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Sex-specific radiomic features of
L-[S-methyl-11C] methionine PET
in patients with newly-diagnosed
gliomas in relation to
IDH1 predictability
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Introduction: Amino-acid positron emission tomography (PET) is a validated

metabolic imaging approach for the diagnostic work-up of gliomas. This

study aimed to evaluate sex-specific radiomic characteristics of L-[S-

methyl-11Cmethionine (MET)-PET images of glioma patients in consideration of

the prognostically relevant biomarker isocitrate dehydrogenase (IDH) mutation

status.

Methods:MET-PET of 35 astrocytic gliomas (13 females, mean age 41 ± 13 yrs. and

22males, mean age 46 ± 17 yrs.) and known IDHmutation status were included. All

patients underwent radiomic analysis following imaging biomarker standardization

initiative (IBSI)-conform guidelines both from standardized uptake value (SUV) and

tumor-to-background ratio (TBR) PET values. Aligned Monte Carlo (MC) 100-fold

split was utilized for SUV and TBR dataset pairs for both sex and IDH-specific

analysis. Borderline and outlier scores were calculated for both sex and IDH-

specific MC folds. Feature ranking was performed by R-squared ranking andMann-

Whitney U-test together with Bonferroni correction. Correlation of SUV and TBR

radiomics in relation to IDH mutational status in male and female patients were

also investigated.

Results: There were no significant features in either SUV or TBR radiomics to

distinguish female and male patients. In contrast, intensity histogram coefficient of

variation (ih.cov) and intensity skewness (stat.skew) were identified as significant to

predict IDH +/-. In addition, IDH+ females had significant ih.cov deviation (0.031)

and mean stat.skew (-0.327) differences compared to IDH+ male patients (0.068
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and -0.123, respectively) with two-times higher standard deviations of the normal

brain background MET uptake as well.

Discussion: We demonstrated that female and male glioma patients have

significantly different radiomic profiles in MET PET imaging data. Future IDH

prediction models shall not be built on mixed female-male cohorts, but shall

rely on sex-specific cohorts and radiomic imaging biomarkers.
KEYWORDS

MET-PET, glioma, sex, IDH1, radiomics, imaging biomarker
Background

Gliomas represent approximately a quarter of all primary brain

and other central nervous system (CNS) tumors. Approximately 81%

of malignant tumors cause mortality and morbidity that is

disproportionate to their relatively rare incidence (1). To establish a

diagnosis with prognostic estimation and an appropriate treatment

strategy, histological and molecular feature examination of the glioma

tissue as well as contrast-enhanced magnetic resonance imaging

(MRI) - the primary imaging modality in brain tumors - are

essential. Molecular imaging, using positron emission tomography

(PET), is increasingly utilized to compliment MRI in the clinical

management of glioma. Radiolabeled amino-acids, such L-[S-

methyl-11C]methionine (MET), O-(2-[18F]-fluoroethyl)-L-tyrosine

(FET) or 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA)

are well accepted as a highly-sensitive tracers for glioma

characterization prior to treatment planning (2).

Since the introduction of the World Health Organization (WHO)

2016 classification, gliomas have been categorized into molecular

subgroups with varied molecular markers and clinical behavior (3).

With the 5th edition (2021), the role of molecular diagnostics is

emphasized even more strongly. For example, isocitrate dehydrogenase

(IDH)mutant astrocytomas are graded 2, 3 or 4 based on histological and

molecular features (4). In contrast, IDH-wildtype astrocytoma is

considered grade 4 glioblastoma GBM), even in cases without necrosis

or vascular proliferations, as long as further genetic features, such as

EGFR amplification, TERT promoter mutation or the combined gain of

chromosome 7 and loss of chromosome 10 [+7/-10 are present (4).

Hence, the IDH mutation plays a key role for the diagnostic assessments

and prognostic rating. Biologically, this mutation leads to an

overproduction of the oncometabolite R(−)-2-hydroxyglutarate (5),

inducing epigenetic and metabolic reprogramming (6). Furthermore,

IDH mutation is associated with a distinct angiogenesis transcriptome

signature, that can be predicted non-invasively with MRI-based

biomarkers (7).

