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A CT based radiomics
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between focal-type autoimmune
pancreatitis and pancreatic
ductal adenocarcinoma
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Hospital of Liaoning Province, Shenyang, China, 2Department of Radiology, The People’s Hospital of
Liaoning Province, Shenyang, China
Objectives: The purpose of this study was to develop and validate an CT-based

radiomics nomogram for the preoperative differentiation of focal-type

autoimmune pancreatitis from pancreatic ductal adenocarcinoma.

Methods: 96 patients with focal-type autoimmune pancreatitis and pancreatic

ductal adenocarcinoma have been enrolled in the study (32 and 64 cases

respectively). All cases have been confirmed by imaging, clinical follow-up

and/or pathology. The imaging data were considered as: 70% training cohort

and 30% test cohort. Pancreatic lesions have been manually delineated by two

radiologists and image segmentation was performed to extract radiomic features

from the CT images. Independent-sample T tests and LASSO regression were

used for feature selection. The training cohort was classified using a variety of

machine learning-based classifiers, and 5-fold cross-validation has been

performed. The classification performance was evaluated using the test

cohort. Multivariate logistic regression analysis was then used to develop a

radiomics nomogram model, containing the CT findings and Rad-Score.

Calibration curves have been plotted showing the agreement between the

predicted and actual probabilities of the radiomics nomogram model. Different

patients have been selected to test and evaluate the model prediction process.

Finally, receiver operating characteristic curves and decision curves were plotted,

and the radiomics nomogram model was compared with a single model to

visually assess its diagnostic ability.

Results: A total of 158 radiomics features were extracted from each image. 7

features were selected to construct the radiomics model, then a variety of

classifiers were used for classification and multinomial logistic regression (MLR)

was selected to be the optimal classifier. Combining CT findings with radiomics

model, a prediction model based on CT findings and radiomics was finally

obtained. The nomogram model showed a good sensitivity and specificity with

AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under

the curve and decision curve analysis showed that the radiomics nomogram

model may provide better diagnostic performance than the single model and
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achieve greater clinical net benefits than the CT finding model and radiomics

signature model individually.

Conclusions: The CT image-based radiomics nomogram model can accurately

distinguish between focal-type autoimmune pancreatitis and pancreatic ductal

adenocarcinoma patients and provide additional clinical benefits.
KEYWORDS

radiomics, focal-type autoimmune pancreatitis, pancreatic ductal adenocarcinoma,
differential, machine learning
1 Introduction

The concept of autoimmune pancreatitis (AIP) was first

proposed by Yoshida et al. in 1995 (1). As a rare chronic disease,

AIP usually presents as recurrent acute pancreatitis with abundant

pathological lymphoplasmacytic infiltration (2, 3). The current

study classifies AIP into two types: diffuse pancreatitis and focal

pancreatitis (4). Focal-type autoimmune pancreatitis (fAIP)

presents with segmental involvement of the pancreatic

parenchyma, accounting for approximately 28-41% of AIP cases

(5, 6). The imaging and clinical features of fAIP and pancreatic

ductal adenocarcinoma (PDAC) are very similar, including focal or

mass-like enlargement of the pancreas and obstructive jaundice,

making their differential diagnosis very difficult. In addition, the

treatment and prognosis of the two diseases vary widely. AIP is a

benign fibro-inflammatory disease that responds to steroid therapy

within one month in 90% of cases (7), whereas PDAC requires

surgical resection to cure. Studies have shown that nearly 16% of

cases of AIP are misdiagnosed as PDAC and undergo unnecessary

pancreatectomy, with approximately 5-21% of cases undergoing

pancreatectomy being ultimately confirmed as AIP. Currently, the

only reference standard for the differential diagnosis of fAIP from

PDAC is post-operative histology. The imaging examination is

lacking clear reference standards for definitive diagnosis (7).

Therefore, it is crucial to develop a non-invasive and effective

methods to distinguish fAIP from PDAC preoperatively, enabling

clinicians in the selection of appropriate treatment strategies.

As an emerging technology in the field of medical imaging,

radiomics has provided a large amount of quantitative high-

throughput information on radiographic images, helping to

describe the tumor heterogeneity and the corresponding

microenvironment (8). In this way, more predictive information

can be obtained from medical imaging data than just the traditional

visual interpretation (9), and provides a new way of approaching

clinical diagnosis. In the field of abdominal radiology, radiomics

techniques have been extensively studied, aiming to predict the

tumor grade, survival and response to treatment, and to distinguish

benign from malignant lesions. Therefore, it has the potential to be

a non-invasive diagnostic method with performance close to biopsy.
02
Some studies have applied this technique to pancreatic diseases (10–

17), with a few studies reporting that the radiomic features extracted

from enhanced CT images have certain value in the identification of

AIP and PDAC. However, a more accurate integrative analysis of

radiomics nomogram models to discriminate between fAIP and

PDAC has not been fully developed.

