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Background: Cardiac disease (CD) is a primary long-term diagnosed pathology

among childhood cancer survivors. Dosiomics (radiomics extracted from the dose

distribution) have received attention in the past few years to assess better the

induced risk of radiotherapy (RT) than standard dosimetric features such as dose-

volume indicators. Hence, using the spatial information contained in the dosiomics

features with machine learning methods may improve the prediction of CD.

Methods: We considered the 7670 5-year survivors of the French Childhood

Cancer Survivors Study (FCCSS). Dose-volume and dosiomics features are

extracted from the radiation dose distribution of 3943 patients treated with RT.

Survival analysis is performed considering several groups of features and several

models [Cox Proportional Hazard with Lasso penalty, Cox with Bootstrap Lasso

selection, Random Survival Forests (RSF)]. We establish the performance of

dosiomics compared to baseline models by estimating C-index and Integrated

Brier Score (IBS) metrics with 5-fold stratified cross-validation and compare their

time-dependent error curves.

Results: An RSFmodel adjusted on the first-order dosiomics predictors extracted

from the whole heart performed best regarding the C-index (0.792 ± 0.049), and

an RSF model adjusted on the first-order dosiomics predictors extracted from

the heart’s subparts performed best regarding the IBS (0.069 ± 0.05). However,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1241221&domain=pdf&date_stamp=2024-12-02
mailto:bentriou.m@gmail.com
mailto:veronique.letort@centralesupelec.fr
https://doi.org/10.3389/fonc.2024.1241221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1241221
https://www.frontiersin.org/journals/oncology


Bentriou et al. 10.3389/fonc.2024.1241221

Frontiers in Oncology
the difference is not statistically significant with the standard models (C-index of

Cox PH adjusted on dose-volume indicators: 0.791 ± 0.044; IBS of Cox PH

adjusted on the mean dose to the heart: 0.074 ± 0.056).

Conclusion: In this study, dosiomics models have slightly better performance

metrics but they do not outperform the standard models significantly. Quantiles

of the dose distribution may contain enough information to estimate the risk of

late radio-induced high-grade CD in childhood cancer survivors.
KEYWORDS

survival analysis, dosiomics, cardiac disease, childhood cancer, machine
learning, FCCSS
1 Introduction

Improving childhood cancer care has resulted in an average 5-

year survival rate up to 85% in high-income countries (1).

Radiotherapy (RT) is an efficient cancer treatment that kills

cancer cells and may be combined with other treatments such as

chemotherapy. However, RT (2, 3) and chemotherapy (4) are

known long-term risk factors for CDs (CD), one of childhood

cancer survivors’ most diagnosed second pathologies and still

underdiagnosed (3). Early prognosis of late effects of childhood

cancer treatment is an important public health challenge that will

allow better healthcare for survivors.

The standard method for the risk estimation of CD is based on

statistical models (e.g. odd ratios, hazard ratios, excess relative risk)

adjusted on the mean radiation dose received by the heart, or on

metrics derived from the dose-volume histograms (5–10). Even if

such indicators can be effective predictors, they do not consider the

spatial heterogeneity of the dose distribution. Indeed, we know that

delivered dose distributions in RT may have high dose variations

within small distances (11). Therefore, statistical models might miss

the effects related to such spatial heterogeneity.

When available, whole-body voxel-scale dosimetric data

contains the spatial information of the dose distribution received

by a patient during RT. At this point, there are two ways to use this

information: either we use the 3D dose distribution as a raw input of

any suitable predicting model (12) or preliminarily extract

informative features from the dose distribution. In this study, we

chose to explore the second one with dosiomics. Indeed, using well-

defined features to represent the 3D dose distribution as predictors

of our models makes them more explainable.

Dosiomics is a way to extract such informative features based on

texture analysis techniques. This term has recently appeared in the

literature and refers to radiomics applied over the 3D dose

distribution of patients treated by RT (13, 14). Dosiomics takes

into account more information about dose distribution, including
02
spatial correlations. Their predictive power has been explored over

several pathologies induced by RT, including radiation pneumonitis

(15, 16), xerostomia (17), and rectal cancer (18), and is sometimes

combined with radiomics extracted from CT images (14, 19, 20).

