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Background: Distant metastases is the main failure mode of nasopharyngeal

carcinoma. However, early prediction of distant metastases in NPC is extremely

challenging. Deep learning has made great progress in recent years. Relying on

the rich data features of radiomics and the advantages of deep learning in image

representation and intelligent learning, this study intends to explore and

construct the metachronous single-organ metastases (MSOM) based on

multimodal magnetic resonance imaging.

Patients and methods: The magnetic resonance imaging data of 186 patients

with nasopharyngeal carcinoma before treatment were collected, and the gross

tumor volume (GTV) andmetastatic lymph nodes (GTVln) prior to treatment were

defined on T1WI, T2WI, and CE-T1WI. After image normalization, the deep

learning platform Python (version 3.9.12) was used in Ubuntu 20.04.1 LTS to

construct automatic tumor detection and the MSOM prediction model.

Results: There were 85 of 186 patients who had MSOM (including 32 liver

metastases, 25 lung metastases, and 28 bone metastases). The median time to

MSOMwas 13months after treatment (7–36months). The patients were randomly

assigned to the training set (N = 140) and validation set (N = 46). By comparison,

we found that the overall performance of the automatic tumor detection model

based on CE-T1WI was the best (6). The performance of automatic detection for
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primary tumor (GTV) and lymph node gross tumor volume (GTVln) based on the

CE-T1WImodel was better than that ofmodels based on T1WI and T2WI (AP@0.5 is

59.6 and 55.6). The prediction model based on CE-T1WI for MSOM prediction

achieved the best overall performance, and it obtained the largest AUC value (AUC

= 0.733) in the validation set. The precision, recall, precision, and AUC of the

prediction model based on CE-T1WI are 0.727, 0.533, 0.730, and 0.733 (95% CI

0.557–0.909), respectively. When clinical data were added to the deep learning

prediction model, a better performance of the model could be obtained; the AUC

of the integratedmodel based on T2WI, T1WI, and CE-T1WI were 0.719, 0.738, and

0.775, respectively. By comparing the 3-year survival of high-risk and low-risk

patients based on the fusion model, we found that the 3-year DMFS of low and

high MSOM risk patients were 95% and 11.4%, respectively (p < 0.001).

Conclusion: The intelligent prediction model based on magnetic resonance

imaging alone or combined with clinical data achieves excellent performance in

automatic tumor detection and MSOM prediction for NPC patients and is worthy

of clinical application.
KEYWORDS

nasopharyngeal carcinoma, metachronous single-organ metastases prediction,
multimodal magnetic resonance imaging, automatic learning, intelligent prediction
Introduction
Nasopharyngeal carcinoma (NPC) is a common head and neck

cancer in South China, and 47.7% of new cases worldwide have

been reported in China (1). With the application of intensity-

modulated therapy technology and advances in comprehensive

treatment, the 5-year overall survival of NPC reached more than

80% (2). However, distant metastasis is still its main failure mode

(3), largely due to the fact that early distant metastasis prediction for

NPC patients is quite elusive. This poses an obstacle to early

intervention for those patients at high risk of distant metastases.

Distant metastases fall into different categories. For instance,

metachronous single-organ metastases (MSOM) refer to the cases

where patients suffer from single-organ (e.g., liver, lung, or bone)

metastases more than 6 months after treatment. This is also termed

as oligometastases, which contrasts with multiple metastases.

Different categories of metastases have been reported to differ in

their 5-year overall survival. For example, the 5-year overall survival

of NPC patients with metachronous liver metastases is 28.6% (4).

Jeremy Chee et al. showed that the median survival time of NPC

patients with oligometastases was 24.8 months, whereas that of

patients with multiple metastases was only 12.8 months (5). With

the emergence of multiorgan metastases, the patients’ condition will

deteriorate rapidly. Considering the negative impact of metastases

on the patients’ survival, there is a need to improve accuracy for

pretreatment prediction of single-organ metastases for patients,

when a high risk of distant recurrence is present. Once correctly

predicted, some aggressive treatment strategies could be applied

during treatment so as to achieve a better prognosis.
02
However, no recognized distant metastasis prediction marker or

system of NPC could be found until now. To solve the problem,

researchers in the world had explored the gene expression and

radiomics-based signature to predict distant metastases of NPC.

The 13-gene-based signature reported by Xin-Ran Tang et al.

showed a C index of 0.725 in an internal validation cohort to

predict distant metastasis-free survival (DMFS) (6). As the

accessibility of the gene test restricted the clinical application,

other researchers tried to construct a distant metastasis prediction

model based on MRI data prior to treatment (7). To establish

prognostic or predictive models is the main application area of

radiomics (8). Accurate prediction of disease outcome is of great

significance for guiding tumor treatment and prognosis judgment.

