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Introduction: Soft tissue sarcomas, similar in incidence to cervical and

esophageal cancers, arise from various soft tissues like smooth muscle, fat, and

fibrous tissue. Effective segmentation of sarcomas in imaging is crucial for

accurate diagnosis.

Methods: This study collected multi-modal MRI images from 45 patients with

thigh soft tissue sarcoma, totaling 8,640 images. These images were annotated

by clinicians to delineate the sarcoma regions, creating a comprehensive dataset.

We developed a novel segmentation model based on the UNet framework,

enhanced with residual networks and attention mechanisms for improved

modality-specific information extraction. Additionally, self-supervised learning

strategies were employed to optimize feature extraction capabilities of

the encoders.

Results: The new model demonstrated superior segmentation performance

when using multi-modal MRI images compared to single-modal inputs. The

effectiveness of the model in utilizing the created dataset was validated through

various experimental setups, confirming the enhanced ability to characterize

tumor regions across different modalities.

Discussion: The integration of multi-modal MRI images and advanced machine

learning techniques in our model significantly improves the segmentation of soft

tissue sarcomas in thigh imaging. This advancement aids clinicians in better

diagnosing and understanding the patient's condition, leveraging the strengths of

different imaging modalities. Further studies could explore the application of

these techniques to other types of soft tissue sarcomas and additional

anatomical sites.
KEYWORDS
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1 Introduction

Soft tissue sarcoma (STS) refers to sarcomas that occur in soft

tissues such as fibrous tissue, striated muscle, smooth muscle, fat,

and so on. Its incidence rate is similar to that of cervical cancer and

esophageal cancer Gamboa et al. (1). Soft tissue sarcomas have

complex components and a wide range of types, and they have

different manifestations in clinical manifestations, medical imaging,

and pathological characteristics Nystrom et al. (2). Soft tissue

sarcomas may appear in various parts of the body, but the

incidence rate of limbs is the highest, up to 40% - 50% Blay et al.

(3). At present, the mainstream treatment plan for soft tissue

sarcoma is mainly surgical resection and adjuvant treatment such

as chemotherapy is needed when necessary Casali et al. (4). During

the treatment of soft tissue sarcoma, it is important for clinicians to

accurately identify the sarcoma area with the help of medical images

to more accurately study and judge the patient’s condition and

formulate a more stable clinical treatment plan. Because the

imaging of soft tissue in CT is relatively close, it is not easy to

distinguish between normal soft tissue and tumor areas, so MRI

images are often used for imaging diagnosis of soft tissue sarcomas

in clinical practice. Compared with CT, MRI images have higher

soft tissue resolution, and MRI has more sequences, which can

depict the shape size, internal signal strength, boundary texture, and

tumor invasion of surrounding tissues from different angles and the

information between different modes is complementary, it provides

more judgment basis for detection of soft tissue tumor lesions,

determination of origin, diagnosis of benign and malignant tumors,

evaluation of invasion range and prediction of recurrence Chhabra

et al. (5).

When using MRI images to diagnose soft tissue sarcomas, not

only requires doctors to have high professional skills and attention,

but also requires doctors to read a large number of MRI images, and

comprehensively study and judge multiple modalMRI images of each

patient. This method is not only time-consuming and laborious but

also prone to missed and wrong judgments, what is more important

is to judge whether the surrounding tissue of the soft tissue tumor

area is tumor-induced edema or tumor infection, which has higher

professional skill requirements for doctors. The development of deep

learning makes it possible to diagnose the tumor area with the help of

a computer on MRI images. The segmentation and detection of deep

learning in lung nodes Bouget et al. (6), brain cancer segmentation

Zhou et al. (7) Zhou et al. (8), liver cancer segmentation He et al. (9)

and other tumor segmentation fields have been widely used. With the

powerful feature extraction ability of the deep learning model, it can

efficiently and accurately extract the tumor feature information in the

MRI modal images of soft tissue sarcoma and automatically segment

the sarcoma region.

In clinical practice, accurate diagnosis and treatment planning

for soft tissue sarcomas are critical to patient prognosis. However,

traditional diagnostic methods rely on physicians manually

interpreting MRI images, which is not only time-consuming but

also susceptible to subjective judgment, resulting in inadequate

segmentation accuracy. In addition, the low contrast of soft

tissues in CT imaging makes it more difficult to differentiate
Frontiers in Oncology 02
between tumor regions and normal tissues, further increasing the

diagnostic complexity. To overcome these challenges, this study

proposes a multimodal MRI image segmentation model based on

self-supervised learning, aiming to improve the accuracy and

efficiency of soft tissue sarcoma segmentation.