Integrating the additional information of dosiomics compared to

dose-volume histograms might improve the prognosis of CD.

However, there is no clear evidence that such models would

outperform standard statistical methods (14, 19). Note that other

feature extraction methods based on deep learning representation

are currently explored in the literature (21, 22).

Machine learning denotes specific advanced inference methods

at the interface between computer science, statistics and

optimization that have proven very efficient for classification or

regression tasks. Going beyond their initial applications to

classification or regression tasks, machine learning methods have

been adapted to survival analysis (also called time-to-event analysis)

(23, 24). However, selecting the best-performing machine learning

method for a specific problem is still an open question (14, 25, 26).

This paper explores the application of machine learning

methods using dosimetric features (mean dose, dose-volume

indicators and dosiomics-based) for the prognosis of high-grade

CD within the French Childhood Cancer Survivors Study (FCCSS),

a large multi-centric cohort. The predictors are the dosimetric

indicators extracted from the 3D voxelized dose distribution of

the heart (including dosiomics), chemotherapy-related variables (a

known factor of CD), and clinical variables. We perform survival

analysis using standard Cox Proportional Hazard (27), Cox with

Lasso penalty (24), Cox Bootstrap Lasso models (28), and Random

Survival Forests (23) over several sets of features, including

dosiomics or standard dosimetric predictors, to estimate the

benefits of dosiomics and machine learning models. We also

explore the benefits of extracting dosiomics over each heart’s

subpart instead of the whole heart only. Efforts have been made

to finely tune our machine-learning models and assess the statistical

robustness of our results.
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2 Materials and methods

2.1 Data

The French Childhood Cancer Survivors Study (FCCSS) is a

large multi-centric cohort of 7670 patients diagnosed with cancer

between 1946 and 2000, among five centers, before age 21, with a

possible incomplete follow-up. In the FCCSS, 4197 patients have

been treated by RT and whole-body voxelized dosimetric data were

reconstructed for 3943 of them. The reconstruction of the 3D dose

distribution is based on a voxel-based anthropomorphic phantom

library (12 phantoms in total in this study) to generate a surrogate

of the whole body as computed tomography (CT) image for each

patient who received RT, with a voxel spacing of 2mm. Starting

from twelve different patient anatomies (men and women of

different ages), the algorithm produced an adjusted anatomy best

matching the anatomy of each individual patient, taking into

account the sex, age, and position adopted during radiotherapy,

when this information was available (otherwise only gender and age

were used) (29). Then, the RT beams, defined for each RT treatment

of the patient, were mapped on the whole-body CT image. We refer

to (30–32) for further descriptions of this method, previously

applied in other studies.

We withdrew 300 patients with no available dose matrices (254

patients) or missing clinical and chemotherapy information (46

patients). Three additional patients were removed from the study

because a CD occurred before their RT. Thus, our study integrates

7367 patients of the FCCSS, for whom 374 patients have

experienced a CD with a grade above 3. We only consider high-

grade CDs because CDs with lower grades are often self-declared, so

that they could potentially induce a reporting bias. Since this work is

based on a cohort study, with first diagnosed cancer year that

spreads from 1946 to 2000, and high-grade CD is a late RT-induced

risk, almost all of the patients have a right-censored survival time.

Our analyses will have to take into account a large censorship rate

(95%). The input of our analyses are: (i) the voxelized dose

distribution received by the heart, which is segmented into

subparts (left atrium, right atrium, left ventricle, right ventricle,

myocardium), (ii) three clinical variables consisting of sex, age at

diagnosis (categorized as 0-5 years, 6-10 years, 11-15 years, > 15

years), and type of the first diagnosed cancer; and (iii) two binary

variables for chemotherapy: treatment involving anthracyclines or

alkylating agents. The variable of interest to be predicted is the

status (a high-grade CD has been diagnosed or not).
2.2 Feature extraction of 3D
dose distribution

The 3D dose distribution data set is composed of 5181 files,

where each file represents the dose distribution of a RT session. The

mean and maximum number of voxels along each dimension of the

heart’s 3D dose distributions are respectively (32, 42, 44) and (67,

70, 71). The voxel resolution is 2mm. A patient may correspond to

several files because several RT sessions might be prescribed. In this
Frontiers in Oncology 03
case, dose distribution matrices are summed if the related

treatments were executed within six months, beginning with the

first RT treatment (above this threshold, the remaining treatments

are untapped). We remove the outliers by thresholding the values

greater than D2 (98% quantile of the dose distribution).

