolutional kernel with a size of 3 is used to perform translation

operations on the features, while adjusting the channel count to the

embedding dimension E, where E represents the number of tokens.

Subsequently, these tokens are processed through a shifted MLP

module. By shifting features along both the height and width

dimensions and dividing them into different partitions, the module

effectively introduces local context and enhances its ability to perceive

local features through the creation of random windows.

Furthermore, the Token-MLP module introduces improvements

through the integration of residual connections. Within the shifted

MLP module, residual connections are incorporated by adding the

original token features as residuals to the final output. Such residual

connections facilitate gradient propagation, addressing issues such as

gradient vanishing and explosion. Moreover, they enable the network

to better learn low-level features and enhance the expressive capacity

of the network.
2.2 Multi-layer feature extraction module

The PanNuke dataset consists of H&E-stained images of 19 cell

types, as shown in Figure 3. Due to the variations in cell types, the
TABLE 1 Continued

Networks Advantages Limitations

augmentation improves
network accuracy

He et al. (11)
Modeling the inter-voxel
relationships via voxel-level
feature embeddings

Computational efficiency
should be further optimized

Segnet (12)

Decoder uses pooling
indices computed in the
max-pooling step of the
corresponding encoder to
perform non-
linear upsampling

- Large number of parameters
- Large number of floating
point operations

UCTransNet
(13)

- Channel-wise Cross
Fusion Transformer for
encoder feature
transformation
- Channel-wise Cross
Attention for feature fusion
in decoder

- Large number of floating
point operations
- Difficulty in
tuning hyperparameters

R2Unet (14)

- Residual unit helps when
training deep architecture
- Feature accumulation with
recurrent residual
convolutional layers ensures
better feature representation

- Large number of parameters
- Large number of floating
point operations

Dhamija
et al. (22)

Combine the Transformer
model and CNN model to
understand local features
and global background

Complex network structure

MedT (23)

- Gated Axial attention
- Small number of
parameters
- Local-Global
training strategy

- Large number of floating
point operations
- Necessitates a large dataset
- High computation time

Cenet (24)

- Dense Atrous
Convolution and Residual
Multi-kernel Pooling
- Universal segmentation
framework
- Small number of floating
point operations

Large number of parameters

Yu et al. (25)

- Simple network
architecture
- Less number of
parameters
- Less number of floating
point operations

Easy to overfit

UNeXt (29)

- Faster inference
- Reduced complexity
- Less number of
parameters
- High
segmentation accuracy

Easy to overfit

Atttention
UNet (30)

- Attention Gate
- High
segmentation accuracy

Large number of floating
point operations

Szegedy
et al. (31)

- Scale residuals
- Inception Module
combines with Residual
Connection to
accelerate training

Complex network structure
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cell nuclei exhibit significant differences in shape, size, and color,

especially in shape. Some cell nuclei are circular (Figures 3A, B, E),

some are elliptical (Figure 3D), and there are even filamentous cell

nuclei (Figure 3C). The ISIC2018 dataset also showcases the

diversity of skin lesions. Some skin lesions have lighter colors

(Figure 3I), while others have darker shades (Figures 3H, F).

Additionally, certain lesions may be affected by hair and artificial

markings (Figures 3G, J). Therefore, achieving high computational

accuracy and robustness for the network is a major challenge.

To further enhance the accuracy of semantic segmentation,

Drawing inspiration from spatial attention mechanisms (36) and

cross-channel attention mechanisms (37), this study proposes a

MFE module that extracts high-level and low-level semantic

information in the network’s decoder. In this module, we

integrate spatial attention mechanisms, cross-channel attention

mechanisms, and asymmetric convolutions to enhance the

network’s ability to extract semantic features, identify common

characteristics among different types of cells or skin lesions, and

improve the robustness of network segmentation.

As illustrated in Figure 4, the MFE module framework comprises

a total of five branches, with two branches utilizing skip connections

and an additional two employing asymmetric convolutions. A
Frontiers in Oncology 05
combination of 1� 1 convolution, 1� 3 convolution, 3� 1

convolution, 1� 5 convolution, and 5� 1 convolution is applied

to the feature x to capture semantic information of objects with

diverse shapes. The extracted feature information is fused and input

into the Squeeze-and-Excitation (SE) module (37), establishing

relationships and dependency models among channels.

