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Multi-parameter MRI radiomic
features may contribute to
predict progression-free survival
in patients with WHO grade
II meningiomas
Qiang Zeng1,2†, Zhongyu Tian1,2†, Fei Dong3, Feina Shi4,
Penglei Xu1,2, Jianmin Zhang1,2, Chenhan Ling1,2

and Zhige Guo1,2,5*

1Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine,
Hangzhou, Zhejiang, China, 2Department of Neurosurgery, Clinical Research Center for Neurological
Diseases of Zhejiang Province, Hangzhou, China, 3Department of Radiology, Second Affiliated
Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, 4Department of
Neurology, Sir Runrun Shaw Hospital of Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China, 5Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
Aim: This study aims to investigate the potential value of radiomic features from

multi-parameter MRI in predicting progression-free survival (PFS) of patients with

WHO grade II meningiomas.

Methods: Kaplan–Meier survival curves were used for survival analysis of clinical

features. A total of 851 radiomic features were extracted based on tumor region

segmentation from each sequence, and Max-Relevance and Min-Redundancy

(mRMR) algorithm was applied to filter and select radiomic features. Bagged

AdaBoost, Stochastic Gradient Boosting, Random Forest, and Neural Network

models were built based on selected features. Discriminative abilities of models

were evaluated using receiver operating characteristics (ROC) and area under the

curve (AUC).

Results: Our study enrolled 164 patients with WHO grade II meningiomas.

Female gender (p=0.023), gross total resection (GTR) (p<0.001), age <68 years

old (p=0.023), and edema index <2.3 (p=0.006) are protective factors for PFS in

these patients. Both the Bagged AdaBoost model and the Neural Network model

achieved the best performance on test set with an AUC of 0.927 (95% CI, Bagged

AdaBoost: 0.834–1.000; Neural Network: 0.836–1.000).

Conclusion: The Bagged AdaBoost model and the Neural Network model based

on radiomic features demonstrated decent predictive ability for PFS in patients

with WHO grade II meningiomas who underwent operation using preoperative

multi-parameter MR images, thus bringing benefit for patient prognosis

prediction in clinical practice. Our study emphasizes the importance of

utilizing advanced imaging techniques such as radiomics to improve

personalized treatment strategies for meningiomas by providing more accurate
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prognostic information that can guide clinicians toward better decision-making

processes when treating their patients’ conditions effectively while minimizing

risks associated with unnecessary interventions or treatments that may not

be beneficial.
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1 Introduction

Meningiomas constitute 38.3% of all tumors of the central

nervous system, and the annual incidence rate is approximately 8

per 100,000 individuals, rendering them the most prevalent primary

intracranial neoplasms (1). According to the grading criteria adopted

in the 2021 World Health Organization (WHO) guidelines,

meningiomas can be classified into grades I through III (2). The

majority of meningiomas are benign (WHO grade I), while 20% of

meningiomas are high-grade (WHO grades II and III), which exhibit

a greater propensity for recurrence and worse prognosis (3, 4). In the

previous 2016 WHO guidelines, the pathological diagnostic criteria

for WHO grade II meningioma were substantially revised;

specifically, brain invasion was adopted as a novel standard for the

diagnosis of WHO grade II meningioma (2). This has led to the

increased diagnosis of WHO grade II meningioma in some patients

previously diagnosed with WHO grade I meningioma, resulting in a

significant change in the incidence rate of WHO grade II

meningioma (5). Therefore, previous studies on the prognosis of

patients with WHO grade II meningioma may no longer be

applicable, and further research is warranted.

In clinical practice, surgery constitutes the primary treatment

for symptomatic WHO grade II meningiomas or those expected to

become symptomatic in the near future. The goal of the operation is

to achieve gross total resection (GTR), specifically Simpson grades I

through III resection, which can cure most patients with

meningioma (6). However, GTR is not always feasible and may

be limited by various factors, including tumor location, venous

sinus, and neurovascular tissue involvement. These factors may

affect the surgical technique and the extent of resection, which are

closely related to tumor recurrence and progression (7). Even after

undergoing GTR, WHO grade II meningiomas still exhibit a high

rate of progression, with a 30%–40% rate of progression within 5

years (6). Previous studies have reported several factors associated

with postoperative progression of WHO grade II meningiomas,

including extent of resection, age, postoperative radiotherapy, and

tumor location (8–10). Molecular biomarkers such as PTTG1,

LEPR, and TERT have also been shown to correlate with

shortened progression-free survival (PFS) (11, 12). However,

predicting the progression of WHO grade II meningioma is not

always effective based solely on clinical features. Moreover,
02
molecular biomarkers have not been widely implemented. The