Dose-volume indicators and dosiomics were extracted from the

voxelized dose distribution for each of five heart’s subpart (left

atrium, right atrium, left ventricle, right ventricle, myocardium) or

the whole heart. Dosiomics includes first-order statistics and texture

indicators (including Gray Level Co-occurrence Matrix (GLCM),

Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length

Matrix (GLRLM), Neighbouring Gray Tone Difference Matrix

(NGTDM), and Gray Level Dependence Matrix (GLDM)). The

chosen bin width for discretizing the histogram of doses is 0.5 Gy.
2.3 Statistical learning

Figure 1 summarizes the overall workflow of our study. After

some preprocessing, we extract several groups of features and learn

from these features the survival probabilities of the patients. Then,

metrics are derived to select the best model and group of features,

based on 5-fold stratified cross-validation as detailed further.

The high dimensionality and heterogeneity of the data raise

several difficulties. In particular, it implies that several choices must

be performed at each step: spatial scale (heart as a whole or

considering its subparts), feature selection, preprocessing protocol

and model types. In order to ensure that our conclusions were not

biased by some particular choice, we explored systematically a large

number of possible combinations for all these steps, as

detailed hereafter.

2.3.1 Preliminarily feature screening
The features are preliminary screened on the train set during

each model fit of the cross-validation.

2.3.1.1 Feature inclusion

For each model, the predictors include the three clinical

variables, the two chemotherapy variables and one of the

following groups of dosimetric features:
• Mean dose to the heart (1 variable if the whole-heart is

considered; 5 variables if subparts are considered)

• Dose-volume indicators (24 or 24x5 variables)

• Dosiomics: first-order statistics (18 or 18x5 variables)

• Dosiomics: first-order statistics and texture features (93 or

93x5 variables).
We eliminate predictors that have the same values for every

patient and those that are duplicates of another predictor in the

sense that the correlation between them is 1 (which occurred, but

rarely, for some of our train sets in the case where the heart subparts

are considered).

Regarding the characterization of the first diagnosed cancer, we

introduce 42 indicator variables, based on the International
frontiersin.org
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Classification of Childhood Cancer (33). An indicator variable is then

kept if the association with CD occurrence is statistically significant

(p-value< 0.01): the Chi-2 test is performed unless there are fewer

than ten cases, in which case the Fisher test is preferred.

Note that the final number of included predictors in each model

may vary due to the cross-validation: this pre-filtering step is

performed independently on each train set.

2.3.1.2 Clustering-based redundancy elimination

Due to the large number of features, we set a procedure to

eliminate highly correlated features from dosiomics. Even if the

machine learning algorithms might deal with correlated features,

this helps the convergence of learning procedures. We perform

hierarchical (agglomerative) clustering over the features with the

complete-linkage function, which means that the distance between

two clusters is the maximum distance between the points of the two

clusters. The distance is 1 - Kendall’s tau, a rank correlation statistic.

We keep clusters with a distance threshold of 0.2. This ensures that

every pair of features that belongs to the same cluster has Kendall’s

tau above 1 − 0.2 = 0.8. Then, for each cluster, the representative

feature is selected by the highest hazard ratio from a multivariate

Cox model adjusted on all the features’ cluster. If the features are

extracted over the heart’s subparts, this hierarchical clustering step

is performed over each subpart. See the Supplementary Material for

an illustration of the procedure.

2.3.2 Statistical models
In this work, survival analysis is performed: we estimate the

survival function of patients for high-grade CD events adjusted on
Frontiers in Oncology 04
the dosimetric, chemotherapy, and clinical features. Two classes of

models are considered, which results in four statistical models.