Sex dysmorphism has a great impact on the incidence,

distribution, therapy response, and prognosis of all kinds of cancer

independent of race, age, and presence of co-morbidities (8), and has

been previously described in CNS tumors (9, 10). Epidemiological

studies revealed that gliomas are predominant in male compared to

female patients, irrespective of the tumor grade (11, 12). Moreover,
02
male sex is an independent risk factor for a shorter survival among

patients with GBM (13). Indeed, sex disparity in the incidence and

outcome of human diseases and especially in gliomas are broadly

recognized, although in most cases it is not sufficiently understood.

Initial explanations for sex-specific differences have been observed in

preclinical as well clinical studies investigating GBM, the most

malignant and aggressive histologic glioma type (14, 15).

Recently, we have described a retrospectively evaluated cohort of

treatment naïve patients of different glioma histology using MET-PET,

and demonstrated that amino acid PET has an independent impact on

survival outcome (16). Moreover, the value of computer-supported

predictive models to envisage survival in amino acid avid, treatment-

naïve glioma patients based on PET was demonstrated (17). To date,

several studies have investigated the feasibility of tumor characterization

with PET, particularly built on radiomic analysis and machine learning

(ML) (18). Nevertheless, sex specific aspects of glioma with respect to

PET imaging characteristics as an expression for amino acid tumor

metabolism activity have not been widely investigated. While significant

differences of normal brain uptake in male and female glioma patients

have been described (19), the effect of normalizing standardized uptake

values (SUV) to tumor-to-background ratio (TBR) values in radiomic

models predicting IDH1 mutation status is unknown.

In light of the above, we hypothesize that sex-specific differences

have an effect on the performance of radiomic prediction models

predicting IDH1 mutation status, which may imply that mixed male-

female radiomic prediction models may be prone to underperform in

either of the sexes, thus, challenging clinical adoption of such models.

In order to exploit radiomic differences between male and female

glioma patients that may influence ML prediction model

performances, this study aimed to analyze the distribution of

radiomics features in between IDH1+/- female and male cases

without building or promoting any ML prediction model.

Nevertheless, to investigate the above potential radiomic differences,

this study performed data preprocessing and feature ranking steps

based on methods routinely performed prior to building ML

prediction models. Therefore, this study defined the following

objectives: (a) to identify sex-specific SUV and TBR radiomic

features in order to understand the underlying imaging

characteristics of gliomas in male and female patients, (b) to

identify potential SUV and TBR radiomic features that are

significant to differentiate IDH+ and IDH- patients, and (c) to
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compare the identified high-ranking radiomic features to differentiate

IDH+ and IDH- cases in female and male patients.
Patients and methods

Study population

Approved by the local ethics committee (No 1429/2016), L-[S-

methyl-11Cmethionine (MET) PET data representing MET-avid

gliomas, having IDH1-R132H mutation status and a minimum PET

voxel count for radiomic analysis (see Supplemental Section I) were

selected from a recently published study database by Poetsch et al.

(16) (Figure 1). This study included astrocytic gliomas resulting in a

collection of 35 patients aged above 18 years characterized according

to the WHO classification 2016. The IDH1-R132H (IDH) mutation

status was determined by immunohistochemistry in all patients, and

confirmed by DNA sequencing in patients under 55 years with

negative immunohistochemical result. For further evaluation

astrocytic tumors were categorized according their IDH mutation

status and patient sex. Clinical characteristics of these patients are
Frontiers in Oncology 03
presented in Table 1. All patients underwent a MET-PET imaging at