While current segmentation techniques have difficulty in

striking a balance between processing speed and segmentation

accuracy, our method not only improves the segmentation quality

but also optimizes the computational efficiency by introducing an

attention mechanism and a self-supervised learning strategy. By

adaptively fusing features from different MRI modalities, our model

can identify and segment tumor regions more accurately, which is

crucial for accurate surgical planning and treatment decisions. In

addition, considering the diversity and incompleteness of data in

clinical practice, our self-supervised learning strategy effectively

addresses the challenges posed by small sample sizes by

enhancing the encoder’s feature extraction capability, improving

the model’s generalization ability and robustness.

The contribution of this study is to provide a new assisted

diagnosis model, which has the potential to significantly reduce the

workload of physicians, improve the accuracy of clinical decision-

making, improve patient outcomes, and provide new perspectives

and solutions in the field of medical image analysis.

Our contributions in this paper are three-fold:
1. We collect multi-modal MRI image data from 50 patients

with soft tissue sarcoma and obtain a multi-modal MRI

image dataset of soft tissue sarcoma patients through a

series of preprocessing operations.

2. We design a soft tissue sarcoma segmentation model and

propose an attention mechanism to encourage the model to

learn feature information from different modalities.

3. We propose a self-supervised training strategy to alleviate

the problem of small data volume in our dataset.
Figure 1 shows our workflow.
2 Relevant work

2.1 Segmentation of soft tissue sarcoma

At present, there are many deep-learning-based multimodal

tumor segmentation methods Cao et al. (10) Tran et al. (11) Cheng

et al. (12). Most of these methods are inspired by complete

convolutional neural networks (FCN) Long et al. (13), one of the

earliest attempts to use CNN in the direction of image

segmentation. Its variant UNet Ronneberger et al. (14) model is a

classical model to solve problems in the field of medical

segmentation. The UNet network is an encoder-decoder

structure. It uses skip connection to combine the low-level

features and high-level semantic information of the same scale

feature graph so that the model can better learn the local features

and global features of the input image. Because UNet is simple,

efficient, easy to understand, easy to construct, can be trained on
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small data sets, and has an outstanding segmentation effect, it is

widely used in all directions of semantic segmentation. Inspired by

UNet, Dolz et al. (15) proposed multimodal UNet suitable for

multimodal medical image segmentation, and this network has

been proven to be effective in multimodal medical image

segmentation such as brain tumor segmentation of multimodal

MRI image Mehta et al. (16) Myronenko (17) and lung tumor

segmentation of PET/CT image Zhong et al. (18).

The main objective of the soft tissue sarcoma segmentation task

is to label malignant tumors in soft tissues at the pixel level. Deep

learning has been applied in the segmentation of soft tissue

sarcoma. Zhong et al. (18) NSCLC tumors in PET-CT images are

co-segmented by DFCN, and CT and PET information are

considered at the same time. The network structure consisted of

two coupled 3D-UNets to share complementary information

between PET and CT. However, they do not take into account

that each mode placed different emphasis on tumor characteristics,

which affected tumor classification. Peng et al. (19) A deep

multimodal collaborative learning is proposed and an end-to-end

volumetric deep learning architecture is introduced to learn PET-

CT complementary features. To distinguish different modes, a

mode-specific sarcoma segmentation model is developed in

reference Tang et al. (20) to realize multi-mode feature learning

through the mode-specific encoder and decoder branches, and the

use of resource-efficient densely-connected convolution layers.
2.2 Attention mechanism

The human eye will selectively pay more attention to the

information of some regions while ignoring the information of

other parts when observing things. This mechanism is called the

attention mechanism. Literature Hu et al. (21) proposes that the SE

module can explicitly establish the dependency between feature

map channels adaptively generate feature map channel weights and

recode the feature information in the feature map. Based on

literature Hu et al. (21), literature Roy et al. (22) proposes three

variants of the SE module, cSE, sSE, and scSE. Among them, cSE

and SE module in document Hu et al. (21) both have the function of

establishing the dependency between the channels of feature maps,
Frontiers in Oncology 03
and sSE module has the function of establishing the dependency

between the spatial location information of feature maps, while scSE

module parallels sSE module and cSE module to establish both the

channel dependency between feature maps and the spatial

dependency between feature maps. The experiment in document

Roy et al. (22) shows that three variants are applied to the UNet

model. In the challenge of MRI whole-brain segmentation, better

segmentation performance of the original UNet can be achieved.