Radiomics transforms medical image data into high-throughput

characterization data that can be automatically acquired (9). Using

a radiomics platform, omics information of intratumor

heterogeneity can be obtained from a huge amount of imaging

data, which are often related to tumor stages, prognosis, and

treatment responses (10). Studies have confirmed that radiomic

parameters are associated with progression-free survival and

treatment response in patients with nasopharyngeal carcinoma

(11, 12), and some researchers have developed and validated

magnetic resonance imaging-based radiomics to predict distant

metastases of nasopharyngeal carcinoma based on traditional

radiomic methods (7). Radiomics requires convenient, intelligent,

and fast analysis and processing of large amounts of data. However,

with its natural drawback of low automation and standardization, as

well as cumbersome and time-consuming feature extraction, the

traditional radiomic showed relatively low accuracy and robustness

for prediction.
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To overcome the drawback of traditional radiomics, deep

learning can be of great help. Some researchers developed deep

learning radiomics (DLR), which showed potential clinical

application value in improving the accuracy and reliability of the

diagnostic and predictive value of radiomics. Deep learning is a

concept of artificial neural network research in machine learning.

Some researchers applied deep learning to predict lung cancer gene

mutations based on the histopathological morphology of lung

cancer (13); another study explored the value of radiomics

features to predict the efficacy of neoadjuvant chemoradiotherapy

for locally advanced rectal cancer (14), and some other researchers

used deep learning and performed dual-energy CT radiomics to

predict lymph node metastases in gastric cancer (15). Deep learning

has natural advantages in treatment response evaluation and

prognosis prediction. Although automatic segmentation of

nasopharyngeal carcinoma based on deep learning was usually

applied in diagnosis and radiotherapy practice (16–19), no one

explored the metachronous single-organ metastases prediction

model based on DLR until now.

In spite of the obvious advantages, this method based on deep

learning to detect nasopharyngeal carcinoma and predict

metachronous s ing l e -organ metas ta se s s t i l l f ace s a

“reproducibility/replicability” crisis, with a large amount of basic

and preclinical research not being reproducible. The previous work

extracted the slice with the largest tumor area for one patient as

input image sample, and they constructed a single deep feature

extraction model to predict DMFS (20). Although it was simple, it

suffered from low performance when there were limited data. To

overcome this issue, we proposed a novel two-stage framework

based on transfer learning to make prediction for single-organ

metastases of NPC. In the first stage, a detection model was trained

on the train set. The aim of this stage was to pretrain the feature

extraction model. In the second stage, a feature extraction model

was fine-tuned to make prediction for single-organ metastases. The

parameters of this feature extraction model were initialized from the

feature extraction part of the detection model trained in the first

stage. Experiment results showed that our methods outperformed

the comparison method (20) in the T1WI, T2WI, and CE-

T1WI sequences.

In addition, we proposed an early fusion multimodal prediction

model to combine the clinical data and MRI sequences. Experiment

results showed that adding the clinical data improved the

performance of the prediction model in the T1WI, T2WI, and CE-

T1WI sequences. The AUC was improved by 1.6%, 2.4%, and 4.2%

respectively in the T1WI, T2WI, and CE-T1WI sequences. This

radiomics deep-learning based platform we developed on the basis of

multisequence magnetic resonance imaging is an automatic tumor

detection and segmentation approach, to detect MSOM of NPC.

There are two contributions of the paper. Firstly, we proposed a

two-stage model based on transfer learning to predict MSOM of

NPC. In addition, we proposed an early fusion model to combine

the clinical data with MRI sequences to predict MSOM of NPC.

This study provided a new insight to predict metachronous single-

organ metastases prior to treatment, which could automatically

detect the nasopharyngeal carcinoma on multisequence MRI and

output a score that represents the possibility of distant metastases.
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This would be treated as a treatment decision reference to guide

precise treatment of nasopharyngeal carcinoma and bring the dawn

to further improve the overall efficacy of nasopharyngeal carcinoma

in the future.
Materials and methods

Patients

Patients who met the following inclusion criteria between

October 2011 and October 2021 at Sichuan Cancer Hospital were

selected for this study: 1) patients with pretreatment plain and

enhanced magnetic resonance imaging scanning data of

nasopharynx and neck; 2) pathology-confirmed nasopharyngeal

carcinoma; 3) patients who had finished all the courses of

radiotherapy and chemotherapy according to the NCCN

Guidelines and institutional standard; 4) patients with regular

follow-up at Sichuan Cancer Hospital following treatment; 5)

patients who developed single-organ (liver, lung, or bone)

metastases more than 6 months after treatment, or patients who

live without metastases more than 3 years following treatment.