First, we consider the semi-parametric Cox Proportional

Hazard (Cox PH) regression model (27), which is the standard

model used in survival analysis. Given the predictors of a patient i,

Xi = (X1
i ,…,Xp

i ), the hazard function has the form:

l(tjXi) = l0(t) exp  (b
⊤Xi),   b ∈ Rp

The large number of predictors leads us to consider the Lasso

penalty (Cox Lasso) (24) when maximizing the Cox’s partial likelihood

for feature selection. Themodel is then re-adjusted, without the penalty

term, using only the features with non-zero coefficients. The penalty is

selected via a 5-fold cross-validation and is the largest penalty such that

the corresponding error is within one standard deviation error of the

minimum error (lambda.1se in the glmnetR package).

Another way of estimating a sparse number of coefficients with the

Cox PH model is feature selection based on bootstrap sampling (Cox

Bootstrap Lasso) (28). One hundred bootstrap samples are drawn from

the train set. For each bootstrap sample, we fit a Cox Lasso model. We

select the penalty by taking the largest one not rejected by a likelihood

ratio test compared to the penalty that minimizes the error (the models

are nested because a larger penalty implies a sparser model). Then, the

selected features are stored. When the 100 bootstrap samples are fitted,

a Coxmodel adjusted on the subset of features selected in above 90% of

the bootstraps is fitted on the whole train set.

The second class of models is the Random Survival Forest

(RSF), a non-parametric ensemble method based on survival trees.

A Random Survival Forest contains B survival trees. Each survival

tree learns from a bootstrap of the entire training data set and a
Voxelized dose

Preprocessing

Heart mask

Select predictors

Preliminary screening

Model

- Whole heart
- Subparts

- Clinical predictors
+
- Chemotherapy predictors
+
- Mean heart dose
- Doses-volumes indicators
- Dosiomics : first-order statistics
- Dosiomics : first-order statistics
and gray level related features

- None
- Drop very correlated features- Cox PH (standard model)

- Cox PH with Lasso penalty
- Cox PH Bootstrap Lasso
- Random Survival Forest

FIGURE 1

Workflow of the study. For each model, several options are possible: the heart can be considered a whole or a set of subparts; several groups of
predictors can be considered; they can be preliminary filtered or not; four models can be used. We systematically explored each possible
combination. For example, the blue path means that we compute the first-order dosiomics over each heart’s subpart, we perform the procedure
described in Section 2.3.1, and we learn from the resulted predictors with a Cox Lasso model.
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subset of the predictors. Each survival tree separates the bootstrap

into smaller groups of patients while maximizing the difference in

survival curves between the groups. The risk prediction is then

based on the survival trees’ predictions.

The four models’ hyper-parameters (Cox PH, Cox Lasso, Cox

Bootstrap Lasso, RSF) are tuned with 5-fold cross-validation by

maximizing the C-index. Once the hyper-parameters are tuned, we

estimate the prediction errors.

2.3.3 Prediction error estimation
The chosen prediction metrics are Harrell’s C-index, C-index

corrected with inverse-probability-of-censoring weights (IPCW C-

index), and the integrated Brier score over times from 1 to 60 years

with a step of 1 year. As the models may have different predictors,

we ensure that the IPCWs are estimated with the same subset of

predictors based on clinical variables, except for the first diagnosed

cancer. As Harrell’s C-index depends on the distribution of

censoring times, we chose to estimate both C-index to show how

the censor may influence the performance estimation.

These three metrics are estimated in a stratified 5-fold cross-

validation procedure: the proportion of CD events is almost the

same among the folds (about 5%). For each fold, Section 2.3.1 and

Section 2.3.2 are run on the related train set, and the metrics are

computed on the related test set.