existing prognostic methods and models mainly rely on clinical

information and features and incorporate qualitative or semi-

quantitative semantic features in medical imaging. In this study,

we used radiomics as a novel approach, which is to extract high-

dimensional radiomics features, conduct quantitative analysis, and

construct more accurate predictive models.

Radiomics constitutes an emerging research field that aims to

calculate and extract multidimensional features containing useful

information from radiographic medical images (X-ray, CT, and

MRI) and perform various quantitative analyses (13–15). Previous

radiomic studies of meningiomas primarily focused on preoperative

grading (16–22). Some research investigated prognosis and relapse

of meningioma following surgery (23–25). In this study, we aim to

develop predictive models using radiomic features and artificial

intelligence for predicting PFS in patients with WHO grade

II meningiomas.
2 Methods

Owing to the retrospective nature of this research and the

anonymous, non-identifiable imaging data, the Institutional

Review Board at our hospital approved this study and waived the

requirement for written informed consent.
2.1 Patients

Patients who underwent surgery and received a histopathological

diagnosis of WHO grade II meningioma between January 2013 and

September 2020 were retrospectively reviewed and enrolled in our

cohort. Corresponding preoperative images including T1-weighted

imaging (T1WI), T2-weighted imaging (T2WI), and T1 contrast-

enhanced (T1CE) sequences were exported and stored using the

Picture Archiving and Communication System at our hospital. The

following patients were excluded to minimize heterogeneity within

the cohort (1): loss of follow-up or failure to provide relevant

information (2); follow-up time <5 years with no observed

progression (3); incomplete preoperative images (absence of either

axial T1WI and T2WI of T1CE sequence) (4); presence of significant
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image artifacts (5); prior radiotherapy or surgery (6); multiple

intracranial meningiomas (7); non-newly diagnosed meningioma;

and (8) spinal meningiomas. Meningiomas were reclassified

according to the 2021 WHO classification system (2).
2.2 Image acquisition

Preoperative brain MRI images were all captured in our

hospital. MRI scanners are as follows: 3.0-T uMR 780 scanner

(United Imaging, Shanghai, China), 3.0-T Discovery MR750w, 3.0-

T Discovery MR750, 1.5-T Signa HDxt and 1.5-T Signa Excite

scanners (GE Healthcare, Chicago, IL, USA), 1.5-T MAGNETOM

Avanto, 1.5-T MAGNETOM Aera, and 1.5-T Sonato scanners

(Siemens Healthineers, Erlangen, Germany). Through a

peripheral venous catheter, pre-contrast Gadodiamide (Omniscan;

GE Healthcare, Chicago, IL, USA) was administered at a dose that

was standardized depending on body weight (0.2 ml/kg body

weight, up to a maximum of 20 ml).
2.3 Clinical information collection and
follow-ups

Corresponding demographic and clinical data, encompassing

age, gender, tumor location, degree of peritumoral edema, and

extent of resection, were archived and retrieved via the Hospital

Information System (HIS) at our institution.

Criteria for tumor location are as follows (1): skull base

meningioma, the neoplasm contacts or invades the anterior skull

base or clivus in any imaging slice preoperatively (2); parasagittal

meningioma, the tumor contacts or invades the sagittal sinus in any

preoperative imaging slice (3); convexity meningiomas, lesions located

on the convexity of the brain excluding proximity to the skull base,

venous sinus, cerebral ventricles, or cerebellum; and (4) meningiomas

at other locations, meningiomas apart from those aforementioned.

The magnitude of peritumoral edema was characterized

utilizing the Edema Index (EI) as an evaluative benchmark (26).

The EI was calculated as the sum of edema volume and tumor

volume divided by tumor volume. Severe edema was defined as

peritumoral edema volume >50% of tumor volume; otherwise, it

was defined as non-severe.

