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Identification of cuproptosis-
based molecular subtypes,
construction of prognostic
signature and characterization
of immune landscape in
colon cancer
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Zhenglin Wang1, Shixin Chan1, Rui Sun1, Qijun Han1, Zhen Yu1,
Ming Wang1, Huabing Zhang3,4* and Wei Chen1*

1Department of General Surgery, The First Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China, 2Department of Burns, The First Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China, 3The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou,
Anhui, China, 4Department of Biochemistry and Molecular Biology, Metabolic Disease Research
Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
Background: Cuproptosis is a newly discovered form of cell death induced by

targeting lipoacylated proteins involved in the tricarboxylic acid cycle. However,

the roles of cuproptosis-related genes (CRGs) in the clinical outcomes and

immune landscape of colon cancer remain unknown.

Methods: We performed bioinformatics analysis of the expression data of 13

CRGs identified from a previous study and clinical information of patients with

colon cancer obtained from The Cancer Genome Atlas and Gene Expression

Omnibus databases. Colon cancer cases were divided into two CRG clusters and

prognosis-related differentially expressed genes. Patient data were separated

into three corresponding distinct gene clusters, and the relationships between

the risk score, patient prognosis, and immune landscape were analyzed. The

identified molecular subtypes correlated with patient survival, immune cells, and

immune functions. A prognostic signature based on five genes was identified,

and the patients were divided into high- and low-risk groups based on the

calculated risk score. A nomogram model for predicting patient survival was

developed based on the risk score and other clinical features.

Results: The high-risk group showed a worse prognosis, and the risk score was

related to immune cell abundance, microsatellite instability, cancer stem cell

index, checkpoint expression, immune escape, and response to

chemotherapeutic drugs and immunotherapy. Findings related to the risk

score were validated in the imvigor210 cohort of patients with metastatic

urothelial cancer treated with anti-programmed cell death ligand 1.
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Conclusion: We demonstrated the potential of cuproptosis-based molecular

subtypes and prognostic signatures for predicting patient survival and the tumor

microenvironment in colon cancer. Our findings may improve the understanding

of the role of cuproptosis in colon cancer and lead to the development of more

effective treatment strategies.
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1 Introduction

Cancer is the leading cause of death and reduces life expectancy

worldwide (1). It is estimated that there were over 19 million new

cancer cases and nearly 10 million cancer-related deaths in 2020.

These cases included more than 1.9 million new cases of colorectal

cancer (CRC) and 935,000 deaths, accounting for approximately

one-tenth of all cancer cases and cancer-related deaths. The

incidence of CRC ranks third among all cancer types, whereas its

mortality rate ranks second (2). Early-stage colon cancer can be

treated using surgery; however, patients with advanced colon cancer

are more likely to experience metastasis and tumor recurrence, and

their 5-year survival rates are less than 10% (3–5). With the

development of chemotherapy and targeted medicine, the overall

survival rate of patients with colon cancer has greatly improved. In

recent years, advances in tumor immunotherapy and the

application of immune checkpoint inhibitors (ICIs) have led to

improvements in cancer treatment. Programmed cell death protein

1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade

therapy are effective for treating patients with different mismatch

repair metastatic CRC (6, 7).

Copper is an essential trace element in all living organisms and

plays important roles in biochemical processes (8). Copper

metabolism is involved in several human diseases. Wilson disease

is an autosomal recessive genetic disease that mainly occurs in

adolescents and is caused by a congenital disorder of copper

metabolism. Patients with Wilson disease and animal models of

Wilson disease show an increased incidence of hepatocellular

carcinoma, suggesting that abnormal copper accumulation

promotes malignant transformation through unknown

mechanisms (9). Increased copper concentrations have been

reported in tumors and the sera of animal models and patients,

including in lung (10–12), gastrointestinal (13–18), breast (19–24),

and prostate cancer (25). Resisting cell death is a basic hallmark of

cancer (26). Programmed cell death is a basic physiological process

that occurs in all organisms and plays a role in many biological

processes, ranging from embryonic development, organ

maintenance, and aging to the coordination of immune responses

and autoimmunity. The effects of programmed cell death on

malignant tumors, including apoptosis, autophagy, ferroptosis,

pyroptosis, and necroptosis, have been widely studied. A recent

study (27) reported that copper induces cell death via targeting
02
lipoacylated proteins involved in the tricarboxylic acid cycle. The