After the 5-fold cross-validation, we estimate more precisely the

models’ error via time-dependent error curves. We draw 100

bootstraps. For each time t ∈ 1, 2,…, 60f g years, we fit the

models on the bootstrap, and we compute over the out-of-bag

samples the Brier score BS (t), and the bounded IPCW C-index Ct

(34), which correspond to the IPCW C-index whose events that

occurred above t are discarded. Due to the large number of models,

we select one representative model among Cox Lasso, Cox

Bootstrap Lasso, and RSF based on their performance on the 5-

fold cross-validation. We also run this procedure for the standard

models (Cox with mean heart dose, Cox doses-volumes, Cox Lasso

doses-volumes). The hyper-parameters are those which performed

the best in the 5-fold cross-validation.
2.4 Tools

The study being computationally intensive, we used the HPC

resources from the “Mésocentre” computing center of

CentraleSupélec and École Normale Supérieure Paris-Saclay

supported by CNRS and Région Il̂e-de-France. Snakemake (35)

was used to make the analyses consistent and reproducible.

Dosiomics were extracted using pyradiomics (36). Machine

learning models were performed in R with survival, glmnet and

randomForestSRC. Results metrics were computed using the same

calls of the pec package (37), but we developed our own

implementation of error curves estimation with bootstrap, in

order to better distribute the computations on the HPC.
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TABLE 1 Characteristics of the selected patients from the entire FCCSS
cohort and the patients diagnosed with CD of grade ≥ 3.

Factors 7368
FCCSS
patients

374 patients diagnosed
with a cardiac disease

of grade ≥ 3

Sex

Male 4059 (55.1%) 202 (54.0%)

Female 3309 (44.9%) 172 (46.0%)

Age at diagnosis of the first cancer

Median 5 6

0-5 years 3969 (53.9%) 182 (48.7%)

6-10 years 1490 (20.2%) 80 (21.4%)

11-15 years 1572 (21.3%) 96 (25.7%)

> 15 years 337 (4.6%) 16 (4.3%)

Treatment for the first cancer

Radiotherapy 4258 (53.8%) 266 (75.7%)

Chemotherapy 5759 (76.2%) 308 (89.0%)

Both 3236 (41.9%) 231 (66.3%)

Age at event/censorship occurrence

Median 37 32

0-20 years 608 (8.3%) 95 (25.4%)

21-30 years 1628 (22.1%) 79 (21.1%)

31-40 years 2307 (31.3%) 111 (29.7%)

41-50 years 1926 (26.1%) 66 (17.6%)

> 50 years 899 (12.2%) 23 (6.1%)

Survival time

Median 30.2 23.6

0-5 years 34 (0.5%) 32 (8.6%)

5-10 years 372 (5.0%) 29 (7.8%)

10-20 years 611 (8.3%) 85 (22.7%)

20-30 years 2615 (35.5%) 11 (29.7%)

30-40 years 2197 (29.8%) 80 (21.4%)

40-60 years 1478 (20.1%) 36 (9.6%)

> 60 years 61 (0.8%) 1 (0.3%)

Received dose to the heart (Gy)

Min 0 0

25th percentile 0 0

Median 0.01 2.07

75th percentile 1.31 17.1

Max 47.8 47.8
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3 Results

3.1 Summary statistics

Table 1 shows the descriptive statistics of the cohort. The

median survival time of the patients’ study is 30.2 years.

Among them, 374 patients have experienced a CD with a grade

above 3 (5%, which implies a very imbalanced data set), whose

median survival time is lower (23.6 years). These patients have been

significantly more treated by RT (75.7% vs 53.8%) and

chemotherapy (89% vs 76.2%). Their hearts have been more

irradiated than the entire cohort (median is 2.07 Gy vs 0.01 Gy;

75th percentile is 17.1 Gy vs 1.31 Gy). It suggests that the dose

received by the heart has discriminative power for the prognosis of

high-grade CDs, which is an expected result (3, 38).
Frontiers in Oncology 06
3.2 Comparison of machine learning
methods and groups of features

This section presents the predictive performance estimation for

the different models and groups of features mentioned in Section

2.3. Figures 2 and 3 show the Harrell’s, IPCW C-index, and the

Integrated Brier score distributions over the 5-fold cross-validation.

The numerical results are reported in Table 2.