Therefore, this study aims to develop and validate a non-

invasive, reproducible and personalized radiomics-based

nomogram method for preoperative identification of fAIP and

PDAC based on contrast-enhanced CT images.
2 Materials and methods

2.1 Patients

The patients with fAIP between January 2011 and January 2021

in our hospital have been considered for this study. These patients

were included according to the 2011 International Consensus

Diagnostic Criteria (ICDC). The exclusion criteria were as follows

(1): Contrast CT was not performed prior to steroid therapy or

surgery; (2) The mass involving the pancreas is greater than 1/2 the

length of the pancreas; (3) Significant autoimmune processes

outside the pancreas, including sclerosing cholangitis, renal

involvement, and retroperitoneal fibrosis, which may suggest

fAIP; (4) CT images have severe artifacts. Finally, 32 patients with

fAIP were included in our study (23 males, 9 females; mean ± SD:

60 ± 12.1 years; range: 43–82 years). Other patients from our

hospital with PDAC pathologically confirmed between January

2017 and January 2022 were also considered. The exclusion

criteria were as follows: (1) Received any type of treatment

(radiation, chemotherapy, or chemoradiation) prior to the

imaging study; (2) Enhanced CT scan was not performed within

1 month before surgery; (3) History of other malignancies; (4) CT

images have severe artifacts. Finally, 64 patients with PDAC were

included in our study (47 males, 17 females; mean ± SD: 60.1 ± 9.8

years; range: 40–88 years). Then, all patients were randomly divided

into training cohort and test cohort at ratio of 7:3 (Figure 1). The

clinical data were derived from medical records.
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2.2 CT image acquisition

All patients were scanned with a 64-slice multidetector CT

(SOMATOM, Definition AS+, Siemens, Forchheim, Germany). The

parameters involved were as follows: 120 kVp; effective 180 mA;

rotation time, 0.5 s; detector collimation, 32 × 1.2 mm; field of view,

350 × 350 mm; matrix, 512 × 512; section thickness, 5 mm; and

reconstruction section thickness, 1.5 mm. All patients were required

to fast for at least 6 hours and drink 500 to 800 mL water before the

examination. Contrast-enhanced CT images were obtained after

intravenous administration of nonionic contrast medium (Ultravist

300 mg I/mL; Bayer Schering Pharma AG, Berlin, Germany) at an

injection rate of 2.5-3.0 mL/s using a power injector (1.5 mL/kg).

The arterial phase images were scanned at 7 seconds after the

attenuation value of abdominal aorta reached 100 Hounsfield units.

The portal venous phase images were scanned at 40 seconds after

the completion of the arterial phase scanning.
Frontiers in Oncology 03
2.3 CT findings evaluation

The pancreas lesions CT images for each patient were

independently evaluated and recorded in a blinded manner by

two experienced abdominal radiologists (10 and 20 years of

experience in the interpretation of abdominal radiology). If

there was a discrepancy between the two radiologists for some

cases, they would reach a consensus after reviewing the images

again and consulting. CT quantitative parameters were based on

the mean values recorded by two radiologists. Due to the different

size of the lesions, the slices of patients are also different, each

lesion is segmented into approximately 30 slices, each slice

1mm thick.

The CT images were analyzed, considering: (1) Location of

lesions (head-neck and body-tail of the pancreas); (2) The size of the

lesion (the largest diameter of the tumor in cross section) (3)

Capsule-like rim; (4) Pancreatic atrophy (5) Biliary wall

thickening(thickness≥3 mm); (6) Peripancreatic vascular

involvement (invasion of the common hepatic artery, splenic

artery and vein, gastroduodenal artery, superior mesenteric artery

and vein, portal vein; the standard is vascular occlusion, stenosis, or

more than half of the circumference is in contact with the tumor);

(7) Regional lymph node swelling (Lymph node short diameter≥1

cm); (8) Abrupt bile duct cut-off; (9) Pancreatic ductal cut-off; (10)

MPD dilatation upstream (Upstream PD expansion ≥ 5 mm).
2.4 Segmentation and feature extraction

The construction process of the radiomics nomogram model is

shown in Figure 2. The whole process includes: (A) Data acquisition

and segmentation; (B) Feature extraction; (C) Feature screening and

(D) Radiomics nomogram construction and evaluation.

2.4.1 Image segmentation, feature extraction,
and data preprocessing

We used the open-source software LIFEx (https://

www.lifexsoft.org/index.php) to manually draw the three-

dimensional volume of interest (VOI) of CT venous phase lesions.
A B DC

FIGURE 2

The research process including: (A) Data acquisition and segmentation; (B) Feature extraction; (C) Feature screening and (D) Radiomics nomogram
construction and evaluation.
FIGURE 1

Patient Screening Flowchart.
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Particular care was taken to avoid the common bile duct and blood

vessels while drawing the VOI. The segmentation process was

performed by two experienced radiologists (10 and 20 years of

experience in abdominal imaging), both of whom were blinded to

the clinicopathological information of the patients, except the tumor

location. The segmentation was finally completed with the consensus

of the two radiologists.

