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Deep learning-assisted ultrasonic
diagnosis of cervical lymph
node metastasis of thyroid
cancer: a retrospective
study of 3059 patients
Hai Na Zhao1, Hao Yin2, Jing Yan Liu1, Lin Lin Song1,
Yu Lan Peng1* and Bu Yun Ma1*

1Department of Ultrasonography, West China hospital of Sichuan University, Chengdu,
Sichuan, China, 2Computer science of Sichuan University, Chengdu, Sichuan, China
Objective: This study aimed to develop a deep learning system to identify and

differentiate the metastatic cervical lymph nodes (CLNs) of thyroid cancer.

Methods: From January 2014 to December 2020, 3059 consecutive patients

with suspected with metastatic CLNs of thyroid cancer were retrospectively

enrolled in this study. All CLNs were confirmed by fine needle aspiration. The

patients were randomly divided into the training (1228 benign and 1284

metastatic CLNs) and test (307 benign and 240 metastatic CLNs) groups.

Grayscale ultrasonic images were used to develop and test the performance of

the Y-Net deep learning model. We used the Y-Net network model to segment

and differentiate the lymph nodes. The Dice coefficient was used to evaluate the

segmentation efficiency. Sensitivity, specificity, accuracy, positive predictive

value (PPV), and negative predictive value (NPV) were used to evaluate the

classification efficiency.

Results: In the test set, the median Dice coefficient was 0.832. The sensitivity,

specificity, accuracy, PPV, and NPV were 57.25%, 87.08%, 72.03%, 81.87%, and

66.67%, respectively. We also used the Y-Net classified branch to evaluate the

classification efficiency of the LNs ultrasonic images. The classification branch

model had sensitivity, specificity, accuracy, PPV, and NPV of 84.78%, 80.23%,

82.45%, 79.35%, and 85.61%, respectively. For the original ultrasonic reports, the

sensitivity, specificity, accuracy, PPV, and NPV were 95.14%, 34.3%, 64.66%,

59.02%, 87.71%, respectively. The Y-Net model yielded better accuracy than

the original ultrasonic reports.

Conclusion: The Y-Net model can be useful in assisting sonographers to improve

the accuracy of the classification of ultrasound images of metastatic CLNs.
KEYWORDS

deep learning-assisted ultrasonic diagnosis, cervical lymph node metastasis, thyroid
cancer, retrospective, fine needle aspiration sensitivity, specificity, accuracy, PPV
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1 Introduction

Primary thyroid cancer (TC) is the most common malignant

endocrine tumor worldwide, and its incidence has steadily increased

over the past two decades (1, 2). TC has often metastasized to the

cervical lymph nodes (CLN) at the time of diagnosis, with more than

half of the patients with TC having lymph node (LN)metastasis at the

initial diagnosis (3, 4). Accurate evaluation of CLN metastasis is

important for TC patients, not only for surgical approach selection,

but also in relation to long-term clinical outcomes. Ultrasound (US)

is one of the most important imaging methods for evaluating TC

nodule and CLN metastasis. However, due to the complex structure

of the neck and the diverse ultrasound manifestations of LNs, the US

examination depends more on the operator experience and their

subjective impression (5–7). Therefore, a new strategy is required to

overcome operator dependence.

Artificial intelligence (AI)-assisted diagnosis can reduce US

operator dependence and in recent years, it has become popular in

ultrasonic diagnosis. As a subdomain of AI, a convolutional neural

network (CNN) can extract image features and is widely used for

ultrasonic image classification (8, 9). Previous research reports have

mostly focused on predicting the risk of CLN metastasis based on the

US characteristics of thyroid nodules (10, 11), and there are few deep

learning studies in differentiating benign and malignant CLN based on

CLN US images in TC cases. Therefore, in this study, we used a CNN

named Y-Net to automatically segment and classify CLN US images,

which can assist radiologists in more accurate analyses and decisions

regarding fine needle aspiration (FNA) during US examinations.
2 Materials and methods

2.1 Ethical approval

This study was approved by the Ethics Committee of West

China Hospital, Sichuan University (No. 1341). Written informed

consent was not required owing to the retrospective nature of this

study. All datasets were fully anonymized.
2.2 Patients and datasets

Patients who visited the West China hospital of Sichuan university

for CLN FNA from January 2014 to December 2020 were enrolled in

this study. Both preoperative and postoperative CLNs were included.