The three indices generate different model rankings. The IBS is

the most stable index in average, and all the models display a large

and constant inter-fold variability (Figure 3). For the Harell’s C-

index (Figure 2, above row), the top-ranked models are all Cox

Lasso models, whether or not a screening stage is included. In

contrast, for the IPCW C-index, three other models stand out: Cox

Bootstrap Lasso with dosiomics extracted from the whole heart, Cox
FIGURE 2

Harrell’s C-index and IPCW C-index of the models estimated with 5-fold stratified cross-validation. The x-axis corresponds to the group of
dosimetric features used as predictors, and the marker/color corresponds to the statistical model. In green: Cox Proportional Hazard model; in blue:
Cox with Lasso penalty; in purple: Cox with Bootstrap Lasso feature selection. Left column: no screening of correlated dosiomics; right column:
screening of correlated dosiomics. The grey dotted line is the maximum C-index over the entire row.
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FIGURE 3

Integrated Brier Score of the models estimated with 5-fold stratified cross-validation. The x-axis corresponds to the group of dosimetric features
used as predictors, and the marker/color corresponds to the statistical model. In green: Cox Proportional Hazard model; in blue: Cox with Lasso
penalty; in purple: Cox with Bootstrap Lasso feature selection. Left column: no screening of correlated dosiomics; right column: screening of
correlated dosiomics. The grey dotted line is the minimum IBS over the entire row.
TABLE 2 Results of the stratified 5-fold cross-validation.

Model
All features Pre-screening

Harrell’s C IPCW C IBS Harrell’s C IPCW C IBS

Cox
Mean heart dose

0.747 ± 0.040 0.774 ± 0.034 0.074 ± 0.056

Cox
Dose-volume indicators

0.731 ± 0.041 0.791 ± 0.044 0.076 ± 0.056

Cox Lasso
Dose-volume indicators

0.765 ± 0.050 0.743 ± 0.051 0.074 ± 0.059

RSF
Dose-volume indicators

0.739 ± 0.025 0.769 ± 0.033 0.071 ± 0.053

Cox Lasso
Whole heart first order dosiomics

0.756 ± 0.051 0.732 ± 0.039 0.074 ± 0.054 0.752 ± 0.037 0.740 ± 0.052 0.073 ± 0.052

Cox Lasso
Heart’s subparts first order dosiomics

0.759 ± 0.035 0.739 ± 0.048 0.072 ± 0.055 0.765 ± 0.045 0.770 ± 0.059 0.072 ± 0.055

Cox Lasso
Whole heart dosiomics

0.756 ± 0.035 0.744 ± 0.049 0.073 ± 0.055 0.753 ± 0.058 0.740 ± 0.044 0.075 ± 0.054

Cox Lasso
Heart’s subparts dosiomics

0.762 ± 0.039 0.742 ± 0.045 0.073 ± 0.055 0.758 ± 0.034 0.776 ± 0.054 0.073 ± 0.057

Cox Bootstrap Lasso
Whole heart first order dosiomics

0.726 ± 0.072 0.727 ± 0.072 0.072 ± 0.048 0.754 ± 0.040 0.743 ± 0.051 0.073 ± 0.052

Cox Bootstrap Lasso
Heart’s subparts first order dosiomics

0.685 ± 0.084 0.717 ± 0.129 0.077 ± 0.057 0.757 ± 0.039 0.769 ± 0.051 0.074 ± 0.060

Cox Bootstrap Lasso
Whole heart dosiomics

0.732 ± 0.040 0.791 ± 0.038 0.076 ± 0.054 0.717 ± 0.048 0.756 ± 0.105 0.075 ± 0.054

(Continued)
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with dose-volume indicators, and Random Survival Forest with

screened first-order dosiomics extracted on the whole heart.

Overall, we can observe that, whatever the indices used for the

comparison, no model outperforms the others: the mean error

differences are not outstanding; Figures 2 and 3 show that most

mean errors are above the mean minus the standard error of the

first-ranked model.

We now select the standard models (Cox with mean heart dose,

Cox with dose-volume indicators), plus three models of different

types (Cox Lasso, Cox Bootstrap Lasso, RSF) that performed best

regarding the IPCW C-index within their own model group for

deeper performance estimation. First, we confirmed that none of

these three models were statistically different, in terms of their

C-index mean estimations, from the Cox model adjusted on the

mean dose to the heart: Table 3 reports the p-values of Wilcoxon’s

tests (U-test) conducted on the IPCW C-indexes from the stratified

cross-validation over these three models against the Cox PH mean

dose to the heart. None is below the significant threshold of 0.05.