the time of glioma diagnosis prior to any therapy.
MET-PET imaging

Twenty minutes after an intravenous injection of about 740 MBq

of in-house produced MET, a PET examination using a GE Advanced

PET system (General Electric Medical System) with a 10-min

emission and a 5-min transmission scan for attenuation correction

was acquired (16). Image reconstruction was done using filtered back

projection with a Hanning filter (cutoff value = 6.2mm), resulting in

35 image slices (4.25 mm slice thickness) with a matrix size of 128 x

128. After reconstruction, an additional 5mm Gaussian post-filtering

was applied to the images.
Lesion delineation and radiomic
feature extraction

Delineations of the primary tumors and the corresponding

background reference region in MET-PET examinations were
FIGURE 1

The CONSORT diagram of our study. The Methionine (MET) positive Positron Emission Tomography (PET) cases that met the inclusion criterion
underwent lesion delineation and radiomics feature extraction as of the Imaging Biomarker Standardization Initiative (IBSI) guidelines in both
standardized uptake value (SUV) and tumor-to-background ratio (TBR) PET configurations. Feature redundancy reduction was followed by aligned 100-
fold Monte Carlo (MC) split of SUV and TBR dataset pairs for sex and IDH+/- labels independently. Borderline and outlier scores followed by identifying
sex-specific high-ranking radiomic features were done in both SUV and TBR radiomic datasets. The same analysis was performed in parallel to
differentiate IDH1+/- cases. Comparison of high-ranking features as well as feature distribution analysis was performed independently in IDH+ and IDH-
male and female cases to understand if IDH predictability is associated with sex-specific radiomic patterns in MET-PET.
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performed with the Hermes Hybrid 3D software (Hermes Medical

Solutions, Stockholm, Sweden) by three-dimensional iso-count semi-

automated tools. The delineated lesions of the 35 cases were validated

and analyzed by two nuclear medicine physicians. In all patients, the

SUV of each lesion were also normalized to the SUV mean of the

respective non-tumoral contralateral background reference region to

obtain TBR values (17). Extraction of 154 radiomic features was

performed from the SUV and TBR-normalized amino acid avid

lesions in compliance with the Imaging Biomarker Standardization

Initiative (IBSI) (20). See Supplemental Table 1 for details of the IBSI-

conform feature extraction.
Data preprocessing

Since many radiomic features represent a generally high

redundancy, the extracted 154 features of both SUV and TBR

datasets underwent correlation matrix analyses with an absolute

Pearson correlation coefficient threshold of 0.85 to identify

redundant feature clusters (21). The feature with the highest

variance was selected from each redundant cluster for further

analysis in both SUV and TBR datasets. Since this step only

analyzed radiomic feature pairs without relying on the patient sex

or the IHD1 reference standards, the redundancy reduced SUV and

TBR sets were used for all subsequent analyses of this study.
Harmonized cross-validation scheme

Both redundancy-reduced SUV and TBR datasets underwent a

100-fold Monte Carlo (MC) split (21) to simulate a cross-validation

scheme within a single-center study. In each fold, one male and one

female were randomly selected to serve as held-out set, while the

remaining cases were assigned to the given training set of the given

fold. The same split configuration was utilized for both SUV and TBR
Frontiers in Oncology 04
datasets. No repetition of fold configurations was allowed. The SUV

and TBR datasets also underwent an aligned 100-fold MC CV split as

of the IDH+/- status of the patients with leaving out one IDH+ and

one IDH- case per fold.
Borderline and outlier score analyses

Both SUV and TBR datasets underwent borderline and outlier

score analyses in the sex and IDH-specific MC CV folds. Borderline

scores were calculated across the 100-fold subsets by Tomek links

(22). Similarly, for each fold subset, outlier scores were calculated by

the isolation forest approach (23). The distribution of borderline-

outlier score pairs across MC folds were compared between the SUV

and TBR radiomic datasets in the sex and IDH-specific MC CV splits.
Deciphering sex-specific radiomic
differences

Identifying sex-specific radiomic imaging patterns and

comparison of them in SUV and TBR datasets relied on feature

ranking. To minimize the chances of false discoveries, this study relied

a two-step feature ranking process. First, each training subset across

the pre-generated Monte Carlo (MC) splits underwent a per-feature

R-squared ranking (24) in relation to patient sex. Only the highest-

ranking six features that separated best male and female patients were

selected as relevant per MC fold. This number was chosen following

the “curse of dimensionality” rule in relation to training sample count

(24). The Monte Carlo feature ranking in both SUV and TBR datasets

was determined by calculating how many times each of the radiomic

features occurred across the 100 MC folds. Features with MC

occurrence rates higher than 90% were subject to a Mann-Whitney

U-test (25). This step was followed by Bonferroni correction with

factor of 31 (highest non-redundant feature count), thus, resulting in
TABLE 1 Demographic and MET-PET imaging characteristics of the study population of 35 astrocytic gliomas based on the WHO classification 2016 (n=35).