Subsequently , the feature map undergoes non-l inear

transformations through a 1x1 convolutional layer, generating four

separate branches C1
i , C

2
i , C

3
i , C

4
i , as depicted in Equation 1.

C1
i = WT

1,1 FSE(x ∗WT
1,3 ∗WT

3,1)
� �

C2
i = WT

1,1 FSE(x ∗WT
1,5 ∗WT

5,1)
� �

C3
i = WT

1,1 FSE(x ∗WT
1,1)

� �

C4
i = WT

1,1 FSE(x)ð Þ

(1)

Where x represents the semantic features output by the Token-

MLP module on the decoding side. WT
1,1, W

T
1,3, W

T
3,1, W

T
1,5, and W

T
5,1

respectively denote 1� 1 convolution, 1� 3 convolution,  3� 1

convolution,  1� 5 convolution, and 5� 1 convolution. FSE(x)

represents the Squeeze and Excitation operation. * denotes the

convolution operation. The semantic information extracted from
FIGURE 1

Overview of the proposed MD-UNet architecture.
FIGURE 2

The token-MLP block in MD-UNet.
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the four branches is subsequently connected and re-encoded

through two spatial attention mechanisms, resulting in the

generation of O1
i and O2

i , as illustrated in Equation 2.

O1
i = s2

�
WT

3,3

�
s1 C1

i (x) + C2
i (x)

� � � �

O2
i = s2

�
WT

3,3

�
s1 C3

i (x) + C4
i (x)

� � � � (2)

Where s1(x) = max(0, x) corresponds to the ReLU activation

function. s2(xi,c) =
1

1+exp(−xi,c)
corresponds to the sigmoid function.

 WT
3,3 respectively denote 3� 3 depthwise convolution. Finally,

non-linearity is enhanced through a 1� 1 convolution, followed

by element-wise multiplication with the input feature map, and

then processed through another 1� 1 convolution to obtain the

ultimate output feature map, denoted as Ô i, as illustrated in

Equation 3.

Ô i = WT
1,1(W

T
1,1(O

1
i · O

2
i ) · x) (3)
2.3 Depthwise attention block

In order to accurately segment and predict target objects, the

standard CNN architecture gradually downsamples the feature map

grid to capture semantic contextual relationships. However, for small

objects with significant shape variations, reducing false positive

predictions solely through skip connections becomes challenging.

Inspired by the Attention Gate (30), this paper proposes a DA block

to replace the skip connection part of the U-shaped network. As shown

in Figure 5, in contrast to the Attention Gate (Figure 5A), the DA block

adopts a symmetrical structure (Figure 5B) that not only focuses on the

coarse-grained semantic information from the encoder end but also

pays attention to the fine-grained semantic information from the

decoder end. Additionally, the introduction of DWConv enhances

the accuracy and generalization ability of the model while encoding
B C D E

F G H I J

A

FIGURE 3

Variations in size, shape, color, and distribution among different tumor cell nuclei and skin lesions. (A). Circular cell nuclei; (B). Circular cell nuclei; (C).
Filamentous cell nuclei; (D). Elliptical cell nuclei; (E). Circular cell nuclei; (F). Skin lesions display lighter colors; (G). Skin lesions may be influenced by hair and
artificial markings; (H). Skin lesions exhibit darker shades; (I). Skin lesions display lighter colors; (J). Skin lesions may be influenced by hair and artificial markings.
FIGURE 4

The structure of the Multi-layer Feature Extraction module in
MD-UNet.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1254705
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1254705
positional information of the encoded features. According to the study

by (38), the convolutional layers within the MLP block sufficiently

encode positional information and outperform standard positional

encoding methods. Moreover, DWConv has fewer parameters and

computational costs, making it relatively computationally efficient.

Specifically, firstly, the features xl and g undergo non-linear

transformations through consecutive 1� 1 convolutions and 3� 3

DWConv. The transformed vectors of xl and g are then added

together, and the result is passed through the ReLU activation

function to retain significant activations. Subsequently, the feature

map is propagated through a 3� 3 depthwise convolutional layer to

generate Ci, as shown in Equation 4.