Therefore, we cannot assess the statistical difference between the

C-index mean estimations and the statistical significance between

one of the three best models and the Cox model adjusted on the

mean dose to the heart.

Second, in order to better understand the reasons of these

similar performances, we investigated on the variables selected in

the Cox Lasso model adjusted on the first-order dosiomics and

dose-volume indicators (see the Supplementary Material for the

Cox’s coefficients estimated on each fold for both models). The

main selected dosimetric features for the model adjusted on the

first-order dosiomics are the mean, the median of the 10%-quantile

of the dose distribution, whereas D70 (30%-quantile of the dose
Frontiers in Oncology 08
distribution) and V2 (volume percentage irradiated above 2 Gy) are

the most significant ones for the dose-volume indicators’ model.

Third, we estimate the time-dependent error curves as

described in Section 2.3.3. Figure 4 shows the time-dependent

C-index and Brier score over 60 years. First, the Brier score is

very stable until 40 years. Most of the variation comes from Brier

scores between 40 and 60 years. Patients’ survival times included in

this range represents less than 10% of the cohort (Table 1).

However, there are some differences in the predictive

performance regarding the IPCW C-index. The Cox PH with

mean heart dose model outperforms the models from 0 to 20

years, but the Cox Lasso with screened heart’s subparts dosiomics

performs better between 20 and 60 years. Also, there is variability in

the C-index estimation over the whole time scale (Figure 4). The

Cox Bootstrap Lasso was the first ranked model in the 5-fold

stratified cross-validation, but the model is the lowest ranked with

the 100 bootstrap samples error estimation.
4 Discussion

In this study, we explored the benefits, in terms of predictive

performance, of dosiomics compared to standard dosimetric

features, with the help of machine learning methods, for the

prognosis of high-grade CD occurrence in childhood cancer

survivors. We performed survival analysis, adapted to censored

data, which avoids the bias of discarding patients on a large multi-

centric cohort with a very long follow-up period. Efforts were made

to estimate the statistical uncertainty of our models. First, we used

resampling methods (cross-validation, bootstrap sampling) to
TABLE 2 Continued

Model
All features Pre-screening

Harrell’s C IPCW C IBS Harrell’s C IPCW C IBS

Cox Bootstrap Lasso
Heart’s subparts dosiomics

0.721 ± 0.030 0.759 ± 0.070 0.080 ± 0.071 0.734 ± 0.034 0.771 ± 0.101 0.075 ± 0.059

RSF
Whole heart first order dosiomics

0.743 ± 0.022 0.777 ± 0.035 0.071 ± 0.054 0.741 ± 0.026 0.792 ± 0.049 0.071 ± 0.056

RSF
Heart’s subparts first order dosiomics

0.734 ± 0.026 0.747 ± 0.080 0.069 ± 0.050 0.738 ± 0.027 0.738 ± 0.088 0.070 ± 0.052

RSF
Whole heart dosiomics

0.751 ± 0.017 0.737 ± 0.101 0.071 ± 0.053 0.752 ± 0.020 0.769 ± 0.048 0.070 ± 0.052

RSF
Heart’s subparts dosiomics

0.728 ± 0.026 0.731 ± 0.114 0.070 ± 0.050 0.732 ± 0.032 0.722 ± 0.103 0.069 ± 0.050
The format is: mean ± standard deviation. In bold: the best score of the corresponding column (maximum for C-index, minimum for IBS).
TABLE 3 P-values of the Wilcoxon’s test run over the IPCW C-indexes of the best Random Survival Forest, Cox Lasso, and Cox Bootstrap Lasso
models against the Cox mean heart dose model.

Model
Random Survival Forest
first-order whole-heart
dosiomics with pre-screening

Cox Lasso
heart’s subparts dosiomics with
pre-screening

Cox Bootstrap Lasso
whole heart dosiomics

Cox mean heart dose 0.69 1.0 0.79
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assess how well the models are generalizable. Second, we used global

and time-dependent metrics in our study; since the distribution of

survival times is large (see Table 1), high-grade CD may occur late.