Parameters Female (n: 13) Male (n: 22)

Age in years (mean ± SD) 41 ± 13 46 ± 17

IDH1-R132H positive 6 8

IDH1-R132H negative 7 14

Astrocytoma and GBM (n) 13 22

Grade 2 6 7

Grade 3 6 13

GBM 1 2

Tumor SUV (mean ± SD) 1.51 ± 0.57 1.38 ± 0.28

IDH1-R132H positive 1.20 ± 0.26 1.40 ± 0.25

IDH1-R132H negative 1.78 ± 0.64 1.38 ± 0.31

CBA SUV (mean ± SD) 1.14 ± 0.25 1.07 ± 0.17

IDH1-R132H positive 1.19 ± 0.31 1.15 ± 0.16

IDH1-R132H negative 1.11 ± 0.16 1.03 ± 0.16
MET, Methionine; IDH1-R132H, Isocitrate dehydrogenase 1; GBM, glioblastoma, SD, Standard deviation; CBA, cerebral background activity, SUV, standardized uptake value.
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p<0.0016 as significance level (26). This significance level was applied

to identify sex-specific features in both SUV and TBR datasets.
Investigation of IDH+/- predictive
performances between male and
female patients

Combined Monte Carlo and Mann-Whitney U feature ranking

with Bonferroni correction, as in case of to the sex-specific

investigation, were performed in relation to discriminate IDH+/-

patients in the SUV and TBR datasets.
Results

Clinical and MET-PET image characteristics

In total, 35 data sets (13 females, average age of 41 ± 13y, and 22

males with an average age 46 ± 17y) were selected for radiomics feature

extraction and radiomics analysis of MET-avid gliomas. In male

patients, the average SUV in tumors was 1.40 and 1.38 in IDH+ and

IDH- cases, respectively. In contrast, females had an average SUV of

1.20 and 1.78 in IDH+ and IDH- cases, respectively within tumor

lesions. The cerebral background activity (CBA) was higher in females

than in males, and it was higher in both of them in case of IDH+ cases.

The largest CBA spread was seen in IDH+ females (stdev: 0.31)

compared to IDH+ males as well as IDH- patients (stdev: 0.16). See

Table 1 for detailed demographics, clinical and imaging characteristics.
Data preprocessing

In the SUV dataset, feature redundancy reduction reduced the

number of extracted radiomic features from 154 to 31. In the TBR

dataset, redundancy reduction resulted in 30 features (see

Supplemental Figure 1).
Frontiers in Oncology 05
Borderline and outlier score analyses

A lower borderline score distribution in the TBR dataset to

separate male and female patients compared to the SUV dataset

(mean borderline scores: 0.021 in TBR and 0.038 in SUV) was

observed. Similarly, a lower mean outlier score in the TBR dataset

compared to SUV was present (mean outlier scores: 0.06 in TBR and

0.07 in SUV).

In contrast, to differentiate IDH+/- cases, TBR datasets

demonstrated a much higher borderline range than SUV datasets

(mean borderline scores: 0.049 in TBR and 0.015 in SUV).

Furthermore, TBR datasets had lower outlier scores compared to

SUV datasets (mean outlier scores: 0.058 in TBR and 0.07 in SUV).

See Figure 2 for the borderline-outlier score distributions in the SUV

and TBR datasets in relation to sex and IDH+/- differentiations.
Deciphering sex-specific radiomic
differences

The Monte Carlo (MC) feature ranking across all 100 folds

resulted in 17 features in the SUV dataset, of which three had an

occurrence of >90%. In the TBR dataset, 21 MC features were

identified, of which three had an occurrence of >90% (Figure 3).

The only MC high-ranking feature in both SUV and TBR datasets was

the minimum discretized histogram intensity (ih.min). Nevertheless,

Mann-Whitney U test revealed no significant features to differentiate

patient sex in the either of the datasets (Table 2).
Comparison of IDH+/- predictive
performances between male and
female patients

Feature ranking to discriminate IDH+/- cases resulted in 11 and

10 MC features in SUV and TBR datasets, respectively (Figure 4). Of

these features, four had a >90% occurrence in both SUV and TBR
BA

FIGURE 2

Borderline versus outlier scores of Monte Carlo training subsets for standardized uptake value (SUV) and tumor-to-background ratio (TBR) radiomic
features to separate female/male (A) as well as IDH1 +/- (B) cases. Borderline scores were based on Tomek links (22), while outlier scores were
calculated by the Isolation Forest approach (23). TBR features tend to demonstrate lower borderline scores, implying that male and female patients can
be better separated in a TBR feature space. Low borderline and outlier scores indicate a better distinction between male and female patients in general.
frontiersin.org

https://doi.org/10.3389/fonc.2023.986788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Papp et al. 10.3389/fonc.2023.986788
cases and they were also mutually present in both datasets as MC

high-ranking. Mann-Whitney U-test identified the intensity

histogram coefficient of variation (ih.cov) as high-ranking in both

the SUV (p=0.0007) and the TBR (p=0.0003) datasets (Figure 5). In

addition, intensity skewness (stat.skew) was also identified to be

significant with p=0.0013 in both SUV and TBR datasets (Table 3).