The Simpson grade was applied to determine the extent of

surgical resection, evaluated based on information from the HIS.

Simpson grades I–III were considered GTR, while Simpson grades

IV–V were deemed subtotal resection (STR) (27).

Data collected during follow-up included the following (1):

patient survival status (2); date of most recent re-examination (3);

whether meningioma recurrence transpired; and (4) whether

treatment was undertaken and the particular therapy following

recurrence. Follow-up time was the interval between follow-up date

and operation date, calculated in months. PFS time was the interval

between operation date and date of recurrence or patient demise,

calculated in months. In the absence of recurrence or death, follow-

up time was considered PFS. If the patient did not undergo

postoperative re-examination and did not perish, follow-up time
Frontiers in Oncology 03
was regarded as PFS. Enrolled patients were categorized into two

groups: (a) progression group, patients with PFS ≤ 60 months who

exhibited progression (including recurrence or death), and (b) non-

progression group, patients with PFS > 60 months.
2.4 Image preprocessing

Image preprocessing entailed the application of a series of

transformations to initial images to improve image quality and

enable more reproducible and comparable statistical analysis. Image

preprocessing was performed as delineated in our previous study (28).

To facilitate further investigation, the SPM12 module of MATLAB

R2020b (MathWorks, Natick, MA, USA) was utilized to convert

original Digital Imaging and Communications in Medicine

(DICOM) format images to Neuroimaging Informatics Technology

Initiative (NIfTI) format. Several intrinsic factors that lead to

inhomogeneity of magnetic resonance images may introduce error

into the study, such as low frequency intensity non-uniformity and

high frequency intensity variations. The N4ITK algorithm and Smallest

Univalue Segment Assimilating Nucleus (SUSAN) algorithm were

intended to compensate for the aforementioned variations,

respectively (29, 30). The N4ITK and SUSAN algorithms were both

embedded in the Cancer Imaging Phenomics Toolkit (CaPTk)

software (version 1.8.1, Center for Biomedical Image Computing and

Analytics, University of Pennsylvania, Philadelphia, Pennsylvania,

USA) and were employed to preprocess image data (31, 32).
2.5 Segmentation and radiomic
feature extraction

Segmentation and feature extraction were performed utilizing 3D

Slicer software (Surgical Planning Laboratory, Brigham and Women’s

Hospital, Boston, MA, USA; http://www.slicer.org). Patients were

reordered and renumbered; clinical data such as name, age, and

grade were also blinded. To minimize the effect of different sampling

between images and anisotropic sampling in different directions, image

interpolation and resampling to 1 mm3 voxel resolution were first

undertaken (33). The general registration (BRAINS) module

embedded in 3D Slicer software was then employed to conduct

within-subject registration of T1WI, T2WI, and T1CE utilizing linear

transformation and rigid (6 degrees of freedom) mode. Segmentation

was implemented on the tumor region of T1CE by two independent

investigators, a neurosurgeon with 7 years of experience (QZ) and a

radiologist with 10 years of experience (FD), using a semi-automated

segmentation method. The threshold tool, intensity-based level tracing

tool, and paint tool of 3D Slicer software were utilized during the

segmentation process. Segmentation was censored by the investigators,

with any disagreement resolved through discussion and consensus.

Exemplary figures are displayed in Figure 1. Radiomic features were

then calculated and extracted from T1WI, T2WI, and T1CE,

respectively, using the corresponding produced volumes of interest

and the PyRadiomics package (http://www.radiomics.io/

pyradiomics.html). A total of 851 radiomic features were extracted

for each patient from each sequence. Categories of radiomic features
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were (1) First Order Statistics (2), Shape-based (3), Gray Level Co-

occurrence Matrix (4), Gray Level Size Zone Matrix (5), Gray Level

Run Length Matrix (6), Neighboring Gray Tone Difference Matrix (7),

Gray Level Dependence Matrix, and (8) Wavelet-based. Radiomic

features from T1WI, T2WI, and T1CE were integrated for

further investigation.
2.6 Feature processing and screening

To assess the stability of radiomics features, inter-observer

reproducibility test was conducted. A total of 20 patients were

randomly selected to redo the segmentation process as described

above by another investigator with 3 years of experience (ZYT).

