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Prediction of microvascular
invasion in hepatocellular
carcinoma based on preoperative
Gd-EOB-DTPA-enhanced MRI:
Comparison of predictive
performance among 2D, 2D-
expansion and 3D deep
learning models
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Weihua Feng1, Lufan Chang3, Jing Yu3, Fang Liu1, Juan Gao4,
Yichen Zang5, Ziwei Luo1, Hao Liu3, Yu Zhang1

and Xiaoming Zhou1*

1Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China, 2School
of Medical Imaging, Weifang Medical University, Weifang, Shandong, China, 3Yizhun Medical AI Co., Ltd,
Beijing, China, 4Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China, 5Department of Ultrasound, Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China
Purpose: To evaluate and compare the predictive performance of different deep

learning models using gadolinium ethoxybenzyl diethylenetriamine pentaacetic

acid (Gd-EOB-DTPA)-enhanced MRI in predicting microvascular invasion (MVI) in

hepatocellular carcinoma.

Methods: The data of 233 patients with pathologically confirmed hepatocellular

carcinoma (HCC) treated at our hospital from June 2016 to June 2021 were

retrospectively analyzed. Three deep learning models were constructed based on

three different delineate methods of the region of interest (ROI) using the Darwin

Scientific Research Platform (Beijing Yizhun Intelligent Technology Co., Ltd.,

China). Manual segmentation of ROI was performed on the T1-weighted axial

Hepatobiliary phase images. According to the ratio of 7:3, the samples were divided

into a training set (N=163) and a validation set (N=70). The receiver operating

characteristic (ROC) curve was used to evaluate the predictive performance of

three models, and their sensitivity, specificity and accuracy were assessed.

Results: Among 233 HCC patients, 109 were pathologically MVI positive, including

91men and 18women,with an average age of 58.20± 10.17 years; 124 patients were

MVI negative, including 93men and 31women, with an average age of 58.26 ± 10.20

years. Among three deep learning models, 2D-expansion-DL model and 3D-DL

model showed relatively good performance, the AUC value were 0.70 (P=0.003)

(95% CI 0.57–0.82) and 0.72 (P<0.001) (95% CI 0.60–0.84), respectively. In the 2D-
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expansion-DLmodel, the accuracy, sensitivity and specificity were 0.7143, 0.739 and

0.688. In the 3D-DL model, the accuracy, sensitivity and specificity were 0.6714,

0.800 and 0.575, respectively. Compared with the 3D-DL model (based on 3D-

ResNet), the 2D-DL model is smaller in scale and runs faster. The frames per second

(FPS) for the 2D-DLmodel is 244.7566, which is much larger than that of the 3D-DL

model (73.3374).

Conclusion: The deep learning model based on Gd-EOB-DTPA-enhanced MRI

could preoperatively evaluate MVI in HCC. Considering that the predictive

performance of 2D-expansion-DL model was almost the same as the 3D-DL

model and the former was relatively easy to implement, we prefer the 2D-

expansion-DL model in practical research.
KEYWORDS

microvascular invasion, hepatocellular carcinoma, gadoxetic acid-enhanced MRI,
artificial intelligence, deep learning
1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary

malignant tumor of the liver (1). Surgery is currently considered the

primary treatment for patients with hepatocellular carcinoma, yet

postoperative recurrence and metastasis remain pressing challenges.

There are many factors affecting the risk of recurrence of HCC after

surgery, among which microvascular invasion (MVI) is a well-

established independent risk factor for recurrence of HCC after

surgical resection or liver transplantation (2–4). Microvascular

invasion (MVI) is a nesting mass of cancer cells in the lumen of the

vasculature lined with endothelial cells that can be observed by

microscopy (5). It usually refers to affected vessels with a diameter of

less than 300 mm, predominantly in small branches of the portal vein

within the paracancerous tissue, and it is a marker of tumor

aggressiveness. Several studies (6–8) have shown that in MVI-positive

patients, hepatectomy with extended surgical margins can significantly

improve patient survival by eradicating micrometastases. Since MVI

can only be diagnosed by postoperative pathology, preoperative

prediction of MVI is particularly important and will help clinicians

select individualized treatment plans for HCC and thus reduce its early

recurrence rate to a certain extent.