During FNA, the puncture route avoided the thyroid parenchyma. The

washout thyroglobulin (Tg) levels were considered positive only if they

were significantly higher than the serum Tg levels. All CLNs were

confirmed using FNA and/or washout Tg analyses.

The inclusion criteria were as follows:
Fron
1. Patients suspected with TC metastasis.

2. Patients with high-quality B-mode and color Doppler images

using a high-frequency linear probe during the examination.

3. Patients with pathologically confirmed CLNs.
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The exclusion criteria were as follows:
1. Patients with LNs not located in the neck.

2. Patients with indistinct ultrasonic images.

3. Patients with indeterminate final pathological results.
All images were collected by a sonographer with eight years

experience. US imaging was performed using the following five

different US machines for data acquisition: Mindray Resona 7T

(Mindray Medical International, Shenzhen, China), Siemens Acuson

Oxanal (Siemens Medical Systems, Munich, Germany), Philips IU22

(Philips Healthcare, Bothell, USA), Hitachi-HI Vision Preirus (Hitachi

Aloka Medical, Ltd., Tokyo, Japan), and Supersonic Aixplorer

(SuperSonic Imagine, Provence, France). B-mode US images of the

long-axis sections of the LNs were selected for deep learning analysis.

One image was captured per LN. If a patient underwent repeated

examination before surgery, the most typical image was collected. To

obtain high-quality images, sonographers adjusted the machine

settings, such as depth, focus location, gain, and magnification,

during the examination.
2.3 Diagnostic efficacy evaluation of
original ultrasound reports

Text data from the original US reports were derived. Because

the US reports were described using natural language, we first

established an US diagnosis dictionary according to the principle of

similar words and synonyms. Natural words such as LN

enlargement, abnormal LN, and metastasis were classified as

malignant, whereas natural keywords such as normal LN and

reactive hyperplastic LN were classified as benign. The results are

summarized in Table 1. Therefore, all LNs were ultrasonically

divided into benign and malignant. Using pathological results

and/or washout Tg analysis as the gold standard, we evaluated

the diagnostic efficacy of LNs using the original US report.
2.4 Ultrasonic image manual annotation

B-mode US images were acquired. Because all the included

patients underwent US-guided percutaneous FNA and images were

obtained during each procedure, we could easily determine the

target CLN according to the position of the needle tip.
TABLE 1 Diagnosis dictionary of the original ultrasonic reports.

Dictionary Definition Key words in the
ultrasonic reports

Final diagnosis

Malignancy
Lymphadenopathy / abnormal lymph node
/ metastasis / CA / Ca / suspicious
calcification/ suspicious necrosis

Benignancy Normal lymph node / reactive hyperplasia /
normal structure
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2.5 Deep learning model

In this study, the Y-Net deep learning model was used

(Figure 1). This model extends the U-Net neural network model

by adding a parallel branch that can realize automatic segmentation

and classification. Different from the U-Net model, we used residual

convolutional blocks and efficient spatial pyramid blocks for

encoding and decoding (12, 13).
Fron
① The US image exported from the ultrasonic workstation was

marked with machine parameters and body markers at the

corner of the image, and preconditioning was performed on

each image to remove irrelevant information. We used the

Mouse software designed by our research team to annotate

the region of interest of the image. The US images of all

desensitized LNs were scaled to a unified size of 256 × 256.

② The model encoder used an efficient pyramid module to

replace the 3 × 3 convolution in the residual network. The

pyramid pooling module fused features at four different

pyramid scales. According to the size of the US image, our

pyramid pooling module was a four-level module with bin

sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9. We processed the

spatial information of the multiscale input feature map to

effectively establish the long-term dependency between

multiscale channel attention.

③We added pyramid spatial pooling blocks for decoding based

on the success of PSPNet for segmentation (14).

④ This model follows the characteristics of the U-Net model

(14) and adds a jump connection between the encoding and
tiers in Oncology 03
decoding layers. The difference is that Y-Net also adds a

jump connection between the first and last encoding block

at the same spatial resolution in the encoder to

improve segmentation.

⑤ The model has two parallel branches of segmentation and

classification that can automatically generate segmented LN

US images and LN benign and malignant classification results

simultaneously. The segmented image was saved as a binary

image, and the classification result was a C-dimensional

vector, which was generated as a 0–1 dataset.