This result was solely utilized to determine interobserver

concordance by calculating intraclass correlation coefficient (ICC)

values. ICC is a metric that quantifies the degree of consistency

and–agreement in measurements. Research conducted by Perinetti

et al. has demonstrated that an ICC value exceeding 0.9 is indicative

of excellent consistency and stability in repeated measurements

(34). Consistent with this finding, our research team has previously

employed an ICC threshold of 0.9 for inter-observer reproducibility

test in our published study (28). Consequently, features with an ICC

≥ 0.9 were deemed stable and thus chosen.

A succession of processing steps was carried out to curate raw data

before further analysis. Z normalization was applied to reduce the

influence of different feature magnitudes (35). Data skewness was

addressed using Box–Cox transformation, and features with near-zero

variance, which have few unique values and low frequencies, were also

removed (36, 37). After data preprocessing, patients were randomly
Frontiers in Oncology 04
partitioned into training and test sets at a ratio of 8:2 according to

meningioma progression. The Max-Relevance and Min-Redundancy

(mRMR) algorithm was then implemented for feature selection and

dimensionality reduction. The mRMR algorithm is an advanced

approach based on the Max-Relevance algorithm proposed by Peng

et al. in 2005 (38). The mRMR algorithm, grounded in the principles of

mutual information theory, represents an embedded method for

feature selection. Mutual information, a key concept in information

theory, serves to quantify the degree of correlation between features,

with higher values denoting stronger relationships. The mRMR

algorithm combines both max-relevance and min-redundancy

criteria, aiming to choose a feature that minimizes redundancy and

maximizes relevance. By employing the mRMR algorithm, one can

calculate the mutual information between each of the N features and

the target variable, subsequently arranging them in a descending order

based on these calculations. This ranked list is then utilized to select a

subset of input features, ranging from 1 to N, as the preliminary input

feature set. Feature selection was performed on the training set. R

software (version 4.1.2; The R Foundation for Statistical Computing,

Vienna, Austria; https://www.r-project.org/) was utilized to conduct the

aforementioned analyses.
2.7 Statistical analysis

All statistical analyses were performed using R software. The

training set was utilized to construct four supervised machine-

learning techniques: Bagged AdaBoost, Stochastic Gradient

Boosting, Random Forest, and Neural Network. The five-time

repeated 10-fold cross-validation approach was employed, and
FIGURE 1

Exemplary figures demonstrated original images and corresponding ROI mask (green) of a patient with WHO grade II meningiomas from T1WI, T1CE,
and T2WI sequences. (A) Original images, (B) original images with corresponding ROI mask.
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model performance was assessed using the area under the curve

(AUC) with 95% confidence intervals (CIs). Model performance was

further validated on the test set. Receiver operating characteristic

(ROC) curves were used to calculate Youden’s indexes, which were

then exploited as threshold values. Confusion matrices and model

performance metrics (accuracy, sensitivity, specificity, positive

predictive value, and negative predictive value) were also computed

using the corresponding threshold value. Feature importance for

different models was estimated over 20 permutations, measured and

represented by 1-AUC loss after permutation. Moreover, lift charts

were generated as a visualization tool for evaluating the model’s ability

to detect events in a dataset of binary classifications (39). To further

explore the final models, analysis of ceteris paribus profiles and

accumulated local profiles was also performed (40).

The difference of baseline characteristic between the training set

and test set was examined using chi-squared tests and Mann–Whitney

U-tests for categoric and continuous variables, respectively. Kaplan–

Meier survival curves of clinical features were carried out for survival

analysis. A p-value < 0.05 was considered statistically significant.
3 Results

3.1 Baseline characteristics

Of the 310 patients, 164 were finally selected according to

exclusion criteria and were enrolled in our cohort. The selection
Frontiers in Oncology 05
process and the number of patients excluded at each stage of the

selection process are listed in Figure 2. Baseline clinical

characteristics are shown in Table 1. Of all the patients, 93

(56.7%) patients were female, and 136 (82.9%) underwent GTR.