LIFEx software is an open infrastructure software platform that

flexibly supports common radiomics workflow tasks and is widely

used in radiomics analysis. In our study, some parameters of LIFEx

are as follows: In intensity discretization, nb of grep levels=400.0
Frontiers in Oncology 04
and size of bins=10.0. In intensity Rescaling, min bound=-1000.0,

max bound=3000.0 (18). We used LIFEx to extract 158 quantitative

radiomics features. For each image, these features included six

categories: morphological features, intensity features, grey-level

cooccurrence matrix features (GLCM), grey-level distance zone-

based features (GLDM), grey-level run-length matrix features

(GLRLM), gray-level size zone matrix features (GLSZM),

neighborhood grey tone difference-based features (NGTDM). The

list of specific features we extracted is shown in Table 1. During data

collection and image screening, we performed a normalization to

ensure the reproducibility of our results.
TABLE 1 The extracted features using LIFEx toolbox.

Feature type Feature name

MORPHOLOGICAL MORPHOLOGICAL_Volume(IBSI : RNU0)

MORPHOLOGICAL_ApproximateVolume(IBSI : YEKZ)

MORPHOLOGICAL_voxelsCounting(IBSI : No)

MORPHOLOGICAL_Compactness1(IBSI : SKGS)

MORPHOLOGICAL_Compactness2(IBSI : BQWJ)

MORPHOLOGICAL_SphericalDisproportion(IBSI : KRCK)

MORPHOLOGICAL_Sphericity(IBSI : QCFX)

MORPHOLOGICAL_Asphericity(IBSI:25C7)

MORPHOLOGICAL_MaxValueCoordinates(IBSI : No)

MORPHOLOGICAL_CenterOfMass(IBSI : No)

MORPHOLOGICAL_WeightedCenterOfMass(IBSI : No)

MORPHOLOGICAL_Hoc(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

MORPHOLOGICAL_CentreOfMassShift(IBSI : KLMA)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

MORPHOLOGICAL_CentreOfMassShift(IBSI : KLMA)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

INTENSITY INTENSITY-BASED_Mean(HU)IBSI:Q4LE

INTENSITY-BASED_Variance(HU)IBSI : ECT3

INTENSITY-BASED_Skewness(HU)IBSI : KE2A

INTENSITY-BASED_Kurtosis(HU)IBSI : IPH6

INTENSITY-BASED_Median(HU)IBSI:Y12H

INTENSITY-BASED_MinimumGreyLevel(HU)IBSI:1GSF

INTENSITY-BASED_10thPercentile(HU)IBSI : QG58

INTENSITY-BASED_25thPercentile(HU)IBSI : No

INTENSITY-BASED_50thPercentile(HU)IBSI:Y12H

INTENSITY-BASED_75thPercentile(HU)IBSI : No

(Continued)
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TABLE 1 Continued

Feature type Feature name

INTENSITY-BASED_90thPercentile(HU)IBSI:8DWT

INTENSITY-BASED_StandardDeviation(HU)IBSI : No

INTENSITY-BASED_MaximumGreyLevel(HU)IBSI:84IY

INTENSITY-BASED_InterquartileRange(HU)IBSI : SALO

INTENSITY-BASED_Range(HU)IBSI:2OJQ

INTENSITY-BASED_MeanAbsoluteDeviation(HU)IBSI:4FUA

INTENSITY-BASED_RobustMeanAbsoluteDeviation(HU)IBSI:1128

INTENSITY-BASED_MedianAbsoluteDeviation(HU)IBSI:N72L

INTENSITY-BASED_CoefficientOfVariation(HU)IBSI:7TET

INTENSITY-BASED_QuartileCoefficientOfDispersion(HU)IBSI:9S40

INTENSITY-BASED_AreaUnderCurveCsh(HU)IBSI : No

INTENSITY-BASED_Energy(HU)IBSI:N8CA

INTENSITY-BASED_RootMeanSquare(HU)IBSI:5ZWQ

INTENSITY-BASED_TotalLesionGlycolysis(HU)IBSI : No

INTENSITY-BASED_TotalCalciumScoreIBSI : No

LOCAL_INTENSITY_BASED_IntensityPeakDiscretizedVolumeSought(0.5mL)(mL)IBSI : No

LOCAL_INTENSITY_BASED_GlobalIntensityPeak(0.5mL)(HU)IBSI : No

LOCAL_INTENSITY_BASED_IntensityPeakDiscretizedVolumeSought(1mL)(mL)IBSI : No

LOCAL_INTENSITY_BASED_GlobalIntensityPeak(1mL)(HU)IBSI:0F91

LOCAL_INTENSITY_BASED_LocalIntensityPeak(HU)IBSI : VJGA

INTENSITY-BASED-RIM_Min(HU)IBSI : No

INTENSITY-BASED-RIM_Mean(HU)IBSI : No

INTENSITY-BASED-RIM_Stdev(HU)IBSI : No

INTENSITY-BASED-RIM_Max(HU)IBSI : No

INTENSITY-BASED-RIM_CountingVoxels(#vx)IBSI : No

INTENSITY-BASED-RIM_ApproximateVolume(mL)IBSI : No

INTENSITY-BASED-RIM_Sum(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogramMean(HU)IBSI:X6K6