⑥ The cutoff value of the classification efficiency with a receiver

operating characteristic (ROC) curve was determined, and

the classification efficiency of the model was evaluated.
2.6 Loss function

To train the network, we used cross-entropy as the loss function

for both segmentation and classification, which is defined as follows

(Equation 1):

J(q) = −
1
m

½o
m

i=1
y(i) log fϑ(I

(i)) + (1 − y(i))log(1 − fϑ(I
(i)))� (1)

When training segmentation, m represents the predictive

category, y(i) the category label, and i zero or one, where zero

represents benignancy and one represents malignancy. ϑ represents

the consent of the network and fϑ( · ) the mapping relationship from

the input image to the predicted output.
FIGURE 1

The Y-Net architecture. * means "superposition".
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When training classification, m represents the predictive category,

y(i) the ROC of each US image, and i zero or one, where zero represents

the image area outside the ROC and one the ROC. ϑ represents the

consent of the network and fϑ( · ) the mapping relationship from the

input image to the predicted output.

In this study, the total loss function was segmentation combined

with classification loss function.

The training process of the deep learning model was as follows.

First, the patients were divided into two groups, in which the images

of approximately four of five patients were used as the training set

and those of the other patient, used as the validation set. Second, all

the cases were randomly divided as training set and test set. A 5-fold

cross-validation was used to train the parameters of the model

based on the training set. The test set of completely different cases

was used to validate the performance of the final model.

The computer system used to train the model was Windows 10,

the central processing unit was core i7-8700, the internal storage

was 8 G, and the memory of the hard disk was 1 T. The batch size

was set to eight, and the initial learning rate was set to 0.001.

In this study, we evaluated the efficiency of segmentation

combined with classification. We also evaluated the efficiency of

only classification without segmentation of the Y-Net model by

deleting the image segmentation program part. The input images

were normalized the same as previous analysis. The machine

parameters and body markers at the corner of the US images

were removed, and the input features were also scaled to a unified

size of 256 × 256. Scaling and enhancement algorithms were used to

normalize them.
2.7 Statistical analyses

Segmentation efficiency:We assessed the automatic segmentation

accuracy of the Y-Net network model using the manual segmentation

result as a standard. The area similarity coefficient of the Dice

similarity coefficient (DSC) was used to assess the automatic

segmentation. The DSC was calculated as the ratio of the overlap

area between automatic and manual segmentations to the union of

automatic and manual segmentations, which is defined as follows

(Equation 2):

DSC =
2 Apred ∩ Agt

�
�

�
�

Apred

�
�

�
� ∪ Agt

�
�

�
�

(2)

where Apred is the area of automatic segmentation and Agt is the

area of manual segmentation. The larger the DSC coefficient, the

better the efficiency of the segmented model. In each case, DSC was

used using Python.

Classification efficiency was evaluated in terms of sensitivity

(Sen) (Equation 3), specificity (Spe) (Equation 4), accuracy (Acc)

(Equation 5), positive predictive value (PPV) (Equation 6), negative

predictive value (NPV) (Equation 7), positive predictive value

(+LR) (Equation 8), and negative predictive value (-LR)

(Equation 9). They are defined as follows:
Frontiers in Oncology 04
Sen =
TP

TN + FP
(3)

Spe =
TN

TN + FP
(4)

Acc =
TP + TN

TP + FP + TN + FN
(5)

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)

+ LR =
Sen

1 − Spe
(8)

− LR =
1 − Sen
Spe

(9)

where TP is the number of true-positive cases, FP the number of

false-positive cases, TN the number of true-negative cases, and

FN the number of false-negative cases. The Sen, Spe, Acc, PPV,

NPV, +LR and -LR of the network model and each DSC were

assessed using Python. The Sen, Spe, Acc, PPV, NPV, +LR, and -LR

of the original ultrasonic reports were assessed using MedCalc

version 10.4.7.0 (USA).
3 Results

3.1 Baseline characteristics

During the study period, 5620 potential LNs were detected. Of

these, 2323 LNs were excluded because of the presence of other

diseases, such as breast cancer, laryngocarcinoma, and tuberculosis.