A total of 85 NPC patients with MSOM and another

comparable 101 non-metastasis NPC patients were recruited in

this study. Patients were randomly assigned to the training set (N =

140) and validation set (N = 46). Their basic clinical-pathology

characteristics, including laboratory tests before treatment, are

listed in Table 1.
MRI scanning

Patients in this study underwent MRI examination prior to

treatment. Head and neck coils with a 1.5-T scanner (Avanto,

Siemens, Germany) were used for scanning. All metal objects were

not allowed to bring into the scanning room. Motion artifact and

magnetic susceptibility were avoided by asking patients, keeping the

head and neck fixed without deglutition during scanning. T1WI and

T2WI were obtained prior to contrast drug injection. Gadolinium

diethylenetriamine penta-acetic acid (Gd-DTPA, 0.1 mmol/kg) was

injected to acquire axial fat-suppressed CE-T1WI. All images were

reconstructed from the k-space using the inverse Fourier transform

with the linear filling method, as we reported previously (21). MRI

scanning parameters are listed in Supplementary Material 1.
Image processing

After transferring MRI images into the radiotherapy target

volume delineation system MIM Software (Beijing Co., Ltd.), two

experienced radiation oncologists with more than 10 years of

experience in head and neck cancer delineated gross tumor

volume (GTV) and lymph node gross tumor volume (GTVln) in

transverse TIWI, T2WI, and CE-T1WI, respectively. When

disagreements occurred during the contouring process, a third

researcher stepped in to resolve the disagreements by discussions.
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TABLE 1 Clinical and pathological characteristics of patients in this study.

MSOM Non-metastases p Training set Validation set p

N 85 101 140 46

Gender .539

Male 63 (74.1) 72 (71.2) 0.666 100 (71.4) 35 (76.1)

Female 22 (25.9) 29 (28.7) 40 (29.6) 11 (23.9)

Age 47 (27-78) 48 (16-69) 0.459 47 (24-69) 47 (16-68) 0.171

Target organ 0.317

Lung 25 (29.4) 22 (25.9) 3 (3.5)

Liver 32 (37.6) 24 (28.2) 8 (9.4)

Bone 28 (32.9) 20 (23.5) 8 (9.4)

T stage# 0.949 0.326

T1–2 18 (21.2 21 (20.8) 27 (19.3) 12 (26.1)

T3–4 67 (78.8) 80 (79.2) 113 (80.7) 34 (73.9)

N stage# 0.274 0.056

N0–2 56 (65.9) 74 (73.3) 103 (73.6) 27 (58.7)

N3 29 (34.1) 27 (26.7) 37 (26.4) 19 (41.3)

Clinical stage# 0.153 0.622

III 31 (36.5) 27 (26.7) 45 (32.1) 13 (28.3)

IV 54 (63.5) 74 (73.3) 95 (67.9) 33 (71.7)

Pathology type* 0.902 0.434

I 1 (1.2) 1 (1.0) 1 (0.7) 1 (2.1)

II 84 (98.8) 100 (99.0) 139 (99.3) 45 (97.9)

PNI 0.315 0.233

≥Medial 40 (47.0) 55 (54.4) 68 (48.6) 27 (58.7)

<Medial 45 (53.0) 46 (54.6) 72 (51.4) 19 (41.3)

HGB
≥Medial

39 (45.9) 55 (45.6) 0.244 67 (47.9) 27 (58.7) 0.202

<Medial 46 (54.1) 46 (54.6) 73 (52.1) 19 (41.3)

Target therapy 0.784 0.488

Yes 27 (31.8) 34 (33.6) 44 (31.4) 17 (37.0)

No 58 (68.) 67 (66.4) 96 (68.6) 29 (63.0)

cDDP 0.927 0.724

≥200 mg/m2 55 (64.7) 66 (65.4) 110 (78.6) 35 (76.1)

<200 mg/m2 30 (35.3) 35 (34.6) 30 (21.4) 11 (23.9)

Dose of GTV 0.796 0.648

≥70 Gy 66 (77.6) 80 (79.2) 111 (79.2) 35 (76.1)