INTENSITY-HISTOGRAM_IntensityHistogramVariance(HU)IBSI : CH89

INTENSITY-HISTOGRAM_IntensityHistogramSkewness(HU)IBSI:88K1

INTENSITY-HISTOGRAM_IntensityHistogramKurtosis(HU)IBSI:C3I7

INTENSITY-HISTOGRAM_IntensityHistogramMedian(HU)IBSI : WIFQ

INTENSITY-HISTOGRAM_IntensityHistogramMinimumGreyLevel(HU)IBSI:1PR8

INTENSITY-HISTOGRAM_IntensityHistogram10thPercentile(HU)IBSI : GPMT

INTENSITY-HISTOGRAM_IntensityHistogram25thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram50thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram75thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram90thPercentile(HU)IBSI : OZ0C

INTENSITY-HISTOGRAM_IntensityHistogramStandardDeviation(HU)IBSI : No

(Continued)
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TABLE 1 Continued

Feature type Feature name

INTENSITY-HISTOGRAM_IntensityHistogramMaximumGreyLevel(HU)IBSI:3NCY

INTENSITY-HISTOGRAM_IntensityHistogramMode(HU)IBSI : AMMC

INTENSITY-HISTOGRAM_IntensityHistogramInterquartileRange(HU)IBSI : WR0O

INTENSITY-HISTOGRAM_IntensityHistogramRange(HU)IBSI:5Z3W

INTENSITY-HISTOGRAM_IntensityHistogramMeanAbsoluteDeviation(HU)IBSI:D2ZX

INTENSITY-HISTOGRAM_IntensityHistogramRobustMeanAbsoluteDeviation(HU)IBSI : WRZB

INTENSITY-HISTOGRAM_IntensityHistogramMedianAbsoluteDeviation(HU)IBSI:4RNL

INTENSITY-HISTOGRAM_IntensityHistogramCoefficientOfVariation(HU)IBSI : CWYJ

INTENSITY-HISTOGRAM_IntensityHistogramQuartileCoefficientOfDispersion(HU)IBSI : SLWD

INTENSITY-HISTOGRAM_IntensityHistogramEntropyLog10(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogramEntropyLog2(HU)IBSI : TLU2

INTENSITY-HISTOGRAM_AreaUnderCurveCsh(HU)IBSI : No

INTENSITY-HISTOGRAM_MaximumHistogramGradient(HU)IBSI:12CE

INTENSITY-HISTOGRAM_MaximumHistogramGradientGreyLevel(HU)IBSI:8E6O

INTENSITY-HISTOGRAM_MinimumHistogramGradient(HU)IBSI : VQB3

INTENSITY-HISTOGRAM_MinimumHistogramGradientGreyLevel(HU)IBSI : RHQZ

LOCAL_INTENSITY_HISTOGRAM_IntensityPeakDiscretizedVolumeSought(0.5mL)(mL)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_GlobalIntensityPeak(0.5mL)(HU)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_IntensityPeakDiscretizedVolumeSought(1mL)(mL)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_GlobalIntensityPeak(1mL)(HU)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_LocalIntensityPeak(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Min(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Mean(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Stdev(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Max(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_CountingVoxels(#vx)IBSI : No

INTENSITY-HISTOGRAM-RIM_ApproximateVolume(mL)IBSI : No

INTENSITY-HISTOGRAM-RIM_Sum(HU)IBSI : No

GLCM GLCM_JointMaximum(IBSI : GYBY)

GLCM_JointAverage(IBSI:60VM)

GLCM_JointVariance(IBSI : UR99)

GLCM_JointEntropyLog2(IBSI : TU9B)

GLCM_JointEntropyLog10(IBSI : No)

GLCM_DifferenceAverage(IBSI : TF7R)

GLCM_DifferenceVariance(IBSI:D3YU)

GLCM_DifferenceEntropy(IBSI : NTRS)

GLCM_SumAverage(IBSI : ZGXS)

GLCM_SumVariance(IBSI : OEEB)

GLCM_SumEntropy(IBSI:P6QZ)

(Continued)
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TABLE 1 Continued

Feature type Feature name

GLCM_AngularSecondMoment(IBSI:8ZQL)

GLCM_Contrast(IBSI : ACUI)

GLCM_Dissimilarity(IBSI:8S9J)

GLCM_InverseDifference(IBSI : IB1Z)

GLCM_NormalisedInverseDifference(IBSI : NDRX)

GLCM_InverseDifferenceMoment(IBSI : WF0Z)

GLCM_NormalisedInverseDifferenceMoment(IBSI:1QCO)

GLCM_InverseVariance(IBSI:E8JP)

GLCM_Correlation(IBSI : NI2N)

GLCM_Autocorrelation(IBSI : QWB0)

GLCM_ClusterTendency(IBSI : DG8W)

GLCM_ClusterShade(IBSI:7NFM)

GLCM_ClusterProminence(IBSI : AE86)

GLRLM GLRLM_ShortRunsEmphasis(IBSI:22OV)

GLRLM_LongRunsEmphasis(IBSI:W4KF)

GLRLM_LowGreyLevelRunEmphasis(IBSI:V3SW)

GLRLM_HighGreyLevelRunEmphasis(IBSI:G3QZ)

GLRLM_ShortRunLowGreyLevelEmphasis(IBSI : HTZT)

GLRLM_ShortRunHighGreyLevelEmphasis(IBSI : GD3A)

GLRLM_LongRunLowGreyLevelEmphasis(IBSI : IVPO)