A total of 238 LNs were excluded because of the lack of high-quality

images. Finally, 3059 LNs from 2398 patients were included, of

which 1535 were benign and 1524 were malignant. There were 928

male patients, of whom 409 and 519 had benign and malignant

tumors, respectively. The remaining 2131 patients were female, of

whom 1126 and 1005 had benign and malignant tumors,

respectively. The proportion of malignancies was higher in male

than in female patients (P< 0.001). The length of the long axis of the

LNs ranged from 3 to 37 (mean, 14.8) mm, and the short axis length

ranged from 2 to 25 (mean, 6.9) mm.

LNs spread from neck level I to level VII, and levels III and IV

were predominant in both benign and malignant cases (Table 2).
3.2 Segmentation results

Of the 3059 patients, 2512 were randomly selected for the

training and test sets, and the remaining 547 LNs were divided into
frontiersin.or
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the validation dataset. In the validation set, 307 patients had benign

and 240 had malignant tumors.

The DSC values ranged from 0 to 0.976. Two cases of good

segmentation and poor segmentation are shown in Figure 2. A

scatter diagram is shown in Figure 3. The data did not correspond
Frontiers in Oncology 05
to a normal distribution. The upper quartile was 0.324, the median

was 0.832, and the lower quartile was 0.928.
3.3 Classification results

The diagnostic efficiencies of the original ultrasonic reports and

the Y-Net model are summarized in Table 3. The Sen, Spe, Acc,

PPV, NPV, +LR, and -LR of the Y-Net model were 57.25%, 87.08%,

72.03%, 81.87%, 66.67%, 4.43, and 0.49, respectively. The AUC

(area of curve) of ROC (receiver operating characteristic curve) was

0.797 (Figure 4). When only classification were input the Y-Net

model, The classification Sen, Spe, Acc, PPV, NPV, +LR, and -LR of

84.78%, 80.23%, 82.45%, 79.35%, 85.61%, 4.29, and 0.19,

respectively. For the original ultrasonic reports, the Sen, Spe, Acc,

PPV, NPV, +LR, and -LR were 95.14%, 34.3%, 64.66%, 59.02%,

87.71%, 1.45, and 0.14, respectively.
4 Discussion

In recent years, AI-based deep learning systems have become

rapidly used and highly reproducible. As such systems are less

affected by inter-observer variations, they are well received by

sonographers. Currently, some studies have been conducted on

thyroid nodule classification using AI (15–17). Commercial thyroid
FIGURE 2

The segmentation of Lymph node. (A) Was an image with lymph node in level II in the left neck. (B) Was the binary image of automatic
segmentation, and the DSC was 0.972. (C) Was an image with lymph node in level III in the right neck. (D) Was the binary image of automatic
segmentation. The jugular vein was incorrectly segmented as lymph node, and the DSC was 0.002.
TABLE 2 The location of the included lymph nodes.

Location Malignancy Benignancy

Level I in the right neck 5 9

level I in the left neck 0 5

level II in the right neck 74 100

level II in the left neck 60 122

Level III in the right neck 285 272

level III in the left neck 263 348

level IV in the right neck 310 184

level IV in the left neck 273 328

level V in the right neck 10 44

level V in the left neck 11 33

level VI in the right neck 102 35

level VI in the left neck 105 49

level VII in the neck 26 6
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computer-aided diagnosis (CAD) systems have been integrated into

US machines for real-time diagnosis, demonstrating an Acc similar

to that of an experienced radiologist (18). Deep learning systems for

US imaging to detect LN metastases in the neck have rarely

been reported.

In this study, we used the Y-Net network for the auxiliary

diagnosis of LN metastasis. The Y-Net network was introduced by

Mehta, who extended and generalized U-Net by adding a parallel

classification branch (19). The U-Net is a well-known segmentation

network for biomedical images (14). The U-Net combines

multiscale features by splicing the coding and decoding layer

features of the same resolution. Therefore, the network can obtain

both the global information of the entire image and multiscale

image features, which is consistent with the characteristics of

medical image analysis. Most previous studies have proven that

the U-Net network is useful for the automatic segmentation of

medical images. Jin (20) et al. used four different improved U-Net

network models to segment ultrasonic images of an oophoroma.