Literature Woo et al. (23) proposes a simple and effective

convolution attention module, which calculates the attention map

along the two independent dimensions of input feature map

channel and space, and then performs adaptive feature refinement

according to the attention map and input feature map, which can be

conveniently embedded in the convolution framework. Literature

Oktay et al. (24) also proposes a new attention gate mechanism for

medical imaging, and introduces it to the jump junction of the UNet

structure. The image segmentation experiment is carried out on two

large CT abdominal data sets, proving that the introduction of an

attention gate mechanism to UNet can improve the sensitivity and

prediction accuracy of the model.
3 The proposed data set

We collect coronal (COR) T1WI, T2WI, and STIR modal MRI

images of 45 patients with soft tissue sarcoma at thigh sites from our

hospital, as shown in Figure 2. The original images are preprocessed,

and soft tissue sarcoma areas are jointly marked by multiple

clinicians, after which cropped sectioning operations are performed

on multiple modal MRI images of the same shot angle of the same

patient, resulting in two multimodal imaging data sets of soft tissue

sarcomas at thigh sites. Below is a detailed description of the

preprocessing operations.
3.1 Resample

Due to different machine models and shooting parameters, the

original MRI image sequences of patients with soft tissue sarcoma

have inconsistent pixel sizes and thickness and granularity of
FIGURE 1

Our workflow.
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different scanning surfaces, which is not good for the training of the

convolutional depth model. Therefore, we first use the interpolation

algorithm to resample the original MRI images of patients with soft

tissue sarcoma, so that the pixel size and the distance between each

scanning surface in coronal and sagittal positions of all MRI images

are 1mm, and the size of each scanning surface is 512*512, which

not only reduces errors caused by data inconsistency, but also

increases the number of MRI sequence sections. Figure 3 shows the

example of T2WI modality in MRI images of a patient with soft

tissue sarcoma with an original thickness of 9mm before and after

interpolation resampling.
3.2 Maximum-minimum normalization

Although MRI images are similar to CT images, each pixel on

each scanning plane in different mode sequences represents the

signal intensity of the corresponding position when shooting

images, in the same mode sequence of MRI images, the sarcoma

region of the same patient may show different intensity signals

under different shooting parameter settings, this makes it

impossible to use the commonly used window adjustment

method in CT image processing to uniformly operate all MRI
Frontiers in Oncology 04
images of all patients to highlight the tumor area and solve the

problem of inconsistent signal intensity caused by the setting of

shooting parameters in RI images. Therefore, we choose to use the

maximum-minimum operation for normalization.

Since the max-minimum normalization operation is prone to

the influence of extreme values, before the normalization, we first

remove the maximum and minimum 5% pixels of signal intensity in

each scan surface and use the remaining 90% pixels of signal

intensity for operation. The maximum-minimum normalization

formula is shown in Equation 1. Where, Smax and Smin respectively

represent the maximum and minimum values of signal intensity in

90% pixel points, and S and S′ respectively represent the original

signal intensity and normalized signal intensity at each position of

each scanning surface.

S0 =
S − Smin

Smax − Smin
v (1)

The images of T1WI, T2WI, and STIR modalities in coronal

and sagittal positions of a patient with soft tissue sarcoma after the

above normalization operation are shown in Figure 4. After

maximum-minimum normalization, the contrast between the

tumor area and other areas in each mode of soft tissue sarcoma

is enhanced.
FIGURE 3

MRI resampling: 9 mm thickness of each modality of the original MRI image of a patient with a soft tissue sarcoma, 1 mm thickness of each modality
of the MRI image after interpolation resampling.
FIGURE 2

Examples of T1WI, T2WI and STIR image.
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3.3 MRI imaging markers of soft
tissue sarcoma

Multiple clinicians use a rectangular box to mark the sarcoma

region in the MRI images after the above preprocessing operations.