GLRLM_LongRunHighGreyLevelEmphasis(IBSI:3KUM)

GLRLM_GreyLevelNonUniformity(IBSI:R5YN)

GLRLM_RunLengthNonUniformity(IBSI:W92Y)

GLRLM_RunPercentage(IBSI:9ZK5)

NGTDM NGTDM_Coarseness(IBSI : QCDE)

NGTDM_Contrast(IBSI:65HE)

NGTDM_Busyness(IBSI : NQ30)

NGTDM_Complexity(IBSI : HDEZ)

NGTDM_Strength(IBSI:1X9X)

GLSZM GLSZM_SmallZoneEmphasis(IBSI:5QRC)

GLSZM_LargeZoneEmphasis(IBSI:48P8)

GLSZM_LowGrayLevelZoneEmphasis(IBSI : XMSY)

GLSZM_HighGrayLevelZoneEmphasis(IBSI:5GN9)

GLSZM_SmallZoneLowGreyLevelEmphasis(IBSI:5RAI)

GLSZM_SmallZoneHighGreyLevelEmphasis(IBSI : HW1V)

GLSZM_LargeZoneLowGreyLevelEmphasis(IBSI : YH51)

GLSZM_LargeZoneHighGreyLevelEmphasis(IBSI:J17V)

GLSZM_GreyLevelNonUniformity(IBSI : JNSA)

GLSZM_NormalisedGreyLevelNonUniformity(IBSI:Y1RO)

(Continued)
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2.4.2 Intra- and inter-observer reliability
To assess inter-observer reliability, blinded two radiologists

performed VOI segmentation. For intra-observer reliability,

features were extracted twice by the first observer at a one-month

interval. Reliability was calculated using the intraclass correlation

coefficient (ICC). Radiomics signatures with both intra- and inter-

observer ICC values greater than 0.75 (indicating excellent stability)

were selected for follow-up investigations.
2.4.3 Dimensionality reduction and feature
selection

Feature selection consists of two steps: independent samples t-

test and least absolute shrinkage and selection operator (LASSO)

logistic regression algorithm. Regarding the selection of

hyperparameters of the LASSO algorithm, after repeated training,

we selected alphas=[0.001, 0.05, 50], and the final optimal alpha

value was 0.04832; we selected cv=5, which was determined

according to the amount of data, in order to ensure that the

number of each sample set divided is more than 15 samples,

thereby ensuring the stability of the model; max_iter=100000 is

selected, to ensure that there are enough iterations for the model to

complete the training. The other parameters and their values have

been added to the additional file. Finally, each patient’s radiomics

score (Rad-Score) was calculated using a linear combination of

selected features weighted by the respective coefficients.
2.4.4 Machine learning classifier selection
We analyzed the classification performance of the following

four most used classifiers: Multivariate Logistic Regression (MLR),

Random Forest (RF), Support Vector Machine (SVM), and

Decision Tree (DT). These four classifiers were used to train the

feature data in the training cohort. The 5-fold cross-validation

method was used to ensure the stability and reliability of the

training results, the classification performance was evaluated

using the test cohort, and the hyperparameters of the four

classifiers can be found in the additional file. To ensure that the

number of samples in each data set divided is more than 15, and to

ensure the training effect of the classifier, k = 5 has been empirically

determined through the trial-and-error method (k range: 5–15, step

size of 5) (19). To obtain the same percentage of patient status in

both training and test datasets, in each training process, although

the sample size of training is determined by the total amount of

data, the sample size of the two types of data is equal.
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2.5 Radiomics nomogram construction
and evaluation

We developed combinatorial models combining CT findings and

radiomic features. A radiomics nomogram was then generated from

the above features by MLR, providing clinicians with the appropriate

tool to differentiate between fAIP and PDAC in each patient.We then

plotted a calibration curve for the nomogram, graphically showing

the agreement between the predicted and actual probabilities of the

radiomics nomogram, and presented the prediction process and

results with two randomly selected patients and assessment. To

further measure the predictive performance of the combined

model, we used the receiver operating characteristic (ROC) area

under the curve (AUC) to quantify the radiomics nomogram with

95% confidence interval (95% CI) and compared it to the single

model. In order to ensure the consistency of the classifiers and then

correctly evaluate the predictive ability of each model, we used the

MLR classifier on both the CT findings model and the radiomics

model for classification, depending on previous studies (20). Finally,

the decision curves for the three models were plotted to assess the

overall net benefit performance of the radiomics nomogram model.
2.6 Statistical analysis

All the statistical analyses were performed using R software

(version 3.6.0, https://www.r-project.org) and Python (version

3.7.0, https://www.python.org). Continuous variables were

expressed as mean ± standard deviation and compared by

independent t-test with normal distribution or Mann-Whitney U

test with abnormal distribution. Differences in categorical variables

were analyzed by chi-square test or Fisher’s exact test. Multivariate

logistic regression analysis was used to select independent

predictors in the subjective CT findings model. Values with two-

sided P < 0.05 were considered statistically significant.