Ci = WT
3 s1(x

l
*W

T
x,1*W

T
x,3 + g*W

T
g,1*W

T
g,3 + bi)

� �
(4)

Where xl represents the coarse-grained semantic information

gradually extracted through layer-wise processing of local

information by the Token-MLP module, while g represents the

fine-grained semantic information extracted at the decoder end by

the MFE module. WT
x,1 and WT

g,1 denote 1� 1 convolutions, and

WT
x,3, W

T
g,3 and WT

3 represent 3� 3 depthwise convolutions. The

term bi represents the bias term. Additive attention (39) is

employed to obtain gating coefficients, which has been

experimentally shown to achieve higher accuracy compared to

multiplicative attention (40), despite being computationally

more expensive.
Frontiers in Oncology 07
Subsequently, we apply the sigmoid function to transform Ci

into the non-linear space, as shown in Equation 5.

a l
i = s2 Ci(x

l
i , gi;Qatt)

� �
(5)

The DA block is characterized by a set of parameters Qatt ,

including Wx ∈ RFl�Fint , Wg ∈ RFg�Fint , y ∈ RFint�1, bias terms by
∈ R, bg ∈ RFint . The features xl and g are nonlinearly mapped to

the R-dimensional intermediate space, which is called attention

based on vector cascading (41).

Finally, we compute the element-wise multiplication between

the input feature map and the attention coefficients to obtain the

final output of the DA block, as shown in Equation 6:

x̂ l
i,c = xli,c · a

l
i · gi,c (6)

Where i and c represent the spatial and channel dimensions.
3 Experiments and results

3.1 Dataset

This paper used the International Skin Imaging Collaboration

(ISIC2018) (32) and PanNuke (33). The ISIC2018 dataset is a large

medical image dataset for skin lesion detection and classification

tasks. It contains 2693 skin lesion images from various locations
BA

FIGURE 5

Schematic diagram of the DA block proposed in this article. (A) Attention Gate, (B) Depthwise Attention Block.
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around the world, including malignant melanoma, benign

melanocytic nevi, and other benign skin lesions. Each image is

manually annotated by professional dermatologists and provides

corresponding pathological diagnosis and classification

information. PanNuke is an open-source Pan-Cancer histology

dataset used for classifying and segmenting nuclei instances. The

dataset presents a semi-automatically generated collection of

exhaustive nuclei labels over 19 diverse tissue types. The dataset

comprises 7825 images. Since the initial input images do not have

the same size, before feeding the data directly into the network, we

reformatted them into the same size. For the PanNuke dataset, we

employed a cropping technique, which aims to fully retain essential

information of the images, to crop all the initial large-size images

into images of the same size 256×256. For the ISIC2018 dataset, we

utilized an image resizing method to adjust all the images into the

same 256×256 size.

We divided the dataset into training and testing sets in a 9:1

ratio. Moreover, within each training epoch, we utilized a random

allocation technique at an 8:1 ratio to distribute data between the

training and validation sets. More precisely, in the case of the

PanNuke dataset, the training set encompassed 7043 samples, while

the testing set comprised 728 samples. In the case of the ISIC2018

dataset, the training set consisted of 2424 samples, with 269 samples

designated for the testing set.
3.2 Implementation details

This article used the Pytorch framework to develop MD-UNet.

The training and testing platform is the Ubantu18.04 system, the

graphics card is GTX1070Ti, and the video memory is 10G. This

article uses the Adam optimizer with a learning rate of 0.001 and a

momentum of 0.9. Since the neural network is very unstable at the

beginning of training, a corresponding training strategy, namely

cosine annealing learning, is added to reduce the risk of over fitting,

so that the model has strong robustness and good convergence to

occlusion. In the cosine annealing strategy, the learning rate is

reduced in the form of a cosine function, which ensures a smoother

learning rate reduction and prevents the model from failing to

converge due to the learning rate dropping too fast. The minimum

learning rate is 0.00001. The batch size is set to 32. This paper trains

MD-UNet up to 500 times in total.
3.3 Loss function

In medical image segmentation, the variations in the shape and

size of the lesion of interest can cause the loss function to sharply

drop to a local minimum during the training process. This

occurrence may lead to suboptimal performance and an inability

of the neural network to achieve the best segmentation. To address

this concern, researchers mainly use cross-entropy (42) as the

criterion to assess the proximity between the actual and predicted

outputs. A lower value of cross-entropy delineates a more accurate

prediction by the model. Additionally, the Dice coefficient is a

standard metric to evaluate the segmentation effect and quantify the
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disparity between segmentation results and labels (43). Given the

imbalanced nature of medical image datasets, the usage of Dice loss

(DL) as a loss function is prevalent in segmenting ROI lesions and

handling background imbalances. DL effectively reduces

segmentation bias. The Equations of Binary Cross Entropy (BCE)

and DL are as shown in Equation 7 and Equation 8.