The patients had a median [inter-quartile range (IQR)] age of 61.0

(54.8–69.0) years and showed a median (IQR) EI of 1.49 (1.03–

2.61). A total of 132 and 32 patients were randomly allocated into

training set and test set, respectively. Except for the extent of

resection (p = 0.014 and 0.039 in training set and test set,

respectively), there were no significant differences regarding age

(p = 0.473 and 0.631 in training set and test set respectively), gender

(p = 0.631 and 0.220 in training set and test set, respectively), tumor

location (p = 0.128 and 0.300 in training set and test set,

respectively), and EI (p = 0.159 and 0.260 in training set and test

set, respectively) within each group (all p > 0.05).
3.2 Survival analysis

Survival analysis and Kaplan–Meier survival curves were

performed for all patients based on clinical characteristic. Cutoff

values were set to transfer continuous variables into categorical

variables. Cutoff values for age and EI were 68 and 2.3, respectively.

Kaplan–Meier survival curves are shown in Figure 3. Female

(p=0.023), GTR (p<0.001), age<68 (p=0.023), and EI<2.3

(p=0.006) were demonstrated as protective factors for PFS of

WHO grade II meningiomas. As for tumor location, pairwise
FIGURE 2

Flow chart of inclusion and exclusion processes for patients with WHO grade II meningiomas in our study.
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comparisons log-rank test was carried out with p-values adjusted by

the Bonferroni correction method, patients with convex

meningiomas had a significant longer PFS than patients with

parasagittal meningiomas (p=0.005), while no significant

differences were observed in other pairs.
3.3 Feature selection and
model construction

For each patient, a total of 2,553 radiomic features from T1WI,

T2WI, and T1CE underwent feature selection process; eight

radiomic features were ultimately selected after ICC and mRMR

algorithm (Table 2). Radiomic features from T1WI, T2WI, and

T1CE were 3, 3, and 2, respectively. Seven of them were wavelet-

based features; the remaining feature was shape based. Four

supervised machine learning algorithms, including Bagged

AdaBoost, Stochastic Gradient Boosting, Random Forest, and

Neural Network, were exploited to construct prediction models

based on different feature signatures. The importance of features for

different models was calculated over 20 permutations, represented

by 1-AUC (Figure 4). Among the four models, the HHHglcmlmc1

feature of Wave le t ca tegory from T2 sequence and

HHHglrlmRunVariance feature of Wavelet category from T1C

sequence remained the most two important features, while

variations were observed in other radiomic features.
Frontiers in Oncology 06
3.4 Performance of models

Performance of models were represented by ROC curves and

corresponding AUC values (Figure 5). All four machine learning

models exhibited decent performance on test set with AUC>0.84.

The Bagged AdaBoost model and the Neural Network model

achieved the best performance on test set. The Bagged AdaBoost

model has an AUC of 0.927 (95% CI, 0.834–1.000), an accuracy of

87.5% (95% CI, 0.710–0.965), a sensitivity of 100.0%, and a

specificity of 83.3%. The Neural Network model has an AUC of

0.927 (95% CI, 0.836–1.000), an accuracy of 84.4% (95% CI, 0.672–

0.947), a sensitivity of 100.0%, and a specificity of 79.2%. Besides

AUC values, Bagged AdaBoost and Random Forest both achieved a

peak accuracy of 87.5% on the test dataset. However, the imbalance

in the distribution of progression versus non-progression patient

samples curtails the explanatory validity of accuracy for the

predictive models. Furthermore, the sensitivity and specificity

profiles of the various predictive models present unique strengths;

Bagged AdaBoost and Neural Network both exhibited perfect

sensitivity. In the realm of specificity, Random Forest emerged as

the leader among the four models, with a specificity of 87.5%. The

differential emphasis on sensitivity and specificity across models

also provides us with valuable practical guidance, informing our

selection of the most appropriate model based on its relative

strengths in sensitivity or specificity for predicting diverse target

categories. Lift charts were also employed to demonstrate the
TABLE 1 Baseline clinical characteristic of patients enrolled in this study.