study showed that copper ions penetrated the mitochondria

through copper carriers that directly bind to these lipoacylated

proteins, causing them to form long chains and aggregate, leading to

cell death. These copper ions also interfere with iron-sulfur clusters,

resulting in iron-sulfur protein downregulation and leading to

cytotoxic stress and death. This new form of cell death is known

as cuproptosis. The authors also found that cuproptosis occured

when cells were treated with the Cu ionophore elesclomol at a very

low concentration, and this type of cell death can not be reversed by

inhibiting necroptosis, ferroptosis, oxidative stress, and apoptosis,

which indicated that cuproptosis was different from other forms of

cell death. Cuproptosis may be related to various human diseases

and may be a useful target for cancer therapy. It is suggested that

elesclomol treatment of mice with multiple myeloma reduced the

ability of cancer cells to resist the toxicity induced by proteasome

inhibitors. Cu (II) bound to elesclomol interacted with

mitochondrial enzyme ferredoxin 1 (FDX1) and was reduced to

produce Cu (I), leading to an increase in reactive oxygen species

(ROS) levels (28, 29). Xu et al. (30) reported a novel cupreous

nanomaterial which could induce cuproptosis and could be used for

synergistic therapy in bladder cancer. However, the effects of

cuproptosis on malignant tumors remain largely unknown.

Understanding how cuproptosis is initiated, propagated, and

ultimately executed may be of great significance for treatment

intervention and developing possible combination treatment.

With the development of high-throughput sequencing

technology, researchers can access sequencing data from public

databases such as The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO). In recent years, many studies have

focused on using sequencing data from public databases to construct

tumor classifications or prognostic signatures for predicting the

survival and immune landscapes of various types of malignant

tumors. Chen at al (31). calculated an immune-related prognostic

index for head and neck squamous carcinoma and analyzed the

relationship between the index and Tumor Immune Dysfunction and

Exclusion (TIDE) score and molecular subtypes. The prognostic

index can be used to predict survival, immune characteristics, and

the immune benefit of ICI therapy in patients with head and neck

squamous carcinoma. Zhang et al. (32) classified patients with gastric

cancer into three distinct molecular subtypes and constructed

signatures for predicting survival and the response to
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immunotherapy based on the expression levels of RNA N6-

methyladenosine-related genes. A previous study (33) used TCGA

data to identify six immune subtypes (ISs) that encompass nearly all

human malignancies, including wound healing, interferon (IFN)-g
dominance, inflammation, lymphocyte depletion, immunologically

quiet, and transforming growth factor-b dominance. These six ISs are

related to patient prognosis and genetic and immune characteristics,

and CRC covers four of these six ISs, including wound healing, IFN-g
dominance, and inflammatory and lymphocyte depletion. Genes and

long non-coding RNAs related to cell death have also been used to

construct tumor classifications and prognostic signatures, including

autophagy- (34), ferroptosis- (35), pyroptosis- (36), and necroptosis-

related (37) genes and long non-coding RNAs. Cuproptosis is a newly

discovered cell death pathway; the effects of cuproptosis-related genes

on malignancies require further exploration.

In this study, we evaluated the genetic and transcriptional

alterations and prognostic values of cuproptosis-related genes

(CRGs) and classified patients with colon cancer into two distinct

CRG clusters based on their CRG expression levels; patients were

stratified into three gene clusters according to differentially

expressed genes (DEGs) between two CRG clusters. A risk score

was calculated to construct a prognostic signature for accurately

determining the patient outcome, immune landscape, and response

to immunotherapy in colon cancer. These findings improve the

understanding of the role of cuproptosis in colon cancer and may

enable the development of more effective treatment strategies.
2 Materials and methods

2.1 Acquisition of colon adenocarcinoma
patient data

Expression profiles (fragments per kilobase million) and clinical

data for were downloaded from the Genomic Data Commons Data

Portal (https://portal.gdc.cancer.gov), Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE39582 and

GSE78820), iMvigor210 (http://research-pub.gene.com/

IMvigor210CoreBiologies), and Tumor Immune Dysfunction and

Exclusion (TIDE) website (https://tide.dfci.harvard.edu/, ID:

PRJEB25780). Fragments per kilobase million data were

transformed into transcripts per kilobase million using R studio

software (version 1.4.1106; The R Project for Statistical Computing,

Vienna, Austria). Data from TCGA and GEO were combined, and

batch effects were eliminated using sva package. Patients with

COAD with missing clinical information were excluded from this

study, and 952 patients with COAD were included after selection.