3 Results

3.1 Clinical characteristics and CT
findings model

The clinical characteristics of the patients with fAIP and PDAC

are listed in Table 2, and the CT findings of patients are shown in

Table 3. All clinical characteristics showed no significant difference
TABLE 1 Continued

Feature type Feature name

GLSZM_ZoneSizeNonUniformity(IBSI:4JP3)

GLSZM_NormalisedZoneSizeNonUniformity(IBSI : VB3A)

GLSZM_ZonePercentage(IBSI:P30P)

GLSZM_GreyLevelVariance(IBSI : BYLV)

GLSZM_ZoneSizeVariance(IBSI:3NSA)

GLSZM_ZoneSizeEntropy(IBSI : GU8N)
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between the fAIPs group and the PADCs group (P=0.325~0.873).

CT images, including capsule-like rim, pancreatic atrophy, biliary

wall thickening and vascular invasion, differed significantly between

the two groups (P<0.05), indicating these features have a certain

role in the diagnosis of fAIP and PDAC. There is no significant

difference between groups in other characteristics (P>0.05).
3.2 Radiomic signature construction
and evaluation

The radiomics feature selection process was performed

separately at various stages. Based on venous phase CT images,

38 features were initially extracted by independent samples t-test.

After removing redundant features, 7 potential features were

selected by the LASSO algorithm. Then, a multiparametric

radiomics signature based on venous phase images was

established (Figure 3), the final filter gets the feature name and its

weight performance (Figure 4).

According to the feature data screened by the LASSO algorithm,

different classifiers based on machine learning to classify the feature

data were used, and 5-fold cross-validation was performed to ensure

the stability of the classification results. The test cohort was then
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used to verify the performance of different classifiers, and obtain the

classification results as shown in Table 4.

Specifically, the favorable radiomics signature can be expressed

by Rad-score:

Rad − Score = 16:1747 − (0:009034*MORPHOLOGICAL _ SurfaceToVolumeRatio)

+ (0:093138*MORPHOLOGICAL _ Spehericity) − (0:019595*INTENSITY

− HISTOGRAM _ IntensityHistogram90thPercentile) − (0:161556*INTENSITY

− HISTOGRAM _MaximumHistogramGradientGreyLevel) − (0:036626*GLCM

_DifferenceVariance) + (0:103065*GLCM _Correlation) − (0:148918*GLSZM

_ ZonePercentage)

After the Rad-score calculation for the fAIPs group (median:

-0.81; range: -2.50~-0.09) was significantly lower than that of the

PDACs group (median: -0.34; range: -0.63~0.62). We tested both

sets of data using an independent samples t-test and found p-values

< 0.001 for both sets of data.
3.3 Radiomics nomogram construction
and validation

Five characteristics including the capsule-like rim, pancreatic

atrophy, biliary wall thickening, vascular invasion and Rad-Score
TABLE 3 CT findings of the patients.

Characteristics
fAIPs PDACs

P value
(n=32) (n=64)

Capsule-like rim 20 3 <0.001*

Regional lymph node swelling 7 25 0.094

Abrupt bile duct cut-off 2 12 0.104

Pancreatic atrophy 7 35 0.002*

Pancreatic ductal cut-off 4 19 0.064

Biliary wall thickening 17 4 <0.001*

Vascular invasion 2 51 <0.001*

MPD dilatation upstream(>5mm) 13 33 0.317
fron
fAIPs, focal-type autoimmune pancreatitis; PDACs, pancreatic ductal adenocarcinoma; *P<0.05.
TABLE 2 Clinical characteristics of patients.

Characteristics
fAIPs PDACs

P value
(n=32) (n=64)

Age (year), mean ± SD 60 ± 12.1 60.1 ± 9.8 0.635

Gender 0.873

Male 23 47

Female 9 17

Location 0.645

Head and neck 21 45

Body and tail 11 19

Maximum section diameter, mean ± SD 44.8 ± 16.7 41.6 ± 13.8 0.325
fAIPs, focal-type autoimmune pancreatitis; PDACs, pancreatic ductal adenocarcinoma; SD, standard deviation.
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were included in the multivariate logistic regression analysis, and a

combined model of radiomics nomogramwas constructed (Figure 5).

Figure 6 shows that the nomogram calibration curve with good

agreement between predictions and observations in both cohorts. In

addition, we randomly selected two patients and used the radiomics

nomogram model for prediction. The prediction process and results

are shown in Figures 7A, B.
3.4 Comparison between different models

The ROC curves (Figure 8) analyzed the diagnostic ability of

three different models in the training and test cohort. Radiomics

nomogram showed the best diagnostic performance in both

training (AUC = 0.87) and test cohort (AUC = 0.83), followed by

radiomics signature (training cohort, AUC = 0.73; test cohort, AUC

= 0.76). Both models outperformed the model based on CT findings

in both the training (AUC = 0.67) (P < 0.05) and test cohorts (AUC

= 0.66) (P < 0.05).
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The Figure 9 presents the DCA curves. We observed that the

patients would benefit more from the radiomics nomograms than

either the treat-no-patient schemes or the treat-all-patients

regimens. Furthermore, the DCA curve showed that the

radiomics nomogram had a higher net benefit than the

curvilinear CT discovery model and the radiomics model in

identifying patients with PDAC.
4 Discussion

In the present study, we developed and validated a diagnostic

radiomics nomogram model combining subjective CT findings and

radiomic features as a novel and effective complementary method

for preoperative identification of fAIP and PDAC. The calibration

curve, ROC curve and decision curve were used to verify the

discriminating efficacy of our model. All evaluation metrics show

that the nomogram model outperforms the single model in

distinguishing fAIP and PDAC, and the nomogram model
A B

FIGURE 3

Radiomics feature screening by LASSO regression algorithm. (A) Plot of polynomial deviation versus l. The red dots represented the mean deviation
value for each model with a given l, the vertical line was plotted at the best value by using the minimum criterion, where 7 features had non-zero
coefficients. (B) Distribution of LASSO coefficients for radiological features. Each colored line represents the coefficient of each feature.
FIGURE 4