<70 Gy 19 (22.4) 21 (20.8) 29 (20.8) 11 (23.9)
F
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#Clinical stage was restaged according to the 8th AJCC staging system. *Pathology type, I, keratinizing squamous cell carcinoma; II, non-keratinizing carcinoma; HGB, hemoglobin; PNI, prognostic nutritional
index; CDDP, cumulative dose of cisplatin. Chi-square test was used to compare the difference between clinical pathological markers of each group.
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For better performance and convenience, we implemented data

processing by following a three-step procedure. First, the format of

images was converted from DICOM format into JPEG format, and

the contours of lesions were transformed into binary masks and

coordinates of bounding boxes. Second, both the pixel spacing and

slice interval were normalized to 1 mm and the range of pixel values

was normalized between 1 and 255. Third, (22) all labels included in

this study were transferred to COCO format and all the input

images were resized to the same size (512 × 512). All the above three

steps were performed in SimpleITK and OpenCV.
Detection and prediction model building
based on multisequence MRI

In order to develop an accurate and robust detection and

prediction model based on deep learning methods, a large scale of

high-quality annotated data is required. To reduce the limitation of

data, we built a new framework to make metastasis prediction for

NPC based on transfer learning.

Firstly, a detection model was developed to localize and classify

GTV and GTVln. During the training stage, the feature extraction

module of the detection model could learn low-level location and

high-level semantic features of tumors. Also, the model could

pretrain the parameters of the feature extraction module, which

would be helpful for the convergence of the prediction model in the

second stage. The prediction network was fine-tuned separately to

make prediction. The feature extraction module of the prediction

model was initialized by the common feature extraction module of

the detection model in the first stage. There were plenty of instance

detection models and feature extraction models in the deep learning

field. In this paper, we apply one of the most common detection

models, Mask R-CNN (23). The common feature extraction model

of the trained model in each stage was ResNet (24) with the Feature

Pyramid Network (FPN) (25). The FPN model was proposed to

reduce the negative impact of various scales of GTV and GTVln.

The overview of the proposed two-stage framework is presented in

Figure 1. The prediction model would output a score valued

between 0 and 1 to represent the possibility of MSOM when the

MRI data of a specific patient were inputted.

For single-organ metastasis prediction, a patient was considered

as high risk when the average score of all slices that the prediction

model outputs was equaled to or higher than the best cutoff value of

MRI MSOM score calculated from the ROC curve.
Metachronous single-organ metastasis
prediction model based on MRI and
clinical variables

To improve the prediction performance of the model based on

deep learning of MRI, we added the clinical data (age, gender,

clinical stage, prognostic nutritional index (PNI), hemoglobin

(HGB), treatment options, radiation dose, cumulative dose of

cisplatin, and cycle of chemotherapy) to the deep learning model

based on multisequence MRI. The clinical data and MRI sequence
Frontiers in Oncology 05
data feature were concatenated to a vector before the last average

pool layer and full-connection layer. The combined model was

tested in the same validation set to show the ability to predict

metachronous single-organ metastases of NPC.
Statistical analysis

Statistical analyses were performed using SPSS 22.0 statistical

software. The Kaplan–Meier method and log-rank text were applied

to compare survival. The chi-square test was used to compare the

difference between clinical pathological markers of each group. The

difference was considered statistically significant when p < 0.05.
Experimental setup

Environment
The programming language Python (Version 3.9.12) was used

in Ubuntu 20.04.1 LTS to build automatic tumor segmentation and

DSOM prediction models. The details of environment and

installation are shown in Supplementary Material 2. To improve

the reproducibility of the proposed methods, we conducted the

experiments based on MMDetection (26), a common open-source

detection framework.

Implementation details
The Mask R-CNN with default settings was applied to detect

GTV and GTVln. The backbone applied was ResNet-50 with FPN.

Five stages consisted of ResNet-50. The number of the out channel

in each stage was 64, 256, 512, 1,024, and 2,048. It was denoted that

C1, C2, C3, C4, and C5 was the output of the last residual block in

five stages. In FPN, {C2, C3, C4, C5} was considered as the input to

construct feature pyramid structures. The final outputted feature

maps were denoted as {P2, P3, P4, P5}, according to {C2, C3, C4,

C5}. The number of channels for all these feature maps was 256. For

the anchor generator, there were five scales and three aspect ratios

for anchors, and the threshold of IoU between the ground truth and

anchors was set to 0.5. For the test pipeline, the IoU threshold in the

NMS process was set to 0.7 and 0.5, respectively, in RPN and

RCNN. All the above parameter settings followed the work by (23).