The clinical characteristics of the patients are presented in

Supplementary Table S1.
2.2 Genetic and transcriptional alterations
of CRGs in COAD

Thirteen CRGs were recently identified (1): FDX1, LIPT1, LIAS,

DLD, DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1,
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ATP7A, and ATP7B (Supplementary Table S2). The expression

levels of CRGs in the tumor and normal tissues were compared

using the Wilcoxon signed-rank test. Genomic transcriptional

alterations in the 13 CRGs were analyzed. To explore CRG-

related biological functions and pathways, Gene Ontology and

Kyoto Encyclopedia of Genes and Genomes analyses were

performed using the ggplot2, Bioconductor, and org.Hs.eg.db

R packages.
2.3 Unsupervised clustering analysis
of CRGs

Univariate Cox regression analysis, the Kaplan-Meier (KM)

method and log-rank test were used to identify prognosis-related

CRGs. Based on the 13 CRGs, consensus clustering analysis was

performed using the ConsensusClusterPlus R package. Clustering

with the highest intragroup and lowest intergroup correlations was

performed to classify patients into two distinct molecular subtypes.

The survival times of patients in the two identified clusters were

compared. Principal component analysis was performed to

distinguish between CRG clusters using the stats R package. The

Wilcoxon test was used to compare the clinical features between the

two clusters, and DEGs between CRG clusters were screened using

the criteria |log fold-change| > 1 and a p-value < 0.05. Gene set

variation analysis and single-sample gene set enrichment analysis

were performed to evaluate differences in biological processes

between the two clusters, immune cell infiltration, and immune-

related functions using gsva R package.
2.4 Construction of cuproptosis-related
prognostic risk score

Univariate Cox regression analysis was used to select prognosis-

related DEGs (PRDEGs). To identify additional cuproptosis-related

genes for signature construction, the patients were classified into

three distinct gene clusters based on their PRDEG expression levels.

The survival times, clinical characteristics, and CRG expression

levels of the three gene clusters were compared, and the DEGs were

identified. Least absolute shrinkage and selection operator (LASSO)

regression and multivariate Cox regression analyses were

performed to select CRGs for constructing the risk score using

the survival, survminer, and glmnet R packages. The cuproptosis-

related prognostic risk score was calculated based on the expression

levels of the five identified CRGs. Patients with COAD were divided

into high- and low-risk groups according to their risk scores. The

expression of CRGs, survival status, and overall survival time of

patients were compared between the high- and low-risk groups. The

area under the curve (AUC) of the receiver operating characteristic

(ROC) curve was used to determine the efficiency of the risk score

for predicting patient survival. The risk scores between the

identified clusters were compared using the Wilcoxon signed-

rank test, and differences in the risk score between different risk

groups based on clinical characteristics were analyzed. Univariate

and multivariate Cox regression analyses were performed to
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determine whether the risk score was an independent prognostic

factor for the prognosis of patients with COAD. A nomogram

model was developed using the risk score and other clinical features,

and calibration graphs were constructed to show the differences

between the actual and predicted survival rates. ROC was

performed to compare the prediction efficiency of the nomogram

model with other clinical features.
2.5 Tumor microenvironment evaluation
between high- and low-risk groups

To explore the relationship between the calculated risk score

and TME, CIBERSORT was used to quantify the abundance of

infiltrating immune cells in high- and low-risk COAD samples.

Spearman’s method was used to evaluate the correlation between

the risk score and immune cell abundance. The association between

these immune cells and the five CRGs was also analyzed to calculate

the risk score. Differences in the TME scores, including the stromal

score, immune score, and ESTIMATE score, between the high- and

low-risk groups were compared using Wilcoxon signed rank test.
2.6 Mutations, microsatellite instability, and
cancer stem cell index between high- and
low-risk groups

The mutation annotation format was generated using the

maftools R package to better understand gene mutations in the

two risk groups. Furthermore, the association between risk groups

and the MSI and CSC index was analyzed using Wilcoxon signed

rank test and the Spearman method.
2.7 Immune checkpoints expression,
immune subtypes, and TIDE score in high-
and low-risk groups