Filtered feature names and its weight performance.
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enables model visualization. The nomogram model has potential as

a decision tool for the need for surgical resection.

Some previous studies (21) found that some imaging features

were more correlated with fAIP in contrast-enhanced CT than in

PDAC. These included capsule-like rim with low attenuation (5,

22–26), without atrophic changes in uninvolved pancreatic tissue

(23, 27), without MPD dilatation upstream (> 5 mm) (28), and our

study showed similar results. Furthermore, we also found that the

biliary wall thickening is helpful in differentiating the two diseases.

This may be due to the fact that AIP is a systemic fibro-

inflammatory disease, most commonly involving the bile ducts,

resulting in sclerosing cholangitis (SC), biliary wall thickening and

bile duct stricture (29); In PDAC however, there is only external

compression, with rare cases of bile wall thickening. However, the

diagnostic accuracy of imaging studies depends on the presence or

absence of characteristic symptoms and the overall experience of

the radiologist.

In recent years, radiomics techniques have rapidly developed,

with the radiomics analysis aiming to provide a quantitative

measure of intralesional heterogeneity. This is helpful in assessing

tumor aggressiveness, treatment response and prognosis, and

distinguishing benign from malignant lesions (29). The radiomics

value in distinguishing between AIP and PDAC has been previously

reported (21, 30–34). By extracting the radiomics features of the

venous phase, Park et al (31) could distinguish AIP from PDAC

with 89.7% sensitivity, 100% specificity, and 95.2% overall accuracy.

The classification effect is better than that of the arterial phase, so in
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our study, the imaging data of the venous phase was used for the

diagnosis of the two diseases. However, the previous study did not

focus on fAIP patients, but included both diffuse AIP and fAIP

patients. Furthermore, Zhang Y et al (30) and Liu Z et al (33)

noninvasively classified PDAC and AIP lesions using PET/CT

images using a radiomics-based predictive model. (Mean AUC:

0.9668, Accuracy: 89.91%, Sensitivity: 85.31%, Specificity: 96.04%).

The above results show that establishing a radiomics signature

model significantly improves the diagnostic efficiency.

To obtain an appropriate model able to distinguish between

fAIP and PDAC, we developed and validated three models, and

found that the combined nomogram performed better than the

radiomics model and the CT findings model (training cohort AUC

were 0.87, 0.73 and 0.67, and the test cohort AUCs were 0.83, 0.76,

and 0.66). The calibration curves showed good agreement between

the predicted values and the actual results. The decision curves

showed that the radiomics nomogram model had a higher net

benefit than the individual CT findings model and radiomics model

respectively. By acquiring high-throughput quantitative features

from CT images, radiomics signatures allow the assessment of

tumor heterogeneity and the spatial distribution of biologically

relevant voxels (9).

In our study, a two-step feature selection process screened 7 best

features from 158 radiomic features, suggesting that these 7 features

play a relatively important role in identifying fAIP and PDAC. For

example, “LoG” (Laplace Gaussian) and “GLCM” (Gray Level Co-

occurrence Matrix) are features that have proven useful in
FIGURE 5

Nomogram for differentiating focal-type autoimmune pancreatitis (fAIPs) and pancreatic ductal adenocarcinoma (PDACs). The Capsule-like rim,
Pancreatic atrophy, Biliary wall thickening, Vascular invasion and Rad-score were used for building the radiomics nomogram. Plotted the first scale
“points” to identify points for each predictor. When the total points were calculated by adding the scores of these five predictors, the corresponding
prediction probability was obtained at the last scale.
TABLE 4 Classification performance of different classifiers.

Classifier
Training cohort (n=67) Test cohort (n=29)

ACC AUC Sensitivity Specificity ACC AUC Sensitivity Specificity

MLR 0.72 0.73 0.95 0.97 0.71 0.76 0.89 0.93

RF 0.92 0.95 1.0 1.0 0.56 0.60 1.0 0.17

SVM 0.89 0.93 1.0 0.92 0.61 0.69 0.93 0.48

DT 0.69 0.71 0.95 0.90 0.65 0.70 0.87 0.72
MLR, Multivariate Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; DT, Decision Tree; ACC, Accuracy; AUC, Area Under the Curve.
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predicting the pathological features of certain tumor types (12, 35–

37). We classified the filtered features using a variety of machine

learning-based classifiers, and we chose these methods mainly

because they were popular and performed well in previous studies

(38). The performance of MLR classification is not the best on the

training cohort, but it performed best on the test cohort. The

performance of some classifiers in the training cohort and the test

cohort is quite different. The preliminary judgment is that due to

the problem of data volume and classifiers, RF and SVM were

seriously overfitted. The radiomics features composed of the above

7 selected features are then represented by Rad-Score. When a

patient has a high Rad-Score through CT image-based radiomic

analysis, PDAC can be initially determined after comprehensive

consideration. In addition, serum markers such as CA19-9 or IgG4

levels can be further detected, thereby establishing a personalized

and convenient diagnostic system.