Many previous studies have predicted the occurrence of

microvascular invasion of HCC based on the clinical characteristics

and preoperative traditional imaging findings of HCC patients. These

assessment indicators include relevant laboratory test results such as

alpha fetoprotein (AFP) and total bilirubin (TBil). Imaging signs

include tumor size, number, margin, capsule, peritumoral

enhancement, peritumoral hypointensity in the hepatobiliary phase,

etc. Some evaluation indicators are considered helpful for the

preoperative prediction of MVI (9–11). However, the assessment of

some traditional imaging signs often relies on the personal experience

of radiologists and is inevitably subject to error, so conclusions from

different studies are often inconsistent.

Recently, artificial intelligence (AI), which mainly consists of

nondeep learning algorithms (NDLAs) and deep learning
02
algorithms (DLAs), has been widely used in the medical field.

Currently, radiomics based on nondeep learning algorithms is

considered to be effective in predicting MVI by high-throughput

extraction of a large number of quantitative imaging features for

modeling (12). However, manual feature extraction is complex and

time-consuming, and machine learning models constructed using

different modeling approaches lack stability and consistent

interpretation (13). In contrast to nondeep learning algorithms

(NDLAs), deep learning algorithms (DLAs) are able to learn

features directly from images instead of using artificially defined

features based on human experience (14–16). Recently, Wang et al.

(17) fused deep features extracted from multib-value DWI and ADC

images to construct a deep learning model, which showed a better

performance for MVI prediction. Although some researchers have

begun to use deep learning algorithms to build models to predict the

occurrence of liver cancer MVI, the dimensions of the models built by

different researchers are different. To the best of our knowledge, there

is no research comparing the difference in the predictive performance

of MVI in HCC between 2D and 3D deep learning models based on

gadoxetic acid disodium-enhanced MRI. Therefore, in this study, we

constructed deep learning models with different dimensions to

predict the occurrence of MVI in HCC to preliminarily explore the

differences in predictive performance between different models.
2 Materials and methods

2.1 Study population

This retrospective study was approved by our institutional review

board. Informed consent was waived. All identifying information of

the included patients was deleted. Patients were identified by

searching the electronic HIS (hospital information system) database

at our hospital from June 2016 to June 2021. The demographic and

pathologic data were collected from their electronic medical records.

Finally, a total of 233 hepatocellular carcinoma patients were
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retrospectively selected for this study according to the following

inclusion and exclusion criteria. The inclusion criteria were: (1)

patients with histologically confirmed HCC after surgical resection;

(2) patients with conclusive histopathological confirmation of their

MVI status; and (3) preoperative Gd-EOB-DTPA-enhanced MRI

performed within two weeks prior to surgery. The exclusion criteria

were as follows: (1) patients with any previous antitumor treatment,

including transarterial chemoembolization and radiofrequency

ablation; (2) patients with unequivocal macrovascular invasion or

metastasis; (3) MR images with poor quality (a low signal-to-noise

ratio) that would affect the delineation of the region of interest (ROI).
2.2 MR image acquisition

A GE Signa HDx 3.0T MRI scanner with an 8-channel body

phased-array coil was used to scan from the top of the diaphragm to

the lower edge of the liver. The contrast agent for MRI contrast

enhancement examination was gadolinium ethoxybenzyl

diethylenetriamine pentaacetic acid (Gd-EOB-DTPA, Bayer

Schering Pharma AG, Germany). A liver volume acceleration (liver

acquisition with volume acceleration, LAVA) sequence 3D volume

scan (TR 2.6 ms TE 1.2 ms) was applied, and the continuous

acquisition of biarterial phase images began 15 s after the injection

of the contrast agent, 45 s for portal phase images, 180 s for balancer

phase images, and 20 min for hepatobiliary phase images. The dose of

contrast agent was 0.1 mL/kg, and the injection flow rate was 1.0 mL/s

with a rapid push through the elbow vein.
2.3 Development of DL models

The architecture of the DL model is shown in Figure 1. We

adopted the ResNet18 convolutional neural network (CNN) as the

primary branch for DL modeling. The hepatobiliary phase (HBP)

images were selected as the input original image, and ROI was

determined by manual segmentation on the hepatobiliary image.