To further explore the relationship between the risk score and

immune landscape in COAD, immune checkpoint expression was

compared between the two risk groups. A previous study (30)

described the immune landscape of various types of cancer, and

COAD was classified into four distinct ISs: wound healing, IFN-g
dominant, inflammatory-depleted, and lymphocyte-depleted. The

proportions of the four ISs in the high- and low-risk groups were

compared using chi-square test. The TIDE scores were also

compared to evaluate the potential clinical efficacy of

immunotherapy in different risk groups using Wilcoxon signed-

rank test.
2.8 Relationship between risk score and
IC50 of therapeutic drugs

The IC50 is the half maximum inhibitory concentration of a

drug and represents the concentration of drug required to achieve
Frontiers in Oncology 04
50% inhibition of cancer cells. The IC50 values of nine drugs used

for cancer therapy were calculated. Differences in the IC50 between

the high- and low-risk groups were analyzed using Wilcoxon

signed-rank test, and the results were shown in boxplots using

ggpubr, pRRophetic, and ggplot2 R packages.
2.9 Validating the risk score in
immunotherapy cohorts

IMvigor210, GSE78820, and PRJEB25780 are three clinical

cohorts of patients with urothelial carcinoma, melanoma, and

metastatic gastric cancer who received immune checkpoints

blockade therapy. Patients were divided into complete response

(CR)/partial response (PR) and stable disease (SD)/progressive

disease (PD) groups based on responses to immunotherapy, risk

score between different groups was computed and compared using

Wilcoxon signed-rank test.
2.10 Verifying the expression levels of five
signature genes

Quantitative real-time polymerase chain reaction (qRT-PCR) was

performed to verify the expression differences between normal and

colon cancer tissues. Total RNA was extracted from 8 pairs of colon

cancer patient tissues using TRIzol reagent (Invitrogen, Carlsbad, CA,

USA). cDNA was synthesized using the total RNA and a PrimeScript

RT reagent kit (Vazyme, Nanjing, China). Concentrations of cDNA

samples were measured using TB Green Premix Ex Taq II (GenStar,

China) with the LightCycler480 System (Applied Biosystems,

Waltham, MA, United States). Relative expression levels were

compulated using the 2-DDCt method, normalizing with GAPDH.

Expression levels were compared using t-test. The primer sequences

of five signature genes and GAPDH are listed in Supplementary Table

S3. Immunohistochemistry (IHC) images were retrieved from HPA

database (http://www.proteinatlas.org) to show the expression of

signature genes at protein levels.
3 Results

3.1 Cuproptosis-related genes in COAD

Gene expression data and clinical information of the patients

were downloaded from the COAD project of TCGA database and

GSE39582 dataset of the GEO database. Thirteen CRGs were

evaluated, and the expression levels of these CRGs in the high- and

low-risk groups were compared. Among the 13 CRGs, 7 were

differentially expressed; FDX1, DLD, DBT, and DLST were

significantly downregulated in COAD tissues, whereas LIPT1,

GCSH, and ATP7B were upregulated in COAD tissues (Figure 1A).

The somatic copy numbers of the 13 CRGs were analyzed, and DBT

showed the highest copy number variation frequency (Figure 1B).

Figure 1C shows the somatic mutation incidence of 13 CRGs in

patients with COAD; ATP7A exhibited the highest mutation
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frequency. The locations of copy number variations in CRGs on the

chromosomes are presented in Figure 1D. A protein-protein

interaction network of the 13 CRGs was constructed using the

GeneMANIA online program to determine the associations of the

CRGs (Figure 1E). Gene Oncology (Figure 1F) and Kyoto

Encyclopedia of Genes and Genomes (Figure 1G) analyses revealed

significant biological processes, cellular components, molecular

functions, and pathways involving the CRGs. The CRGs were

mainly associated with the biological processes of the tricarboxylic

acid cycle, acetyl-CoA metabolic process, and acetyl-CoA

biosynthetic process from pyruvate and were correlated with the

cellular components of the mitochondrial matrix, oxidoreductase

complex, and dihydrolipoyl dehydrogenase complex, which are also

involved in the molecular function of oxidoreductase activity,

transferase activity, and S−acyltransferase activity. These CRGs

further participate in several pathways, including biosynthesis of

cofactors, carbon metabolism, and the tricarboxylic acid cycle. A

network was constructed to display the interactions between the
Frontiers in Oncology 05
CRGs and their prognostic significance (Supplementary Figure S1A).

Survival curves indicated that high expression of ATP7A is correlated

with poor prognosis in patients with COAD, whereas patients with

high expression of DLAT, DLD, FDX1, LIAS, PDHA1, PDHB, and

SLC31A1 had longer survival times (Supplementary Figure S1B).
3.2 Identification of CRG clusters in COAD

Consensus clustering analysis was performed to construct a

molecular classification based on the expression levels of the CRGs.