Variables

Training set(n=132)

p

Test set(n=32)

p
Non-progression

Progression
group

Non-progression
Progression

group

Patients 100 32 24 8

Age, years 62.5 [55.0–71.0] 63.0 [57.0–70.2] 0.473 57.0 [54.0–61.2] 58.0 [50.8–69.0] 0.631

Gender, No. (%) 0.631 0.220

Male 40 (40.00%) 15 (46.87%) 10 (41.7%) 6 (75.0%)

Female 60 (60.00%) 17 (53.13%) 14 (58.3%) 2 (25.0%)

Tumor location, No. (%) 0.128 0.300

Convexity 28 (28.0%) 3 (9.38%) 5 (20.8%) 0 (0.00%)

Parasagittal 23 (23.0%) 11 (34.4%) 5 (20.8%) 4 (50.0%)

Skull base 40 (40.0%) 14 (43.8%) 7 (29.2%) 3 (37.5%)

Other 9 (9.00%) 4 (12.5%) 7 (29.2%) 1 (12.5%)

EI 1.46 [1.03–2.36] 2.03 [1.08–3.02] 0.159 1.24 [1.00–1.76] 1.53 [1.12–3.03] 0.260

Extent of resection,
No. (%)

0.014 0.039

GTR 87 (87.00%) 21 (65.63%) 23 (95.8%) 5 (62.5%)

STR 13 (13.00%) 11 (34.37%) 1 (4.17%) 3 (37.5%)
fro
EI, Edema Index; GTR, gross total resection; STR, subtotal resection.
ntiersin.org

https://doi.org/10.3389/fonc.2024.1246730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2024.1246730
discriminate ability of models to detect events in the dataset

(Figure 6). Furthermore, several related model indicators were

calculated, and elaborate performance metrics, including

accuracy, kappa, sensitivity, specificity, positive predictive value,

and negative predictive value of final models on the training set and

test set were aggregated in Table 3. Confusion matrices were

calculated using corresponding Youden index and were visualized

by waterfall plots (Supplementary Figure S1).
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The conclusions yielded by analysis of ceteris paribus profiles

and accumulated-local profiles are presented in Supplementary

Figures S2–S5. Ceteris paribus profiles and accumulated-local

profiles of each chosen feature displayed a comparatively

consistent pattern in the vast majority of scenarios, intimating

that they could precisely evaluate the behavioral patterns of the

predicted value of the model as a function of a specified feature and

conduce to the model’s facility for classification.
4 Discussion

In our research, we further investigated the potential utility of

radiomics features to prognosticate the progression of patients with

WHO grade II meningiomas within 5 years. The results intimated

that the models based on radiomics features had promising value in

predicting PFS.

WHO grade II meningiomas are also referred to as atypical

meningiomas (2). In the 2007 WHO guidelines, brain invasion was

one of the criteria for WHO grade II meningiomas, but merely as a

staging criterion (5). However, in the 2016 WHO guidelines, brain

invasion, due to its high correlation with the risk of recurrence and

death, is separately listed as the diagnostic standard of WHO grade
TABLE 2 Radiomic features selected by mRMR algorithm.

Features

1 T2_wavelet.HHH_gldm_DependenceEntropy

2 T2_wavelet.HHH_glcm_Imc1

3 T1C_wavelet.HHH_glrlm_RunVariance

4 T2_wavelet.LHH_glszm_SmallAreaEmphasis

5 T1_original_shape_Sphericity

6 T1C_wavelet.LLL_glcm_MCC

7 T1_wavelet.HHH_glszm_HighGrayLevelZoneEmphasis

8 T1_wavelet.LHH_glszm_SizeZoneNonUniformityNormalized
A B

D E

C

FIGURE 3

Kaplan–Meier survival curves for all patients. (A) Patients grouped by sex, (B) patients grouped by extent of resection, (C) patients grouped by tumor
location, (D) patients grouped by age, and (E) patients grouped by Edema Index. The top panel shows survival curves with confidence interval for
each group. The middle panel is risk table that shows the number of subjects at risk for each group at given follow time. The bottom panel is the
number of censored subjects barplot, which shows the number of subjects is censored for each group at given follow time.
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II meningioma, unchanged in the 2021 WHO guidelines (2, 41).