At the same time, the coordinates of the upper left and lower right

corner of the rectangular box are recorded in the array, and the

same scanning surface of the MRI sequence of different modalities

in the same patient shared a marker box. The MRI images, marker

frame, and mask images of a soft tissue sarcoma patient in each

modality are shown in Figure 5, in which the red rectangular box is

the marker frame, and from left to right are T1WI modality, T2WI

modality, STIR modality, and mask image.
3.4 Tumor area cutting and sectioning

It requires a lot of computational resources to use the 512*512

MRI modal images obtained by the above processing as input. At

the same time, as the average proportion of soft tissue sarcoma area
Frontiers in Oncology 05
in each scanning surface of the image is about 1
16, we use a 256*256

cropping box around the marker box of the sarcoma area for MRI

during training. The image sequence is clipped so that the area

clipped by the clipping box not only includes all the areas marked

by the tumor marker box but also does not intercept the parts

outside the original area of each scanning surface, as shown in

Figure 6. At the same time, each modal sequence of MRI is sliced

and 64 scanning surfaces in the middle of each sequence are taken.

The same pruning and sectioning operations are performed on all

MRI modal sequences of the same patient to obtain 64×256×256

aligned multi-modal MRI images of soft tissue sarcoma.
4 Model

4.1 Network structure

The proposed model generally follows the encoder-decoder

structure, but the difference is that encoders have multiple

encoding paths to accept multi-modal inputs. This is shown in
FIGURE 5

Box and mask images of sarcomatous areas in each modal series of soft tissue sarcomas.
FIGURE 4

Maximum–minimum normalized pre-post images of individual modal sequences of MRI in patients with soft tissue sarcoma.
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Figure 7, the model encoding ends have three coding paths in the

same structure. Each coding path has 4 layers, and each layer is

composed of two consecutive convolution operations and one

downsampling operation. The size of the convolution kernel is 3 ∗
3, the number of convolution kernels is doubled layer by layer from

64, and the number of them in the last layer is 512. The

downsampling operation is composed of a 2 ∗ 2 pooling layer.

Between the encoding path and the decoding path is the attention

fusion strategy module, which fuses all modal-related features from

the coding path to better extract features. The fused features are

transmitted to the decoding end. The decoding end is also composed

of 4 layers, each layer is composed of two consecutive 3 ∗ 3

convolution and 2*2 upsampling layers. Each layer of the decoding

end and each layer of the coding-end correspond to each other, and

the corresponding layers are transferred to the decoding end through

a hop connection. The features obtained by the decoding end pass

through a layer of Softmax layer to obtain the classification of each

pixel and finally output the prediction results of the model.
Frontiers in Oncology 06
4.2 Feature fusion

Considering that the signal intensity of soft tissue sarcoma in

the T1WI modality is weaker than that of other tissues, the signal

of the tumor region in the T2WI and STIR modalities is stronger

than that of other tissues, and the coding path of each mode of

MRI image extracts the feature map of the corresponding

modality and makes a simple connection that cannot effectively

use the feature information from different modalities, we propose

a new attention weighted fusion strategy to fuse the characteristics

of soft tissue sarcoma regions with different modalities. Its

structure is shown in Figure 8. We use F1, F2, F3, and F4 to

represent the feature information of different modalities extracted

by the coding end, and stitch the feature information of different

modalities along the channel direction to obtain the feature map F,

the feature map F passes through the channel attention

mechanism module and the spatial attention mechanism

module successively to obtain a new feature map Fc and Fs, and
FIGURE 7

Overall structure diagram of the model.
FIGURE 6

Schematic diagram of tumor region cropping operations.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1247396
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2024.1247396
add Fc and Fs to obtain the fusion feature map after modal

adaptive attention weighting Ff.

In channel attentionmechanism in the module, characteristic figure

from different code paths together without F ∈ RH∗W ∗C is regarded

asU =   u1, u2,…, uC½ � feature vector, where uk ∈ RH∗W, i ∈  1, 2,…

,C gets the k vector element of the vector Z ∈ R1 ∗ 1 ∗C after the global

pooling operation. The above process is shown in Equation 2.

Zk =
1

H*W
o
H

i
o
W

j
uk(i, j) (2)

After the global average pooling operation, the spatial

information in the feature map is mapped to the feature vector Z.

This vector passes through two fully connected layers and is

transformed to Ẑ = W2(d (W1 ∗Z)), where W1 ∈ R
C
2 ∗C ,W2 ∈

RC ∗ C
2 is the weight of the two fully connected layers, d() is the

ReLU activation function. Then activate the function via Sigma

(s()). Map it between the interval [0,1] to obtain the channel

attention weight of the special graph F, and multiply this weight

with the feature map F to obtain the feature map weighted by the

channel attention mechanism Fc. The above process is shown in

Equation 3.