For the prediction model, the feature extraction model was the

same as the backbone of Mask R-CNN. After the feature extraction

model, the P3 feature map was inputted into the final module. The

size of the feature map was 256 × 32 × 32. The final module

consisted of one average pool layer, one full-connection layer, and

one sigmoid activation layer. The last output dimension was only

one, which denoted the possibility of MSOM.

For the early fusion prediction model, the parameters before the

full-connection layer were the same as above. The clinical data were

concatenated just before the full-connection layer.

Training
Due to the difference of the detection model and prediction

model, the detection model was optimized with batch size as 4 and

max epoch as 24. The prediction model was optimized with batch
frontiersin.org
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size as 2 and max epoch as 20. The detection and prediction model

codes are detailed in Supplementary Material 3.
Results

Characteristic of MSOM from NPC

Of the 85 NPC patients with MSOM (including 32 liver

metastases, 25 lung metastases, and 28 bone metastases), the

median time to metastases was 13 months (7–36 months) after

treatment. The clinical and pathological characteristics of patients

in the MSOM and non-metastasis groups and the distribution

between the training set and validation set are shown in Table 1.
Performance of tumor detection on
multisequence magnetic resonance
imaging

To show the performance of the tumor detection model, the

common evaluation metrics for object detection models of AP

(average precision) and mAP (mean average precision) were used.

AP refers to the area under the Precision and Recall curves, whereas

mAP represents the average of the AP values of each category. The

concerned categories in this study were GTV and GTVln.

According to the characteristics of MRI images and tumors, we

adopted AP@0.5 and mAP@0.5 to evaluate the performance of the

object detection model. It meant that a candidate was considered as

a true positive when the Intersection over Union (IoU) overlapped

with any ground-truth bounding boxes equal to or higher than 0.5

and considered as a false positive when the IoU value was lower

than 0.5. The overall results of the detection model are presented in
Frontiers in Oncology 06
Table 2. The higher the score of AP and mAP is, the better the

model performs.

The above table shows that the performance of the adopted

detection model for CE-T1WI images was the best among the three.

It may be due to the high quality of images that CE-T1WI

performed best to detect GTV and GTVln for the proposed

detection model. The mAP@0.5 of the tumor detection model

based on CE-T1WI was 57.6, whereas the AP@0.5 of the

detection model based on CE-T1WI for GTV was 59.6 and 55.6

for GTVln, which were better than that of the detection model

based on TIWI and T2WI (Table 2).

To show the automatic tumor detection result in the

multisequence image, the visualization of the detection model for

one example slice in three channels is shown in Figure 2. As shown

in the figure, each candidate predicted by detection models was

labeled with bounding boxes (bboxes) and confidence coefficient. In

addition, the ground truth was labeled with red bboxes in the first

subfigure. The GTV candidates and GTVln candidates were

annotated in yellow and blue, respectively.
Performance of the MSOM prediction
model based on MRI and the integrated
model based on MRI and clinical variables
in the validation set

To evaluate the performance of the prediction model, AUC

(area under the curve), sensitivity, recall, and accuracy were

adopted. Note that the sensitivity, recall, and accuracy were

calculated at the median threshold of the predictive risk scores.

To show the advantage of the model we proposed, the validation set

in this study was also used to verify the performance of the deep

learning model reported by Zhang Lu in 2021 (20).
TABLE 2 The performance of Mask R-CNN.

mAP@0.5 AP@0.5 for GTV AP@0.5 for GTVln

T2WI 52.05 49.4 54.7

T1WI 43.25 49.0 37.5

CE-T1WI 57.60 59.6 55.6
FIGURE 1

Workflow of deep learning and model building.
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Based on the T1WI sequence, the precision, recall, accuracy,

and AUC of the proposed prediction model were 0.600, 0.600,

0.692, and 0.722 (95% CI, 0.530–0.909). The precision, recall,

accuracy, and AUC of the proposed combined prediction model

were 0.769, 0.667, 0.795, and 0.738 (95% CI, 0.535–0.926). The

precision, recall, accuracy, and AUC of the comparison model were

0.563, 0.643, 0.684, and 0.717 (95% CI 0.543–0.891). By comparing

with the model reported by Zhang Lu, we found that the AUC of the

model based on T1WI alone was higher than the comparison

method by 0.5%, whereas the AUC of the integrated model based

on T1WI and clinical variables was higher than the comparison

method by 2.1%. The results of experiments based on T1WI are

shown in Table 3.