LBCE(y, ŷ ) = −(ylog(ŷ ) + (1 − y)log(1 − ŷ )) (7)

DL(y, ŷ ) = 1 −
2yŷ + 1
y + ŷ + 1

(8)

Where y represents the actual value and ŷ represents the

predicted result. In this paper, MD-UNet is trained using a

combination of binary cross-entropy (BCE) and dice loss. The

Equation for the loss L between the predicted value ŷ and the

target value y is shown in Equation 9.

L = LBCE(y, ŷ ) + DL(y, ŷ ) (9)
3.4 Evaluation metrics

This paper compares the performance of MD-UNet with recent

widely used medical image segmentation frameworks. The

parameters compared in the experiment are IoU, Dice, number of

parameters and computational complexity. Among them, the

computational complexity is calculated according to the number

of floating-point operators (FLOPs), and the Equation is shown in

Equation Equation 10 and Equation 11.

IoU =
TP

TP + FN + FP
(10)

Dice =
2� TP

2� TP + FN + FP
(11)

Where TP, TN , FP and FN respectively represent True

Positives, True Negatives, False Positives and False Negatives.
3.5 Experimental results

The results of this study are presented in Table 2. It can be seen

that our proposed network exhibits significant improvement in

segmentation accuracy compared to other networks, measured

through Dice, IoU, parameter count, and GFLOPs (highlighted in

bold in Table 2). Specifically, when compared to the state-of-the-art

network Cenet, MD-UNet achieves a higher IoU and Dice of 4.86%

and 4.84%, respectively, on the PanNuke dataset. On the ISIC2018

dataset, MD-UNet achieves a higher IoU of 4.17% and Dice of

2.31% compared to Cenet. Furthermore, in terms of computational

efficiency, our proposed network demonstrates the lowest GFLOPs

value of 0.241, whereas Cenet has 8.9, MedT has 21.245, and UNet

has 55.840. Regarding parameter count, our proposed network has

only 0.73M parameters, whereas Cenet has 29M parameters, MedT

has 1.60M parameters, and UNet has 31.13M parameters. These

findings indicate that MD-UNet not only outperforms other
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networks in terms of segmentation performance but also stands out

as the most lightweight network, which refers to a network that

requires fewer parameters and lower computational complexity.

The runtimes of different methods are presented in Table 3.

From the table, it is evident that MD-UNet has the shortest runtime

at 15.92ms (highlighted in bold in Table 3), while Cenet, UNeXt,

and MedT exhibit runtimes of 18.71ms, 17.07ms, and 89.35ms.

These findings highlight MD-UNet ’s superior runtime

performance, rendering it a more real-time and efficient option.

Figure 6 shows the IoU score plotted against the number of

parameters or GLOPs. The graph reveals that MD-UNet

outperforms other methods in terms of segmentation

performance, computational complexity, and the number of

parameters. To illustrate the improvement of our model

compared to the baseline, we provide qualitative comparisons of

the ISIC2018 and the PanNuke datasets in Figure 7. The results

indicate that MD-UNet generates segmentation predictions with a

competitive edge detail that is closer to the ground truth than that of

other methods.
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To provide a visual comparison between MD-UNet and various

state-of-the-art networks, this study includes semantic segmentation

result images and heatmaps for MD-UNet and other networks, as

depicted in Figure 7 and Figure 8. The first eight rows correspond to

the experimental comparisons on the PanNuke dataset, while the last

four rows represent the comparisons on the ISIC2018 dataset. From

the figures, it is evident that MD-UNet demonstrates a strong

consistency between the predicted boundaries and the ground truth

for different cell types and skin lesions of varying shapes. Compared

to other advanced networks, MD-UNet exhibits higher accuracy and

smoother segmentation results.