Fc = s bz1½ �u1,s bz1½ �u1,…,s bzC½ �uC½ � (3)

In the spatial attention mechanism module, the feature map F ∈
RH∗W ∗C is seen as U   = u 1, 1ð Þ, u 1, 2ð Þ,…, u i, jð Þ…, u H,Wð Þ½ �
spliced from different coding paths is regarded as the feature vector

o f U = u 1, 1ð Þ, u 1, 2ð Þ,…, u i, jð Þ…, u H,Wð Þ½ �, w h e r e u

(i, j)  ∈ R1 ∗ 1 ∗C , i ∈  1, 2,…,H, j ∈  1, 2,…,W is regarded as the

feature component of the feature map at (i, j) spatial position. When

using spatial attention to weight the feature map, the convolution

operation with the weight Ws ∈ R1 ∗ 1 ∗C ∗ 1 is used to map the vector

U to obtain the vector q ∈ RH∗W , and the vector qi,j represents the

linear combination representation of the channel direction features on

the spatial position (i,j) of the feature map. Then, the maximum

pooling operation is used in the channel direction to obtain the vector

p ∈ RH∗W, and the vector pi,j represents the most significant feature

in the channel direction on the spatial position (i, j) of the feature map.
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After adding the vectors p and q, use the Sigma activation function to

scale to [0, 1], and multiply with the input feature map to obtain a

spatially weighted attention feature map Fs. The above process is

shown in Equation 4.

Fs = s p1,1 + q1,1
� �

u1,1,…,s pH,W + qH,W� �
uH,W� �

(4)

The channel-weighted feature map Fc and the spatially weighted

special map Fs are added and fused to obtain the attention-weighted

fusion feature representation Ff of the input feature map. The above

process is shown in Equation 5.

Ff = Fc + Fs (5)

This method can be applied to the combination of different

modal inputs and can extract more important semantic features in

the channel direction and spatial direction, and better fuse the feature

information from different modalities.
4.3 Self-supervision training

MRI images from different modalities provide different

descriptions of the same soft tissue sarcoma site from different

perspectives, which makes multi-modal MRI images provide more

information about the tumor site than single-modality MRI images,

but the amount of multi-modal MRI image data collected for training

our model is still lacking. Therefore, we choose to use the self-

supervised learning strategy to overcome the problem of insufficient

network training due to the small amount of data. Although self-

supervised learning strategies can also be realized by rotation, scaling,

inversion, and other means, considering that when patients with soft

tissue sarcoma in the thigh region takeMRI, the relative position of the

entire thigh in eachmodality of theMRI image is almost the same, and

the alignment between different modalities is required after using

rotation, zoom and other operations, so we design a masking task for

self-supervised learning based on the literature Fang et al. (25). As

shown in Algorithm 1, we present the training algorithm of the model.
FIGURE 8

Attention-weighted fusion strategy. The input feature map is (expressed as F1, F2, F3, F4) processed by the channel attention mechanism and the spatial
attention mechanism to obtain the new feature maps Fc and Fs, and the modal adaptive attention weighted feature map Ff is obtained after fusing Fc and Fs.
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As shown in Figure 9, our self-supervised learning uses two coding

ends that share weights, and the structure of these two coding ends is

consistent with each coding path of the multi-coding end as described

earlier. The upper branch is used to perform the segmentation task of

single-modal image as input. The lower branch is only used to perform

the feature extraction task of single-modal image with mask noise as

input, and shares parameters with the upper branch for training. In

detail, for the input I of each modality, we randomly shield the border

of the sarcoma region with a mask of 30*30 at the boundary of its

tumor region and obtain the noisy input I
0
: I encoded by the upper

branch encoder to obtain the feature F
!
,  I

0
to obtain the feature G

!
by

the lower branch encoder encoding. Bouget et al. (6), we use cosine

similarity LSimilarity and segmentation loss LDice to guide the coding-end

to perform feature extraction on single-modal images, to strengthen

the ability of the coding path corresponding to each modal input to

extract features. The above process is shown in Equations 6–7, and the

total loss function is shown in Equation 8. The total loss function for

each modal coding path reinforced using self-supervised learning is:
Fron
Input: image of size 3 × 256 × 256

Initialization: modality ← 3, layer ← 4, F

[modality][layer]

x ← tensor of image

x0 ← tensor of image with mask

//The process of Encoder

for t refers to x,x0 do

for m ← 0 to modality − 1 do

for l ← 0 to layer − 1 do

t[m] ← ConvEncoder[m][l](t [m])

F[m][l] ← t[m]

t[m] ← MaxPool(t[m])

end for

end for

end for
tiers in Oncology 08
y ← ConvBottleneck(x)

//The process of Decoder

for l ← layer − 1 to 0 do

y ← TransConv[l](y)

y ← [y;FeatureFusion(F[]:[l])]

y ← ConvDecoder[l](y)

end for

y ← EndConv (y)

Output: x, x′, y
Algorithm 1. Calculation of the model during training.