Based on the T2WI sequence, the precision, recall, accuracy,

and AUC of the prediction model we proposed were 0.727, 0.438,

0.725, and 0.695 (95% CI, 0.458–0.849). The precision, recall,

accuracy, and AUC of the combined prediction model were

0.750, 0.563, 0.750, and 0.719 (95% CI, 0.537–0.900). The

precision, recall, accuracy, and AUC of the comparison model
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were 0.556, 0.625, 0.650, and 0.685 (95% CI 0.465–0.817). By

comparing with the model reported by Zhang Lu, we found that

the AUC of the model based on T2WI alone was higher than the

comparison method by 1.0%, whereas the AUC of the integrated

model based on T2WI and clinical variables was higher than the

comparison method by 3.4%. The results of experiments based on

T1WI are shown in Table 3.

Based on CE-T1WI, the precision, recall, accuracy, and AUC of

the prediction model were 0.727, 0.533, 0.730, and 0.733 (95% CI,

0.559–0.909). In that order, the precision, recall, accuracy, and AUC

of the fusion model were 0.714, 0.667, 0.757, and 0.775(95% CI

0.606–0.945). The precision, recall, accuracy, and AUC of the

comparison model were 0.500, 0.500, 0.611, and 0.620 (95% CI

0.419–0.848). By comparing with the model reported by Zhang Lu,

we found that the AUC of the model based on CE-T1WI alone was

higher than the comparison method by 11.3%, whereas the AUC of

the integrated model based on CE-T1WI and clinical variables was

higher than the comparison method by 15.5%. The results of

experiments based on CE-T1WI are shown in Table 3.
TABLE 3 The performance of the proposed prediction model based on MRI alone or MRI integrated with clinical variables in the validation set.

Model Precision Recall Accuracy AUC (95% CI)

TIWI

Zhang Lu et al. 0.563 0.643 0.684 0.717 (0.543-0.891)

Ours 0.600 0.600 0.692 0.722 (0.530-0.909)

Ours (fusion model) 0.769 0.667 0.795 0.738 (0.535-0.926)

T2WI

Zhang Lu et al. 0.556 0.625 0.650 0.685 (0.465-0.817)

Ours 0.727 0.438 0.725 0.695 (0.458-0.849)

Ours (fusion model) 0.750 0.563 0.750 0.719 (0.537-0.900)

CE-T1WI

Zhang Lu et al. 0.500 0.500 0.611 0.620 (0.419-0.848)

Ours 0.727 0.533 0.730 0.733 (0.557-0.909)

Ours (fusion model) 0.714 0.667 0.757 0.775 (0.606-0.945)
DA B C

FIGURE 2

The visualization of detection model for one example slice in three channels. (A). Manually labeled GTV and GTVln on T2WI; (B) Automatically
detected GTV and GTVln on T2WI; (C) Automatically detected GTV and GTVln on T1WI; (D) Automatically detected GTV and GTVln on CE-T1WI).
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By comparison, we found that the overall performance of the

prediction model based on T1WI and CE-T1WI was quite good in

the validation set (AUC >0.7). The accuracy and AUC of the

integrated model were better than those of the model based on

MRI alone. All the AUC values of the integrated model were bigger

than 0.7. The biggest AUC value we acquired in the validation set

was the integrated model based on CE-T1WI and clinical variables

(AUC = 0.775 (95% CI 0.606–0.945)). The AUC map is shown

in Figure 3.
Survival of patients according to MSOM
risk based on CE-T1WI and clinical
variables

We divided patients into high and low MSOM risk groups

according to the prediction models we built with data based on CE-
Frontiers in Oncology 08
TIW alone or integrated with clinical variables. Then, we compared

the metachronous single-organ distant metastasis-free survival

(DMFS) and overall survival (OS) of patients with high and low

MSOM risks.

According to the model based on CE-T1WI, the 3-year

metachronous single-organ DMFS of patients in the high and low

MSOM risk groups were 10.8% and 95%, respectively (p < 0.001, X2

= 166.06). The 3-year OS of patients in the high and low MSOM

risk groups were 85.1% and 97%, respectively (p < 0.001, X2

= 10.49)).