Specifically, for cell nuclei segmentation, the first row reveals

that MD-UNet successfully eliminates interference from external

objects (e.g., circular objects). Furthermore, the second, third, and

fourth rows demonstrate MD-UNet’s precise segmentation of

elongated, circular, and elliptical cell shapes, respectively. Even for

irregularly shaped cells, as shown in the seventh row, MD-UNet still

displays a certain degree of segmentation capability. Regarding skin

lesion segmentation, the ninth and tenth rows illustrate MD-UNet’s

ability to achieve high-quality segmentation even in the presence of

hair follicle interference. Additionally, the eleventh and twelfth rows

indicate MD-UNet’s ability to achieve high-quality segmentation

for objects of different colors.
4 Ablation study

In this study, we developed a neural network based on the DA

Block and MFEmodules, with a U-shaped architecture consisting of

five Token-MLP layers. The ablative experiments aimed to evaluate

the impact of the DA Block and MFE modules on the neural

network’s performance.

During the ablative experiments, our primary focus was on the

DA Block and MFE modules. To assess their contributions to the

neural network, we conducted individual ablative operations and

observed changes in network performance. Firstly, we conducted an
TABLE 2 Performance comparison with state-of-the-art network models.

Networks
Params
(in M)

GFLOPs
PanNuke ISIC2018

IoU(%) Dice(%) IoU(%) Dice(%)

Segnet (12) 29.40 1880.07 69.99 81.20 54.41 64.71

UNet (1) 31.13 55.84 71.99 83.60 74.55 84.03

R2UNet (14) 39.09 152.9 70.31 81.99 75.64 84.46

UNet++ (2) 9.16 34.65 72.42 83.82 75.12 84.96

UCTransNet (13) 66.24 32.98 72.43 84.19 80.73 89.82

Atttention UNet (30) 34.88 66.63 72.732 83.71 88.21 93.35

MedT (23) 1.60 21.24 73.49 83.38 88.54 93.53

UNeXt (29) 1.47 0.57 71.34 83.33 88.81 94.06

Cenet (24) 29.00 8.90 76.60 85.00 92.42 96.01

MD-UNet 0.73 0.241 81.46 89.84 96.59 98.32
TABLE 3 Runtime comparison between different networks.

Networks Inference Speed (in ms)

Segnet (12) 480.87

UNet (1) 27.67

R2UNet (14) 60.45

UNet++ (2) 36.59

UCTransNet (13) 350.65

Atttention UNet (30) 37.66

MedT (22) 89.35

UNeXt (29) 17.07

Cenet (24) 18.71

MD-UNet 15.92
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ablation experiment by removing the MFE module from the neural

network. The results of the ablation experiment revealed that the

IoUmetrics of the neural network decreased by 3.44% and 1.01% on

the PanNuke and ISIC2018 datasets, respectively, while the Dice

metrics decreased by 2.23% and 0.91%. Subsequently, we performed

a similar ablation experiment on the DA Block to gain a deeper

understanding of its contribution to diagnostic performance. The

experimental findings indicated that upon removing the DA Block,

the neural network experienced a decrease of 3.03% and 1.00% in

the IoU metrics, and a decrease of 1.93% and 0.60% in the Dice

metrics, on the PanNuke and ISIC2018 datasets, respectively.

To enhance the illustration of the influence of the DA Block and

MFE modules on the neural network's performance, we have

visualized the experimental results, as depicted in Table 4. The

final row corresponding to MD-UNet in Table 4 has been bolded.

Additionally, to showcase the influence of each module at different

stages, we generated heatmaps of each module, as depicted in

Figure 9. It can be observed that during the decoding stage, the

MFE module captures more meaningful features, while the DA

Block integrates these features with semantic features from the

encoder end, eliminating ambiguity. Furthermore, columns 2, 3, 4,

and 5 demonstrate that as the network output progresses, the

captured semantic features become more accurate and extensive.
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Our experimental results clearly depict the performance differences

before and after ablative experiments, as well as the disparities in

heatmaps at different stages, further elucidating the roles and

importance of these two modules.