Several difficulties have been addressed. First, the large number

of patients, models, and resampling methods have made the study

computationally intensive. The preprocessing of 3D dose matrices

and statistical learning computations have been well organized and

distributed over an HPC cluster. The high censorship of the dataset

(5% of high-grade CD) might also harm the statistical learning.

Combining this with the many statistical model fits may imply

convergence issues, and routines have been designed robustly to

ensure the convergence of each model’s fit.

To our knowledge, this is the first application of dosiomics for

risk estimation of high-grade CD in childhood cancer survivors.

Dosiomics have been mainly used to predict radiation pneumotisis

(13, 15, 16, 20, 21, 39, 40), but also other pathologies such as head

and neck cancers (17) (see (14) for other examples). Our study

confirms the RT-induced late effect of high-grade CD in childhood

cancer survivors (41).

Since there is no comparable case study of dosiomics for high-

grade CD prognosis, it is difficult to quantitatively compare our
Frontiers in Oncology 09
results with other studies. Indeed, studies either consider another

clinical outcome or much smaller cohorts, perform classification

instead of survival analysis, have a different strategy for estimating

the statistical generalization or integrate radiomics of CT-scans

(17, 20, 21, 39, 40, 42, 43). We found that dosiomics were not

statistically significant in terms of global metrics (see Section 3.2)

compared to standard models based on dosimetric features. Indeed,

p-values (Table 3) are not below the threshold 0.05, which imply we

cannot reject the hypotheses that mean estimations of C-indexes are

the same. In terms of the Brier score, the models have similar

performance. There are slightly more variations of the C-indexes,

both with or without censoring weight correction, but no dosiomics

model has a statistically better performance than the standard ones.

An interesting result is that the variables selected by the dosiomics

models are the mean, the median of the 10%-quantile of the dose

distribution, i.e. variables that contain globally the same

information as the dose-volume histograms. It would tend to

indicate that, for risk prediction purpose, a description of the

dose distribution by the dose-volume histograms could be

sufficient. Note that the variables selected by the dose-volume

models are D70 and V2.
FIGURE 4

Error prediction in function of time (years) of the best model of each statistical model type (Cox Lasso, Cox Bootstrap Lasso, RSF), plus the Cox
models adjusted on the mean dose to the heart and dose-volume indicators. On the left: IPCW-C-index; On the right: Brier score.
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In the literature, dosiomics are often combined with radiomics

for better performance (18). In specific cases, dosiomics-based

models do not perform better than standard methods alone, but

the combination of radiomics and dosiomics does (21, 39, 40).

These unavailable CT-scans in our study may explain a lack of

additional predictive performance compared to dose-volume

indicators. Note that genetic interactions with dosiomics have

also been explored for example for lung cancer (44).

However, some dosiomics models might have better predictive

performance in specific time ranges, as shown by the time-

dependent error curves (Figure 4). In terms of medical

monitoring, it is essential to assess the models performances at

different time scales for patient care improvement, since this cohort

study spreads over time. To our knowledge, this has not been much

discussed in dosiomics-based survival analysis studies.

We focused on prognosis performance in this study, mainly

having the medical monitoring context in mind. However, dosiomics

may be helpful in another context, such as the stability of feature

extraction under dose distribution reconstruction error (45). Also,

note that accessing the voxelized dose leads to an improved mean

estimation of the received dose to the heart (30), which is stable across

various dose distributions, techniques and centers (46), supporting

the assertion that obtaining voxelized data is meaningful.
5 Conclusion

Regarding global metrics, dosiomics-based models do not

significantly outperform the prognosis performance of standard

models in the case of the late risk estimation of high-grade CDs in

childhood cancer survivors. Quantiles of the dose distribution,

given by dose-volume indicators or first-order dosiomics,

summarize the information contained in the dose distribution for

the prognosis of RT-induced severe CDs. The numerous models

considered in this study may have performance differences for

specific periods, which is attractive regarding the medical

monitoring of late effects. As the exploration of dosiomics

emerges in oncology, assessing the robustness and generalization

of such methods with various use cases is crucial.
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