According to the integrated model based on CE-T1WI and

clinical variables, the 3-year metachronous single-organ DMFS

of patients in the high MSOM risk and low MSOM risk groups

were 11.4% and 95%, respectively (p < 0.001, X2 = 164.29). The 3-

year OS of patients in the high and low MSOM risk groups were

85.3% and 97%, respectively (p = 0.001, X2 = 10.69). Patients

with the low MSOM risk would achieve better DMFS and OS
D

A B

E F

C

FIGURE 3

AUC of the prediction model based on multi-sequence MRI alone or integrated with clinical data. (A–C), AUC of the prediction model based on
multisequence MRI. (A) AUC of the prediction model based on TIWI, (B) AUC of the prediction model based on T2WI, (C) AUC of the prediction
model based on CE-T1WI. (D–F), AUC of the prediction model based on multi-sequence MRI and clinical data. (D) AUC of the prediction model
based on TIWI and clinical data. (E) AUC of the prediction model based on T2WI and clinical data. (F) AUC of the prediction model based on CE-
T1WI and clinical data).
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than those with the high MSOM risk in both of the

model (Figure 4).
Discussion

MRI is a standard examination technique with outstanding

image resolution; MR-based radiomics can provide diagnostic,

prognostic, or predictive information related to NPC that cannot

be observed with the naked eyes, and it has shown great potential

clinical application in tumor staging, image guiding, prognosis

prediction, and treatment decision (27–29). With the advent and

development of medical big data, the combined application of

computer and machine learning methods makes the application

of MR-based radiomics in nasopharyngeal carcinoma more

promising (30–33). With the inherent advantages of high soft

tissue resolution and multisequence imaging, MRI showed unique

advantages over CT or PET-CT, in the diagnosis and treatment of

newly treated nasopharyngeal carcinoma (34, 35). Nasopharynx

and neck MRI scanning has become an essential and also important

pretreatment evaluation approach, which was suggested in the

guidelines and was widely used in clinical activities (36, 37). Lee S

et al. evaluated the prognostic value of magnetic resonance imaging

(MRI)-based radiomics for newly diagnosed NPC in a systematic

review and meta-analysis, which showed that MRI-based radiomics

revealed an overall modest prognostic value in predicting PFS

(mean C-index, 0.76; 95% CI, 0.69–0.84) (28). Wu G et al.

confirmed that dynamic contrast-enhanced MRI predicts PTEN

protein expression, which can function as a prognostic measure of

progression-free survival in NPC patients (38). Zhang Lu et al.

developed a distant metastasis MRI-based model (DMMM), which
Frontiers in Oncology 09
showed an AUC of 0·792(95% CI, 0·633–0·952) in validation

cohorts (7). Different from past studies which used the traditional

radiomics methods, we developed an automatic tumor detection

and segmentation approach based on deep learning to predict

MSOM, which exhibited similar prediction ability (AUC = 0.775).

Clinical staging is currently the most important tool to predict

the prognosis of NPC. However, the accuracy of the model based on

the N stage to predict distant metastases was only about 57%.

Another shortcoming is that it falls short of reflecting the

heterogeneity of individual tumors (6). Several studies have

reported that lymph node gross tumor volume (GTVln), gross

tumor volume of the nasopharynx (GTVnx), circulating CD4 T

lymphocytes, lactate dehydrogenase, lactate dehydrogenase (LDH)

level before treatment, hemoglobin level, and EBV DNA level were

significantly associated with the distant metastases of NPC (6, 39,

40). Several studies have shown that the plasma EBV DNA level

before treatment was related to the clinical stage and tumor burden

of nasopharyngeal carcinoma, and it was currently considered to be

the most important molecular marker for complementary clinical

staging (41, 42). Variations in EBV DNA testing in different

laboratories and in endemic and non-endemic areas limit its

clinical application, and there is currently a lack of a recognized

cutoff value between low- and high-risk patients (43). Several

studies have explored gene expression-based signature to predict

distant metastases (6, 44, 45). However, the hefty cost in gene

testing limited its clinical application, although its accuracy rate

reached about 75%.

When it comes to deep learning utilized in this study, it has its

intrinsic advantages by avoiding feature engineering, lowering

barriers to entry and sharing knowledge across domains (46).

Instead of manually designing rules, deep learning can optimize
D
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FIGURE 4

Survival curve of patients with high and low MSOM risk. (A) Distant metastasis-free survival (DMFS) of patients in different risk groups according to
the CE-T1WI-based model. (B) Overall survival (OS) of patients in different risk groups according to the CE-T1WI-based model. (C) Distant
metastasis-free survival (DMFS) of patients in different risk groups according to integrated model. (D) Overall survival (OS) of patients in different risk
groups according to the integrated model).
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the lost function as much as possible to learn the rules. Moreover,

the potential features of the data can be mined as much as possible.