By comprehensively analyzing the results of the ablative

experiments, we conclude that the DA Block and MFE modules play

a significant role in the neural network, exerting a notable influence on

the overall performance of cell nuclei segmentation. These findings from

the ablative experiments provide robust support for gaining a deeper

understanding of the neural network’s role in diagnosing skin diseases.
5 Discussion

We proposed a MD-UNet network for the segmentation of

tumor cell nuclei and skin lesions. The proposed method integrates

several modules, including the Token-MLP block, DA block, and

MFE module, within the network design. The core architecture of

the proposed network mainly consists of a Multi-layer Feature

Extraction (MFE) module for capturing semantic information

about the shapes of the targets, and a Depthwise Attention (DA)

block for effectively integrating semantic information from both the

encoder and decoder outputs.
B

C D

A

FIGURE 6

Comparison Charts. The comparison charts depict the relationship between the Dice scores (vertical axis) and the corresponding GFLOPs or
parameter count (horizontal axis). Higher Dice scores indicate better performance, while lower values of GFLOPs and parameter count are preferred.
The representations (A, B) correspond to the PanNuke dataset, whereas (C, D) correspond to the ISIC2018 dataset. These charts validate that MD-
UNet outperforms other networks in terms of effectiveness.
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Compared to UNet, we replace the combination of convolution, batch

normalization, and ReLU with the Token-MLP module, reducing the

network’s parameter count and computational complexity. Furthermore,

in comparison to Attention UNet, the improved DA block efficiently

integrates semantic information from both the encoder and decoder,

reducing semantic information loss. Additionally, to segment irregularly

shaped cell nuclei and skin lesions, the introduced MFE module is

employed to capture semantic information from the decoder end,
Frontiers in Oncology 11
allowing the network to better understand and interpret the semantic

features of objects with different shapes.

While the proposed MD-UNet achieves the highest

segmentation accuracy compared to state-of-the-art networks on

two datasets, our approach still requires improvement. For example,

in scenarios where the segmentation of cell nuclei edges and tissue

boundaries in images is unclear, there is room for further

refinement in the future development of our method.
B C D E F G HA

FIGURE 7

Qualitative comparison of MD-UNet on PanNuke dataset and ISIC2018 dataset. (A) Input, (B) Group Truth, (C) MedT, (D) UNeXt, (E) UNet, (F) R2UNet,
(G) CENet, (H) MD-UNet.
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6 Conclusion

The proposed MD-UNet in this paper is a U-shaped encoder-

decoder neural network that incorporates the Token-MLP module,

DA block, and MFE module. The network is built upon a backbone

of five layers of Token-MLP blocks. A novel DA block is introduced

to integrate semantic information from both the encoder and

decoder outputs. Furthermore, a Multi-layer Feature Extraction
Frontiers in Oncology 12
module is devised to capture semantic information specifically from

the decoder end. Asymmetric convolutions are employed instead of

symmetric convolutions to enhance the ability of feature extraction

for objects with varying shapes. The performance of MD-UNet is

evaluated on the PanNuke dataset and the ISIC2018 dataset.

Experimental results demonstrate that MD-UNet outperforms

other state-of-the-art networks in terms of performance while

also exhibiting fewer parameters and floating-point operations.
B C D E F G HA

FIGURE 8

Comparison of heatmaps among various networks on the PanNuke datasets and ISIC2018 datasets. These are heatmaps of the final layers for each
network. (A) Input, (B) Group Truth, (C) MedT, (D) UNeXt, (E) UNet, (F) R2UNet, (G) CENet, (H) MD-UNet.
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TABLE 4 Quantitative analysis results of ablation experiments.

Network
Params
(in M)

GFLOPs
PanNuke ISIC2018

IoU (%) Dice (%) IoU (%) Dice (%)

Baseline 0.23 0.116 70.82 82.95 87.56 93.46

Baseline+DA 0.64 0.136 78.02 87.61 94.57 97.42

Baseline+MFE 0.30 0.191 78.43 87.91 95.58 97.73

Baseline+DA+MFE(Ours) 0.73 0.241 81.46 89.84 96.58 98.33
F
rontiers in Oncology
 13
B C D E F G HA

FIGURE 9

MD-UNet heatmaps at different stages on the PanNuke and ISIC2018 datasets. (A) Input, (B) Ground Truth, (C) Heatmap of the 5th layer of the MFE
module, (D) Heatmap of the 5th layer of the DA Block, (E) Heatmap of the 1st layer of the MFE module, (F) Heatmap of the 1st layer of the DA Block
module, (G) Heatmap of the final 1x1 convolution layer, (H) Final segmentation result of MD-UNet.
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