Histopathology obtained by endoscopic ultrasonography (EUS)

guided fine-needle aspiration biopsy (EUS-FNA/B) is the gold

standard for the AIP diagnosis. However, a recent multicenter

study reported that the diagnosis rate for type I AIP using EUS-

FNA/B was only 58.2% (39). EUS-FNB/B may not achieve definitive

diagnosis even in the presence of large tissue volumes (40). The

nomogram established in our study, combined with CT findings
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and radiomics features, is a non-invasive predictive tool that can

analyze the overall characteristics of the lesion regardless of the

location and size of the lesion. This may improve the accuracy of

diagnosis, and reduce patient trauma with optimal compliance at

the same time.

However, our study still has some limitations. First, CT images of

fAIP patients were acquired over 11 years (2011 to 2021), whereas CT

images of PDAC patients were acquired in the last 6 years (2017 to

2022). This may affect CT findings and features extracted. Second,

due to the low incidence of fAIP, cases over nearly a decade have been

included in our study, but there are still not enough cases to validate

the proposed radiomics model, and selection bias is inevitable due to

matched sampling. In order to verify the performance of our study on

multi-center data, we initially selected CT image data of two patients

from other hospital, and used the nomogram model to make

predictions. The prediction results have been added to Figures 7C,

D. It can be preliminarily seen from the prediction results that the

nomogram model has good generalization ability and can be applied

to new patient and multi-center data. However, the above-mentioned

external verification data is seriously insufficient and has certain

contingency. In follow-up study, we will continue to collect data and

add more external validation data to enrich our study. And to

overcome small and unbalanced sample size problems, the method
frontiersin.or
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FIGURE 6

Calibration curves of the radiomics nomogram in training cohort (A) and test cohort (B).
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maybe the future directions of our study which was used by Stefano

Barone et al (41). Third, the contours of VOIs of pancreatic lesions

may have some influence on the performance of our prediction

model. In the current study, two radiologists manually delineated the
Frontiers in Oncology 13
contours of the lesions, and it is a time-consuming process.

Therefore, methods requiring less manual intervention should be

considered, and the establishment of automated pancreas

segmentation software may help improve this situation. Automated
A B

DC

FIGURE 7

Schematic diagram of prediction flow of radiomics nomogram model. (A) after VOI delineating, image preprocessing, the value of total points was
74.5, which was calculated by the CT findings and Rad-Score. The result corresponded to <10% probability of a firm consistency. Thus, the patient’s
disease was predicted to be fAIP, which was confirmed by ICDC. (B)The total points was 172.5, which corresponding to >90% probability of a firm
consistency. Thus, the patient’s disease was predicted to be PDAC, which was confirmed in surgery. (C) The external validation data, the total points
was 90.5. Thus, the patient’s disease was predicted to be fAIP, which was confirmed by ICDC. (D) The external validation data, the total points was
166.2. Thus, the patient’s disease was predicted to be PDAC, which was confirmed in surgery.
A B

FIGURE 8

The ROC curves of the three models: (A) The training cohort; (B) The test cohort. The AUC values of the radiomics nomogram model were higher
than that of the CT appearance model and the radiomics model in both training cohort and test cohort.
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segmentation is the development trend of lesion segmentation in

radiomics (18, 42). But automated segmentation also has its

disadvantages. Automated segmentation often requires a large

amount of data for training, usually the methods used are based on

deep learning, and in the current research status, automated

segmentation can only identify disease with evident lesion areas.

But for the identification of two types of diseases with complex lesion

areas, the results of automated segmentation are often not

appropriate. In our study, fAIP is a relatively rare disease, the

amount of data is not enough to support the training of automated

segmentation software, and the similarity between fAIP and PDAC is

high, so some key features may be lost using automated

segmentation. Therefore, we chose to use manual segmentation as

the method of lesion segmentation. At the same time, to ensure the

reproducibility of VOI, we selected two experienced abdominal

radiologists to jointly segment VOI. But automated segmentation is

still an important direction for our future studies, and we are

continuing to collect relevant data to prepare for the construction

of automated segmentation software. In theory, the only texture

features that resulted to be reliable (ICC>0.75), could lead to the

elimination of fundamental features for building the predictive

model. This is indeed a limitation of our study, but it is already

one of the best methods, and in our actual study, the reproducibility

and quality of feature extraction are guaranteed due to the extensive

experience of the physicians responsible for VOI segmentation.

In summary, we have developed a preoperative CT imaging-

based radiomics nomogram for distinguishing between fAIP and

PDAC with high accuracy and clear diagnostic value. Quantitative

and noninvasive radiomics analysis may be a useful application to

help clinicians develop personalized treatment plans.
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