The images were assessed by radiologists with 5 years of experience

in abdominal imaging under the supervision of a senior associate

chief physician. The input ROIs were delineated using the Darwin

Scientific Research Platform (Beijing Yizhun Intelligent Technology

Co., Ltd., China) with three techniques: a three-dimensional

delineation method in which the ROI was manually outlined on

each axial slice of the hepatobiliary phase image covering the entire

tumor, and a two-dimensional delineation method in which the

tumor edge was completely outlined on the slice containing the

largest diameter of the tumor. To further explore the intratumoral

and peritumoral information, we used the standardized image

morphological erosion and expansion method to expand the ROI

obtained from the delineation method by 5 mm. This is what we call

the two-dimensional expansion delineation method. Notably,

segmentation should be discarded when the expanded area exceeds

the liver or image edge. According to a ratio of 7:3, the samples were

divided into a training set (N=163) and a validation set (N=70). The

next step was to standardize the data. Data standardization means

before the development of Deep Learning Models, the image was

resampled (each voxel to 1×1×1 mm3) and the gray value was
Frontiers in Oncology 03
normalized using the Darwin Scientific Research Platform (Beijing

Yizhun Intelligent Technology Co., Ltd., China). Finally, the training

set was used to train the deep learning model and evaluate the

prediction performance of the model (using the validation set).
2.4 Statistical analysis

SPSS 22.0 (Chicago, IL, USA) software was used for statistical

analysis. Categorical variables are represented as numbers or

percentages. Continuous variables are expressed as the mean ±

standard deviation, and comparisons among the categorical data

were performed by chi-square tests. For numerical variables that

conform to the normal distribution, independent student t-tests were

used, if not, Mann-Whitney tests were used.

Parameters such as the total floating point operations (total flops)

and frames per second (FPS) among different deep learning models

are obtained from the Darwin Scientific Research Platform (Beijing

Yizhun Intelligent Technology Co., Ltd., China). Receiver operating

characteristic curve (ROC) analysis was used to evaluate the

predictive performance of the three models, calculating the area

under the curve (AUC), sensitivity, specificity, and accuracy. The

difference in predictive performance between different models was

compared using the Delong test. Bilateral tests were used for all

statistical tests, and P < 0.05 was considered statistically significant.
3 Results

Among 233 HCC patients, 109 were pathologically MVI-positive,

including 91 men and 18 women, with an average age of 58.20 ± 10.17

years; 124 patients were MVI-negative, including 93 men and 31

women, with an average age of 58.26 ± 10.20 years. Table 1

summarizes the demographic features compared between the MVI-

positive and MVI-negative groups. Compared with patients without

MVI, patients with MVI had larger tumor sizes.

In the 2D-DL model, the AUC for predicting MVI was 0.81 (95%

confidence interval (CI) 0.74–0.87) in the training set and 0.65 (95%

CI 0.52–0.78) in the testing set. In the training set, the accuracy,

sensitivity and specificity were 0.7301, 0.785 and 0.679, respectively.

In the testing set, the accuracy, sensitivity and specificity were 0.6714,

0.567 and 0.750, respectively. In the 2D-expansion-DL model, the

AUC for predicting MVI was 0.82 (95% confidence interval (CI)

0.76–0.89) in the training set and 0.70 (95% CI 0.57–0.82) in the

testing set. In the training set, the accuracy, sensitivity and specificity

were 0.7716, 0.835 and 0.690, respectively. In the testing set, the

accuracy, sensitivity and specificity were 0.7143, 0.739 and 0.688,

respectively. In the 3D-DL model, the AUC for predicting MVI was

0.77 (95% confidence interval (CI) 0.70–0.84) in the training set and

0.72 (95% CI 0.60–0.84) in the testing set. In the training set, the

accuracy, sensitivity and specificity were 0.7362, 0.881 and 0.582,

respectively. In the testing set, the accuracy, sensitivity and specificity

were 0.6714, 0.800 and 0.575, respectively (Table 2). The Delong test

showed that the AUCs of the 2D-DL model and 2D-expansion-DL

model were not significantly different, with a P value of 0.681 (>0.05).