Since the diagnostic criterion of WHO grade II meningioma was

revised in the 2016 WHO guidelines, the proportion of WHO grade

II meningioma has increased from approximately 5% to 15%–20%

(5, 42). The sharp increase in the number of patients with WHO

grade II meningiomas has led to greater heterogeneity. Previous

studies on WHO grade II meningiomas may not be applicable,

warranting further investigation. Although our study included some

patients with meningiomas diagnosed before 2016, we reclassified

all patients according to the 2021 WHO guidelines.

Previous studies demonstrated that 30%–60% of WHO grade II

meningiomas progressed within 5 years after surgery (6, 8, 43). It is

widely accepted that the extent of resection is the most relevant

factor for postoperative progression (8, 44). Furthermore, age,

postoperative radiotherapy, and tumor location have all been
Frontiers in Oncology 08
reported to be associated with postoperative progression of WHO

grade II meningiomas (8–10). In our study, a significant correlation

was found between age and PFS, consistent with most previous

studies. Regarding gender, previous studies’ results vary (10, 45, 46).

In our research, we found that male patients had a significantly

shorter PFS time than female patients. In the majority of studies,

GTR is an independent factor affecting postoperative PFS in WHO

grade II meningiomas, corroborated again by our conclusion (6).

There are relatively few studies that investigated peritumoral edema

and postoperative PFS of WHO grade II meningioma. These studies

revealed the trend that larger peritumoral edema is related to

shorter postoperative PFS time (47, 48); our study exhibited a

similar trend that patient with EI>2.3 had significant shorter PFS

than patient with EI<2.3. Notably, in previous studies on

peritumoral edema, a scale or approximate volume calculation
A

B

D

C

FIGURE 4

Features’ importance for models based on radiomics features. Mean feature importance for (A) Bagged AdaBoost, (B) Stochastic Gradient Boosting,
(C) Random Forest, and (D) Neural Network was estimated over 20 permutations. Feature importance was measured and represented by 1-AUC loss
after permutation. Features were arranged by descend order of importance.
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was used to evaluate the volume of peritumoral edema, while our

study delineated volumes of interest to accurately calculate the

volume of peritumoral edema and tumor, and used the EI as the

evaluation index, which is more accurate and scientific to some

extent. Regarding tumor location, convexity and non-parasagittal

meningiomas achieve higher postoperative PFS in our study,

consistent with earlier research (45). Some studies suggest that

skull base meningiomas are associated with shorter PFS time, which

may be related to the difficulty of Simpson I resection of skull base

meningiomas (46, 49), while some studies had found that the PFS of

WHO grade II meningioma was unrelated to location (48). In our

study, skull base meningiomas did not show a significant

correlation with postoperative PFS of WHO grade II meningiomas.

The Wavelet transform decomposes three-dimensional data

into various frequency components along three axes. In our

previous work, the inclusion of Wavelet-based features has been

proven to enhance the performance of prediction models (28). In

this study, we found that most of the selected features were
Frontiers in Oncology 09
Wavelet-based features, further confirming the importance of

Wavelet-based features for radiomic studies.

In our research results, the model based on radiomic features

demonstrates good predictive ability for progression of WHO grade II

meningioma within 5 years after surgery, exhibiting the unique

advantages of radiomic analysis methods in predicting the prognosis

of WHO grade II meningioma. At present, few studies exist on the

relationship between radiomic features and postoperative progression-

free survival of WHO grade II meningioma. Kalasauskas et al. enrolled

76 patients with WHO grade II meningioma and developed a model

for identifying high risk of recurrence by combining radiologic

semantic features with radiomic features (23). However, relatively

few radiomic features were included, and machine learning

algorithms were not exploited. Morin et al. investigated prognosis of

meningioma by building predictive model based on clinical, radiologic,

and radiomic features, which achieved the AUC of 0.78 when

predicting overall survival (24). Omaditya et al. enrolled 43 WHO

grade II meningioma patients and developed a radiomics model to
A B

DC

FIGURE 5

ROC curves for models based on radiomic features, each graph represents a different model. Youden indexes with associated sensitivity and
specificity were displayed on ROC curves. (A) Bagged AdaBoost model on training and test sets. (B) Stochastic Gradient Boosting on training and test
sets. (C) Random Forest model on training and test sets. (D) Neural Network model on training and test sets.
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predict Ki-67, which is related to PFS in meningioma patients.