While IDH- female and male patients had similar ih.cov values,

IDH+ patients demonstrated a more diverse ih.cov distribution

(Table 4). As such, IDH+ females had approximately half the ih.cov

deviation compared to IDH+ males. Stat.skew also represented

similar value distributions in IDH- female and male patients. In

contrast, IDH+ females had lower skewness (mean: -0.327) compared

to IDH+ males (mean: -0.123) (Table 4). Table 4 includes the

distribution of ih.cov and stat.skew features in IDH+ and IDH-

female and male patients.
Discussion

Sex differences are appreciated as important parameters of human

health and disease. Although sex differences in incidence, disease

phenotype, and outcome are well described, the molecular bases for
Frontiers in Oncology 06
sex dimorphism have only recently come to the focus of research,

such as in gliomas (27). Moreover, the applications of artificial

intelligence (AI) in health care have helped advance the qualitative

interpretation of cancer imaging, including volumetric delineation of

tumors, extrapolation of the tumor genotype and biological course

from its radiographic phenotype, prediction of clinical outcome, and

assessment of the impact of disease and treatment (18). Many AI

approaches have been created to help with glioma management

concentrating on clinical and radiological data from CT and MRI

(28). First steps have also been taken with regard to PET as an

imaging tool for ML-based analysis of gliomas. Describing the

metabolic behavior of the tumor, amino acid PET is particularly

under investigation to classify glioma tissue regarding prognosis (29,

30). Considering that sex specific differences could also affect PET

phenotypes in gliomas led us to take a closer look at astrocytomas

classified according to the IDHmutational status, a leading biomarker

of the current and the future WHO CNS classification.

Amino-acid brain tumor PET imaging may be affected in various

manners: first, heterogeneous composition of glioma tissue due to

different histology or grading based on pathological features, such as

edema, microvasculature, cellularity, inflammation, necrosis have

been observed by MRI (31, 32). Second, the complex tumor
TABLE 2 Standardized uptake value (SUV) and tumor-to-background ratio (TBR) value-based glioma radiomic dataset characteristics to differentiate
female and male patients.

Dataset MC-selected features >90% Occurring features p-values

SUV 17

ih.min 0.112

dzm.sdhge 0.147

szm.lze 0.298

TBR 21

ih.min 0.147

szm.glnu.norm 0.167

rlm.lrlge 0.986
MC, Monte Carlo. The high-ranking MC feature list is ordered by ascending p-values in both SUV and TBR datasets independently. Features are denoted by their Imaging Biomarker Standardization
Initiative (IBSI) identifiers. For the names of each feature see Supplemental Table 1.
BA

FIGURE 3

Feature occurrences of the 10 highest-ranking features per Monte Carlo fold that separate male and female patients in standard uptake value (SUV)-
based (A) and tumor-to-background ratio (TBR)-based (B) radiomic datasets. Prefix “T” in the SUV feature ranks imply that the given feature was selected
as high-ranking (>90% occurrence) in the TBR dataset. Similarly, prefix “S” in the TBR feature ranks denote a high-ranking SUV feature. Co-occurring
high-ranking features in both SUV and TBR datasets are denoted by “*”. Features are denoted by their Imaging Biomarker Standardization Initiative (IBSI)
identifiers. For the names of each feature see Supplemental Table 1.
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microenvironment, a matrix surrounding tumor cells as a mixture of

immune, glia, precursor and endothelial cells and signaling molecules

also influences the metabolic behavior of tumors, that can be picked

up through radiomics (33). Third, sex disparity in brain metabolism

and genome-based sex disparity of the tumor cells have been also

described (34). Our results hint at biological sex differences between

gliomas at the molecular level using amino-acid PET, which is in line

with prior findings (15).