Similarly, the AUCs of the 2D-DL model and 3D-DL model were not

significantly different, with a P value of 0.405 (>0.05) (Figure 2).
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The total floating point operations (total flops) and frames per

second (FPS) among the different deep learning models are shown in

Table 3. FPS is a common metric used to evaluate the speed of a

model, and it indicates the number of images that the model can

process per second. The FPS for the 2D-DL model (based on 2D-

ResNet) is 244.7566, which is much larger than that of the 3D-DL

model (73.3374).
Frontiers in Oncology 04
4 Discussion

The preoperative assessment of microvascular invasion of liver cancer

has always been a challenging area in the field of medical imaging. Myata

et al. (18) reported that patients who suffered from hepatocellular

carcinoma with microvascular invasion had a more than 4-fold

increased risk of tumor recurrence. Compared with ordinary gadolinium

contrast agents, Gd-EOB-DTPA can not only display the blood supply of

the lesion but also reveal the hepatocyte function (19). In the hepatobiliary

phase of the MRI enhancement scan, the surrounding liver parenchyma

shows an increased signal because of the uptake of contrast agents. The

expression of organic anion transporting polypeptide 8 (OATP-8) in most

HCCs gradually decreases during the process of hepatocarcinogenesis;

thus, the tumor cells do not uptake contrast and show a low signal on Gd-

EOB-DTPA enhancement images. Currently, Gd-EOB-DTPA-enhanced

MRI has been applied to predict microvascular invasion in hepatocellular

carcinoma by some researchers (20), in addition to its routine use in the

imaging diagnosis of hepatocellular carcinoma.

With the establishment of large medical databases and the

development of computer hardware, artificial intelligence

technology represented by deep learning has entered the field of
TABLE 1 The demographic features between MVI positive and MVI
negative groups.

MVI-Negative
(n=124)

MVI-Positive
(n=109)

P

Sex 0.113

Female 31 18

Male 93 91

Age, years 58.26 ± 10.20 58.20 ± 10.17 0.902

Maximum tumor
diameter (mm)

38.02 ± 22.58 56.84 ± 33.17 <0.001
FIGURE 1

The architecture of the Deep Learning model.
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medical image diagnosis. By recognizing and classifying medical

images, it can discover imaging features that cannot be identified or

are ignored by radiologists, especially deep learning models based on

convolutional neural networks (CNNs), which have shown excellent

performance in medical image recognition (21). Many researchers

have predicted the occurrence of MVI in hepatocellular carcinoma

preoperatively by using deep learning models. As one of the

representative cases, Zhang et al. (22) established and verified four

3D CNN-based deep learning models based on MRI images to predict

microvascular invasion in HCC before surgery. A fusion model

combining T2WI, T2-SPIR and PVP images achieved better

performance than a single image-based model in predicting the

MVI status of HCC patients. Wei J et al. (20) developed deep

learning models based on enhanced CT (CE-CT) and EOB-MRI for

the preoperative assessment of MVI and prospectively validated the

effectiveness of two deep learning models. The results showed that the

EOB-MRI-based deep learning model was better than the enhanced

CT-based deep learning model in predictive performance. However,

different groups have chosen different classification networks to build

their models, and the dimensions of the models that have been

constructed are also different. The ResNet network, as the

mainstream deep learning network, has a directly connected
Frontiers in Oncology 05
channel in the residual structure that can skip one or several layers,

and the information in the shallow layer can be directly input to the

deeper layers. The network only needs to learn the residuals of the

previous network output, thus effectively avoiding the problem of

gradient explosion and allowing the network to be trained at a deep

level. In addition, Han et al. (23) also pointed out that deep learning

CNN models, such as ResNet, when pretrained on the ImageNet

dataset can be beneficial for the visual recognition task of medical

images. Based on the above, the author used the ResNet18

classification network to construct 2D, 2D-expansion, and 3D deep

learning models to predict MVI in hepatocellular carcinoma and

determined whether there was a difference in predictive performance

among the different models.