LSimilarity =
~F*~G

~F ‖2 *
�� ��~G ‖2

(6)

LDice = −
2oypyt

oyp +oyt
(7)

Lself−sup = LSimilarity + LDice (8)
5 Experimental setup

5.1 Implementation details

We randomly divide the two datasets into 80% train sets and 20%

test sets, use PyTorch 1.10 to implement our network, and train 100

epochs on NVIDIA GeForce GTX 3090. We optimize our network

with Adam Optimizer. The learning rate of the optimizer is 1e − 5

and if the loss is verified not improved within 10 epochs, then we will

terminate the training in advance to avoid overfitting. The choice of

learning rate is based on experimentation and experience. In this

study, the learning rate of the optimizer is a common choice as it

usually provides stable and efficient performance during training,

thus helping the model to converge to a better solution.
FIGURE 9

Self-supervised learning strategies.
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5.2 Evaluation indicators

Each pixel point of each scanned surface in different models of

the soft tissue sarcoma MRI is one of the two categories of tumor

areas or non-tumor areas. We use the Dice coefficient, sensitivity,

specificity, and Hausdorff distance to evaluate the performance of

the model. The calculation formula of the evaluation index is shown

in Equations 9–12, of which TP, FP, TN, and FN represent the

number of pixels of true positive, false positive, true negative, and

false negatives, respectively. And d(x,y) represents the Euclidean

distance between x and y.

Dice =
2TP

2TP + FN + FP
(9)

Sensitivity =
2TP

TP + FN
(10)

Specificity =
TP

TN + FP
(11)
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Hausdor f f = maxdy, y0, dy0, y (12)
5.3 Experiment results

Tomake the experimental results more realistic and reliable, we use

the UNet network as the backbone to set up a single-encoder UNet

model and a multi-encoder UNet model. The settings of the number of

convolution cores and the convolution size of each layer of the two

models are consistent with our model. The experimental results are

shown in Table 1. It can be seen that our models are far beyond the

single-encoder UNet and ordinary multi-encoder in the Dice score and

sensitivity, which shows that our model’s dividing accuracy and

robustness are better than the two models above. And our model is

not much different from the highest score in pixel accuracy and

Hausdorff distance, which also illustrates the superiority of our model.

In Figure 10, we show the experiment results that we use different

models to segment the same patient’s sarcoma. It can be seen from the

figure that ourmodel is better on the boundary segmentation of tumors.
TABLE 1 Segmentation results of different modal. SUNet represents single-encoder UNet, and MUNet represents multi-encoder UNet.

Model Acc Dice Sensitivity Specificity Hausdorff95

SUNet 0.8875 0.4425 0.4379 0.9362 60.8418

MUNet 0.9301 0.4899 0.4693 0.9828 26.5417

Ours 0.9242 0.5430 0.5258 0.9829 33.7487
FIGURE 10

Examples of the segmentation results on our dataset. (SUNet) Single encoder UNet, (MUNet) Multi encoder UNet, (GT) Ground Truth.
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6 Discussion

Although currently we have collected the MRI multi-modal

image data of 45 patients with soft tissue sarcoma at the thigh,

made relevant data sets, and designed experiments to verify the

effectiveness and usability of the data sets we have made, it is

important to further study the pathogenesis of soft tissue sarcoma

and design a better computer-aided system to help clinical doctors

diagnose. The amount of data in our dataset is still insufficient. At the

same time, in clinical diagnosis, patients may be missing a certain

modality in the MRI image due to various reasons. We can also

design experimental research on tumor segmentation algorithms in

the case of modality loss in the MRI image of soft tissue sarcoma

based on our dataset, and design the strategy of modality fusion in the

case of modality loss. At the same time, we will also study the modal

completion method in the absence of modal in future work.
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