Recently, Park et al. conducted research to predict WHO grade II

meningioma recurrence and identify patients who may benefit from

adjuvant radiation therapy. Our study enrolled a relatively large sample

size of patients with WHO grade II meningioma and fully exploit the

advantages of radiomic features and artificial intelligence in predicting

prognosis. The final model achieved a superior predictive performance.

Based on the model, the PFS of WHO grade II meningioma can be

better predicted. There is still controversy over whether radiotherapy is

necessary after total resection ofWHO grade II meningioma. In clinical

practice, establishing a more accurate prognosis prediction model may

help screen patients with high-risk of recurrence for radiotherapy and

conduct closer follow-up examinations, which can help formulate

personalized treatment plans for WHO grade II meningioma patients.
4.1 Limitations

A retrospective study design inevitably has inherent limitations.

Foremost, insufficient complete data resulted in excluding a substantial

number ofWHO grade II meningioma patients from the cohort, which

may undermine the performance of the predictive model. Second,
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although minimized as much as feasible, selection bias cannot be fully

precluded. Third is the heterogeneity of imaging data; while a sequence

of image preprocessing processes encompassing N4ITK and SUSAN

algorithms was implemented to enhance data homogeneity and

reproducibility of our study, given that the MRI data came from

multiple disparate MRI scanning devices with different scanning

procedures, these systematic errors cannot be wholly overcome.

Fourth, this was a single-center study; a high-quality multicenter

prospective study with a larger sample size assimilating more clinical

features is justified to confirm our conclusions.
5 Conclusion

Clinical features including age, gender, tumor location,

peritumoral edema, and extent of resection are substantially

correlated with postoperative progression of WHO grade II

meningiomas. Machine learning models evinced propitious

performance when prognosticating PFS of WHO grade II

meningiomas. Among them, the Bagged AdaBoost model and the

Neural Network model demonstrated the optimal predictive ability.

Our study posits that radiomic features from preoperative multi-
A B

DC

FIGURE 6

Lift charts on test set exhibited Bagged AdaBoost, Stochastic Gradient Boosting, Random Forest, and Neural Network models based on radiomic
features. (A) Bagged AdaBoost model, (B) Stochastic Gradient Boosting model, (C) Random Forest model, and (D) Neural Network model. Each line
displays the percentage of samples that were discovered out of the total samples analyzed.
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parameter magnetic resonance images could assist in predicting

prognosis of patients with WHO grade II meningiomas who

underwent surgery, thereby bestowing benefit for patients in

clinical practice.
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TABLE 3 Performance metrics of prediction models on training set and test set.

Subset Models AUC (95% CI) Accuracy
(95%CI)

Kappa Sensitivity Specificity PPV NPV

Training Bagged AdaBoost 0.980
(0.963–0.998)

92.4%
(0.865–0.963)

81.36% 100.00% 90.00% 76.19% 100.00%

Stochastic
Gradient Boosting

0.935
(0.890–0.980)

87.1%
(0.802–0.923)

67.36% 84.38% 88.00% 69.23% 94.62%

Random Forest 1.000
(1.000–1.000)

100.0%
(0.972–1.000)

100.00% 100.00% 100.00% 100.00% 100.00%

Neural Network 0.940
(0.901–0.979)

83.3%
(0.759–0.893)

61.91% 93.75% 80.00% 60.00% 97.56%

Test Bagged AdaBoost 0.927
(0.834– 1.000)

87.5%
(0.710–0.965)

71.43% 100.00% 83.33% 66.67% 100.00%

Stochastic
Gradient Boosting

0.865
(0.724–1.000)

81.3%
(0.636–0.928)

57.14% 87.50% 79.17% 58.33% 95.00%

Random Forest 0.906
(0.776–1.000)

87.5%
(0.710–0.965)

69.23% 87.50% 87.50% 70.00% 95.45%

Neural Network 0.927
(0.836– 1.000)

84.4%
(0.672–0.947)

65.52% 100.00% 79.17% 61.54% 100.00%
front
PPV, Positive Predictive Value; NPV, Negative Predictive Value.
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