The precision performance of the models was > 85%, and the

Pearson correlation coefficient was approximately 0.9, which

reflected the reliability and robustness of U-Net. The Y-Net

network adds a skip connection between the first and last

encoding blocks at some spatial resolution in the encoder to
Frontiers in Oncology 06
improve segmentation. In addition, the anatomical form of the

neck is complicated; in one frame, the LN ultrasonic image contains

other organs, such as the vessels, nerves, trachea, esophagus, and

muscles. Therefore, the segmentation is similar to the scene analysis

of image semantic segmentation. In the 2016 ImageNet Scene

Analysis Challenge, the pyramid scene analysis network won first

place (21), providing an effective global context for pixel-level scene

analysis. Therefore, in this study, the spatial and efficient spatial

pyramid pooling modules were introduced. The images were pooled

into different sizes, the receptive field was increased, and multiscale

features were obtained. Together, the local and global clues make

the segmentation more accurate.

In this study, we assumed the segmentation region of an

experienced human reader to be the gold standard, and the

computer results were compared. In an actual test, the segmentation

method exhibited good performance. The median Dice coefficient was

0.832. This was because compared with the thyroid focal area, most

benign and metastatic LNs in thyroid carcinoma were well-defined,

which was convenient for automatic segmentation. Therefore, when

the target LNs were correctly identified, the automatic segmentation

matched well with manual images. However, although few, some LNs

had totally segmented errors, with a 0 value for the DSC. To analyze the

reason for poor segmentation, our team compared the output
TABLE 3 The diagnostic efficiency of the model and original ultrasonic reports.

Sen Spe Acc PPV NPV +LR -LR

Y-Net (Classification combined segmentation 57.25% 87.08% 72.03% 81.87% 66.67% 4.43 0.49

Y-Net (Only classification) 84.78% 80.23% 82.45% 79.35% 85.61% 4.29 0.19

The original ultrasonic reports 95.14% 34.30% 64.66% 59.02% 87.71% 1.45 0.14
+ = positive likelihood ratio.
- = Negative likelihood ratio.
0.0 0.2 0.4 0.6 0.8 1.0
Dice

FIGURE 3

The Box-and-Whisker plot of DSC, the median of DSC was 0.832.
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segmented images and manually labeled images. The reasons for this

are summarized as follows. First, some LNs were small, and the

surrounding tissues of the CLN were complex, which interfered with

the detection of LNs. Second, some surrounding tissues, such as muscle

bundles and blood vessels, were incorrectly segmented as LNs because

of their similar shapes or echogenicities. In some cases, there were

several LNs in one ultrasonic frame. Only one LN of the FNA was the

target lesion, and manual segmentation was performed. However,

more LNs were mistaken for target lesions and automatically

segmented in the Y-Net network, which resulted in a reduction in

the Dice coefficient. Therefore, in the future, we will gather negative

samples to improve the segmentation efficiency.

The Y-Net model has two parallel output branches of

segmentation and classification, which can simultaneously

segment and classify images. When both segmentation and

classification were performed, the Acc was 72.03%, which was

better than that of the original ultrasonic report (64.66%).

Therefore, this model would be helpful in improving the

diagnostic efficiency of sonographers.

In previous studies, more reports relied on manual thyroid

nodules segmentation to predict metastasis to the CLNs, and

clinical factors such as sex, patient age, and tumor size were

associated with metastasis of CLN (22, 23). Only one study has

focused on differentiating benign and malignant CLN of TC. Lee

developed a CAD system based on annotated images of LNs in TC

(24). The CAD system achieved a Sen of 89.0%, a Spe of 77.0%, and

an Acc of 83.0%. In contrast to Lee’s study, the US images in our

study were original without annotation, and the result was similar,

with the 84.78% sensitivity, 80.23% specificity, and 82.45% accuracy.

The result was generally consistent with previous investigations.

There are some reports on metastatic LNs using other imaging

methods (25–28), consistent with our findings, and most of the

reported studies achieved similar Acc. The Acc showed better than
Frontiers in Oncology 07
radiologists diagnosis, which proved that AI systems are useful

screening tools to assist radiologists in more accurate analyses.

This study has some limitations. First, this was a single-center

study, although, to the best of our knowledge, it analyzed the largest

sample. Multicenter studies are also required to improve the

robustness and accuracy of model classification. Second, the

included patients were confirmed pathologically and LNs that

were followed up were excluded. Therefore, there may have been

a selection bias.
5 Conclusions

This study attempted to use the Y-Net network to realize the

automatic segmentation and classification of CLNs. The

experimental results suggest that the deep learning model can be

used as a support in clinical practice to improve the diagnostic

accuracy of sonographers.
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ROC curve of the Y-Net modal, the AUC was 0.797.
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