Specifically, our analyses revealed sex-specific amino-acid PET-

based radiomic characteristics and their effect on IDH risk prediction,

allowing a better understanding of how future prediction models in

glioma shall consider sex differences. While no significant differences

were identified across SUV or TBR features of MET-PET to

differentiate females and males, we identified two significant
Frontiers in Oncology 07
radiomic features to differentiate IDH low- and high-risk cases. The

highest-ranking radiomic feature was Intensity histogram coefficient

of variation (ih.cov), which is a simple uptake heterogeneity

descriptor, representing the relative standard deviation of uptake

occurrences within glioma lesions. Intensity skewness (stat.skew),

on the other hand, describes whether the distribution of uptake values

is symmetric (~value 0), negative-skewed (frequent high uptakes

compared to mean) or positive-skewed (frequent low uptakes

compared to mean).

Our borderline and outlier analysis revealed that SUV radiomics

increases both outlier and borderline scores to discriminate females

and males. This alone may point towards the necessity to normalize

SUV values to TBR prior to a radiomics-based analysis to build

prediction models for glioma patients. Nevertheless, TBR
FIGURE 5

Distributions of the highest-ranking Intensity histogram coefficient of variation (ih.cov) feature extracted from standardized uptake value (SUV, p=0.0007)
and tumor-to-background ratio (TBR, p=0.0003) values of glioma patients. Each plot represents distributions of the feature in female (F) and male (M)
patients grouped by the IDH+ (low risk) and IDH- (high risk) mutation statuses.
BA

FIGURE 4

Feature occurrences of the 10 highest-ranking features per Monte Carlo fold that separate IDH1+/- patients in standard uptake value (SUV)-based (A)
and tumor-to-background ratio (TBR)-based (B) radiomic datasets. Co-occurring high-ranking features in both SUV and TBR datasets are denoted by “*”.
Features are denoted by their Imaging Biomarker Standardization Initiative (IBSI) identifiers. For the names of each feature see Supplemental Table 1.
frontiersin.org

https://doi.org/10.3389/fonc.2023.986788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Papp et al. 10.3389/fonc.2023.986788
normalization appears to magnify borderline cases to discriminate

IDH1+/- cases. This is in line with our findings regarding standard

imaging characteristics in both tumors and CBA, particularly

regarding the normal brain region, which is routinely chosen to

perform TBR normalization. Here, IDH+ females have shown an

average lower and less heterogeneous uptake occurrence pattern

compared to IDH+ males. In general, a high amino acid tracer

uptake indicates a more aggressive tumor behavior with poor

prognosis (35). However, our observations may also be explained

by the fact that males had more astrocytomas grade 3 compared to

females in our cohort, reflecting a tumor tissue with higher

heterogeneity (36).

In addition to the above, IDH+ females had 2-times higher CBA

standard deviations compared to all other patient groups. Sexual

dimorphism of amino acid metabolism and consequently tumor

appearance and prognostic outcome of glioma, androgen receptors

are discussed as promotors of tumor progression accompanied by

high serum testosterone in male patients with malignant brain tumors

(37). Known tumor protective effects of estrogens, particularly during

the premenopausal years in females (38), may explain in part our

observations. Moreover, sex-specific disparity in immuno-

physiological reactions against various cancerous and inflammatory

processes are also mediated by the sexual hormones (39).

Furthermore, studies also revealed metabolic sex disparity in the

healthy brain in terms of cerebral glucose metabolism framing these

observations as potential differences in cognitive abilities and

emotional processing (40–42). Moreover, Verger et al .

demonstrated in a retrospective analysis of patients with suspicious
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brain lesions and negative amino acid FET brain PET scans an

enhanced amino acid metabolism of 23% higher SUVmean values

in healthy brain tissues of female compared to male participants (19).

These observations point to potential cellular and biological

differences that could be related to healthy brain metabolism but

also to sex-based disease pathogenesis. Interestingly, we found the

most-prominent sex-differences in the IDH+ females compared to

both IDH+ and IDH- males. However, we did not find similar results

for IDH- females. This may imply that regarding the normal brain

metabolism, high-risk gliomas represent sex-independent imaging

characteristics. In contrast, low-risk gliomas tend to preserve sex-

specific features (27).