To sum up, deep learning belongs to end-to-end learning, and the

results can be obtained by inputting data. This is both convenient

and fast (30, 46). Compared with hand-crafted radiomics methods,

the deep-learning model is relatively easy to operate because it only

requires inputting the MR images to end-to-end output a predictive

value (20). Wang et al. also suggested that a deep-learning model

showed better performance than conventional radiomic and clinical

models (47). In this study, we use MMDetection, an object detection

toolbox that contains a rich set of object detection and instance

segmentation methods as well as related components and modules,

to improve the reproducibility of detection (26). With modular

design and high efficiency, this toolbox supports multiple

frameworks out of box and finally improve repeatability and

reproducibility of the module.

The concept of metachronous metastases was initially applied in

patients with colorectal cancer who suffered from liver metastases

after treatment (48). Oligometastases was defined as metastases that

are limited in both number (usually, less than 5) and location (49,

50). It represents a state that could achieve curative outcome or

relatively better local control, which eventually transferred to

survival benefit by definitive treatment (51). It is well known that

oligometastatic state, which usually determines a cancer patient’s

final destination, is an inevitable stage toward polymetastases (52).

However, no practical and effective markers and systems were

applied to predict oligometastases, as oligometastases is only a

state from the prospect of treatment and survival. Single location

or target organ metastasis seems to be a better representation of an

intermediate state of the disease in the view of tumor progression.

Patients with single-organ metastases usually showed its peculiar

biological profile and clinical characteristics (53, 54). Although the

risk of metastases and omics characteristics of the same tumor in

different target organs are different, patients who developed single-

organ metastases after treatment might share somewhat common

genetic and radiomic characteristics that attributed to its intrinsic

tumor heterogeneity (53).

Early detection of patients with high risk to develop MSOM prior

to treatment can provide relatively sufficient information about the

heterogeneity of tumors, which can guide an individualized treatment

plan. We compared the single-organ DMFS and OS of patients with

high and low MSOM risks and found that patients with a high risk of

MSOM had lower 3-year single-organ DMFS (10.8% vs. 95%, p <

0.001) and OS (85.1% vs. 97%) in the CE-T1WI-based prediction

model. For patients with a low risk of MSOM, it is possible that

concurrent chemoradiotherapy would be good enough, as those

patients benefit less from neoadjuvant or adjuvant or targeted

therapy. For patients with high risk of MSOM, more aggressive

treatment strategies should be given. As reported in A phase 3,

multicenter, randomized controlled trial, patients with high-risk

locoregionally advanced NPC who received metronomic capecitabine

could achieve better failure-free survival (55). In this sense, this study

provided a new automatic approach to select patients who might

benefit from aggressive treatment. Different from other studies to

explore distant metastases (including synchronous and

metachronous, multi- and single-organ metastases) of NPC (20, 44–
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46), this study, as far as we know, was the first one to explore MSOM

based on multisequence MRI and deep learning.

Although this study exhibits good performance of the MSOM

prediction model based on multisequence MRI and deep learning, it

is by no means flawless. Firstly, since this is a retrospective study

conducted in one research center, it comes with some intrinsic

limitations, such as consistency of the enrolled patients and

uniformity of the treatment plan. Secondly, due to the long-time

span of the enrolled patients, the data in our study were produced

by the MRI image scanning machines with somewhat diversified

scanning parameters. Although we performed image quality

assessment and standardized processing to reduce the image

variations, they cannot be considered to be adequately uniform

and synchronically comparable. In consideration of the

abovementioned deficiencies, further external validation

conducted in different research centers is thus beckoned. In this

sense, the shortcomings of this study could transform into

invitation for follow-up studies.

The main innovations and contributions of this study are as

follows. 1) The concept of metachronous single-organ metastases of

nasopharyngeal carcinoma was proposed for the first time. 2) We

are the first to propose a novel two-stage framework based on

transfer learning to make prediction for single-organ metastases of

NPC. 3) A prediction model based on CE-T1WI alone or combined

with clinical indicators was proposed to achieve better prediction

performance. 4) It provides an important reference for accurate

diagnosis, treatment, and prediction of nasopharyngeal carcinoma

and has important clinical application value. The main research

direction in the future is to build a prospective study queue, explore

and verify the MSOM intelligent prediction model, and carry out

clinical studies based on the MSOM intelligent prediction model.

For high-risk patients, the risk of distant metastases would be

reduced and the overall curative outcome would be improved by

adjusting chemotherapy intensity and maintenance treatment

strategy; for low-risk patients, the treatment intensity might be

reduced to alleviate therapeutic response in such patients.

In conclusion, we proposed and built an automatic tumor

detection and segmentation approach to predict metachronous

single-organ metastases of NPC based on MRI and deep learning;

The overall performance of the model was quite good, and further

studies to validate and applicate its clinical value are warranted.
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