For the 2D deep learning model, the AUC for predicting MVI was

0.65 (95% CI 0.52–0.78) in the testing set, slightly inferior to the 3D

deep learning model (0.72 (95% CI 0.6–0.84)). However, the Delong

test showed that the AUC of the two models was not significantly

different, with a P value of 0.405 (>0.05), meaning that the predictive

efficacy of the two models for microvascular invasion in

hepatocellular carcinoma was not significantly different. Why does

the 3D-DL model, which theoretically carries more information about

liver cancer lesions, not show a significant advantage in predicting
FIGURE 2

The ROC curves of the three models in the testing set.
TABLE 2 Performance of different DL models in the training and the testing set.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy

2D-DL model TR 0.81 (0.74-0.87) 0.785 (0.682-0.861) 0.679 (0.573-0.769) 0.7301

TE 0.65 (0.52-0.78) 0.567 (0.392-0.726) 0.750 (0.598-0.858) 0.6714

2D-expansion-DL model TR 0.82 (0.76-0.89) 0.835 (0.746-0.897) 0.690 (0.575-0.785) 0.7716

TE 0.70 (0.57-0.82) 0.739 (0.580-0.850) 0.688 (0.514-0.820) 0.7143

3D-DL model TR 0.77 (0.70-0.84) 0.881 (0.795-0.934) 0.582 (0.472-0.685) 0.7362

TE 0.72 (0.60-0.84) 0.800 (0.627-0.905) 0.575 (0.422-0.715) 0.6714
fr
AUC, area under the curve; CI, confidence interval; DL, deep learning; TR, training set; TE, testing set.
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MVI compared with the information-impaired 2D-DL model? In the

author’s opinion, the main purpose of acquiring 3D data to construct

a deep learning model is to capture the gradient information between

the layers formed by a lesion spanning multiple consecutive layers to

effectively combine the overall information from consecutive layers of

the lesion. However, for our dataset, the layer thicknesses along the z-

axis are large (5 mm), and only limited contextual information can be

obtained from the z-axis. For such data, the largest information

discrepancy tends to occur in one plane, the axial plane. At this

time, the advantage of the 3D-DL model, which theoretically carries

more information about the lesion, is not obvious compared with the

2D-DL model. To further explore the intratumoral and peritumoral

information, we used the standardized image morphological erosion

and expansion method to delineate the ROI and obtain the 2D-

expansion deep learning model. The AUC and sensitivity of the 2D-

expansion-DL model were higher than those of the 2D-DL model and

were almost the same as those of the 3D-DL model.

In addition, comparing the difference in performance between

different deep learning models, we have to mention the running speed

of the models. FPS is a common metric used to evaluate the speed of a

model, and it indicates the number of images that the model can

process per second. Therefore, a larger FPS indicates faster processing

and requires less computation and execution time for the model. In

our study, the FPS for the model based on the 2D-ResNet18

classification network was 244.7566, which is much larger than that

of the 3D-ResNet18 model (73.3374). Liu et al. (24) showed that the

2D-DL model based on ResNet18 ran faster on the GPU than the 3D

model, and the memory occupied by the 2D-DL model was 50% less

than that of the 3D model. That is, the efficiency of the 2D-DL model

is higher than that of the 3D-DL model. Our findings are consistent

with the above. Moreover, relevant literature (25, 26) indicates that a

3D-DL model is larger than the 2D-DL model, more parameters need

to be adjusted when building a 3D deep learning model, and running

a 3D deep learning model is more time-consuming and requires more

training data and storage space. From this point of view, on the

premise of meeting the requirements of the task, the 2D-DL model,

which is small in scale and faster in operation, has lower requirements

for hardware and higher model applicability.

In conclusion, the deep learning model based on gadoxetate

disodium-enhanced MRI has a certain value in predicting the

microvascular invasion of hepatocellular carcinoma. Based on the

ResNet18 classification network, the AUC and sensitivity of the 2D-

expansion-DLmodel were almost the same as those of the 3D-DLmodel.

Considering that building a 2D-expansion-DL model is relatively easy to

implement while ensuring its predictive performance, we prefer the 2D-

expansion-DL model in practical research.

Nevertheless, the present study also has some limitations. (1) This

study is a single-center study, and internal validation was used to
Frontiers in Oncology 06
evaluate the predictive performance of the model. A multicenter

prospective study will be conducted later, using external validation to

improve the predictive performance of the model. (2) Only the value

of Gd-EOB-MRI images in predicting microvascular invasion in

hepatocellular carcinoma was investigated, and the predictive value

of clinical features and qualitative imaging features were not

considered. Because this was not the focus of this study, further

integration of clinical and conventional imaging features will be used

to construct a model in future studies.
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