Prior works investigated the predictability of IDH mutations in

glioma patients relying on MRI and PET. Lohmann et al. (43)

classified [18F]FET-PET and PET/MRI cases. They reported 80%

and 86% validation accuracies with FET-PET and PET/MRI

respectively. Wang et al. (44) reported 0.9 cross-validation AUC to

predict IDH mutation built on multi-parametric MRI alone and also

identified age as well as sex to be a contributing feature to classify

patients. Sakai et al. (45) analyzed glioma patients to build IDH

prediction models utilizing MRI radiomics with a cross-validation

accuracy of 90%. Cao et al. (46) achieved 0.78 cross-validation AUC

to predict IDH mutation status with MRI. Analyzing MET-PET,

Zhou et al. (47) classified patients to IDH- vs. wildtype built on SUV

analytics with 0.73 AUC. While all studies predicted IDH mutation

status with a variable number of cases as well as glioma subtypes, none

of them investigated the predictability of their established models in

females and males independently and none of them compared SUV
TABLE 4 Mean and standard deviation of histogram coefficient of variation (ih.cov) and intensity skewness (stat.skew) features in IDH+ and IDH- female
and male patients in both SUV and TBR datasets.

ih.cov stat.skew

SUV TBR SUV TBR

Female, IDH- 0.440 ± 0.126 0.438 ± 0.126 0.483 ± 0.683 0.483 ± 0.683

Male, IDH- 0.385 ± 0.100 0.386 ± 0.099 0.519 ± 0.619 0.519 ± 0.619

Female, IDH+ 0.264 ± 0.031 0.264 ± 0.029 -0.327 ± 0.562 -0.327 ± 0.562

Male, IDH+ 0.308 + 0.068 0.307 ± 0.067 -0.123 ± 0.501 -0.123 ± 0.501
Since stat.skew is a normalized calculation, it is agnostic to TBR normalization, hence, its values are identical in both SUV and TBR datasets.
TABLE 3 Standardized uptake value (SUV) and tumor-to-background ratio (TBR) value-based glioma radiomic dataset characteristics to differentiate IDH+
and IDH- cases.

Dataset MC-selected features >90% Occurring features p-values

SUV 11

ih.cov 0.0007

stat.skew 0.0013

szm.lzhge 0.0044

ih.min.grad 0.0549

TBR 11

ih.cov 0.0003

stat.skew 0.0013

szm.lzhge 0.0028

ih.min.grad 0.0139
MC, Monte Carlo. The high-ranking MC feature list is ordered by ascending p-values in both SUV and TBR datasets independently. Features are denoted by their Imaging Biomarker Standardization
Initiative (IBSI) identifiers. For the names of each feature see Supplemental Table 1.
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and TBR radiomics. In contrast to these studies, our findings point

towards the understanding that IDH risk predictability seems to be

associated to sex-specific tumor amino-acid uptake characteristics,

where high variations are prominently present in IDH+ patients,

particularly in females. Consistently, SUV-to-TBR normalization in

glioma patients appears advantageous particularly for males, while

females demonstrate a more diverse predictive performance pattern

in TBR-based IDH models.

This study had limitations of being a single-center study.

Furthermore, while prior studies established machine learning

prediction models to differentiate IDH+ and IDH- cases, we

explicitly focused on the analysis of high-ranking radiomic features

by standard methodologies (e.g., feature ranking and selection across

a Monte Carlo cross-validation scheme) that are routinely performed

prior to building prediction models. While we had a relatively low

sample count of our cohort, we wish to reflect on the phenomena that

due to the heterogeneous nature as well as imbalance occurrence of

glioma subtypes, collecting a large patient cohort suitable for analysis

according to the actual WHO classification is generally challenging as

also demonstrated by others (30). Nevertheless, we consider our

findings representative to demonstrate significant differences across

IDH+ and IDH- female and male subgroups, that can influence ML

predictive model performances in general. In addition to the above,

negative amino acid PET - a feature of lower grade gliomas with better

prognosis as compared to amino-acid positive gliomas - were not

included, as they could not be subjects of the radiomic analysis.

Our findings have important implications within the field of

radiomics, machine learning and brain PET imaging analysis,

especially regarding sex disparity on the level of both radiomic

feature distributions within tumor lesions as well as in the normal

brain. Relevant future research therefore has to reflect on our findings

when analyzing glioma patients.
Conclusions

We demonstrate that significant differences in imaging pattern of

MET-PET between female and male astrocytic gliomas that can affect

IDH predictability. This is caused mainly by a diverse imaging pattern

in IDH+ females. Risk prediction using radiomics analysis of PET

data in glioma patients, shall rely on sex-specificity of resulting

biomarkers as part of future approaches towards precision medicine.
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