Clusters with the highest intragroup and lowest intergroup

correlations were also identified. By increasing the clustering

variable (k), we found that when k = 2, classification met the

standard. Patients were separated into two distinct CRG clusters: A

and B (Supplementary Figure S2). Satisfactory separation between

CRG clusters A and B was observed using principal component

analysis (Figure 2A). The KM curve revealed no significant difference
B

C D E

F G

A

FIGURE 1

Genetic, transcriptional alterations and functional analyses of 13 cuproptosis-related genes (CRGs) in colon cancer. (A) Expression levels of
differentially expressed CRGs between normal and tumor samples. (B) Mutation frequencies of 13 CRGs in colon cancer patients from TCGA cohort;
(C) Frequencies of CNV gain, loss, and non-CNV among CRGs; (D) Locations of CNV alterations in CRGs on 23 chromosomes; (E) Protein-protein
interaction network of CRGs; (F) GO analysis of CRGs; (G) KEGG analysis of CRGs. **p < 0.01; ***p < 0.001.
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in the survival time between the two clusters (Figure 2B). Single-

sample Gene Set Enrichment Analysis was performed to evaluate

differences in immune cell infiltration between CRG clusters A and B.

The results suggested that CRG cluster A had higher immune cell

infiltration levels, including activated B cells, activated CD4+ T cells,

activated CD8+ T cells, macrophages, mast cells, and natural killer

cells (Figure 2C). Figure 2D shows the correlation between CRG

clusters, clinical characteristics, and CRG expression in patients with

COAD. Gene Set Variation Analysis showed that CRG cluster A was

significantly enriched in immune-related pathways, including

neuroactive ligand receptor interaction, glycosaminoglycan

degradation, glycosaminoglycan biosynthesis chondroitin sulfate,

and dilated cardiomyopathy (Figure 2E).
Frontiers in Oncology 06
3.3 Identification of gene clusters based
on DEGs

To identify additional CRGs for calculating the risk score, gene

clusters were identified. Univariate Cox regression analysis was

performed to screen for PRDEGs. Patients with COAD were

classified into three clusters (gene clusters A–C) according to their

PRDEG expression (Supplementary Figure S3). Figure 2F shows that

patients in cluster A had the longest survival time, whereas patients in

cluster C had the worst prognosis (p = 0.024). A Sankey plot showed

the relationship among CRG clusters, gene clusters, risk groups, and

the living status of patients with COAD (Figure 2G). The risk scores in

the two CRG clusters were compared; CRG cluster A had a higher risk
B C

D E

F G H

A

I

J K

FIGURE 2

Molecular subtypes and clinical characteristics, tumor microenvironment between colon cancer samples. (A) PCA showed good distiction between
two CRGclusters. (B) The KM curve revealed no significant difference in the survival time between the two clusters (p = 0.243). (C) ssGSEA
investigated the differences of immune cell infiltration between two clusters. (D) Heatmaps showed the relationship between CRGclusters and
clinical features and CRGs expression in colon cancer patients. (E) GSVA showed the enriched pathways in CRGclusters. *p < 0.05; ***p < 0.001.
(F) The KM curve shows that patients in genecluster A had the longest survival time, whereas patients in genecluster C had the worst prognosis
(p = 0.024). (G) Sankey plot showed the correlation between molecular classifications, risk groups and survival status in colon cancer patients.
(H, I) Association between risk score and molecular classifications. (J) Expression levels of DECRGs in two geneclusters. (K) Heatmap showed the
association between genecluster and clinical features. *p < 0.05; ***p < 0.001.
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score than CRG cluster B (Figure 2H). The risk score in the three gene

clusters was also calculated, and the boxplot showed that gene cluster

C had the highest risk score, whereas gene cluster A had the lowest risk

score (Figure 2I). The boxplot shows that FDX1, LIPT1, LIAS, DLD,

DBT, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and ATP7B

were differentially expressed among the three clusters (p < 0.05)

(Figure 2J). The heatmap revealed an association between gene

clusters and clinical characteristics, PRDEG expression, and CRG

clusters (Figure 2K).
3.4 Identification of gene clusters based
on DEGs

Patients with COAD were randomly divided into training and

testing groups at a ratio of 1: 1. LASSO and Cox regression analyses

were performed to screen CRGs to construct a prognostic signature,

and five genes were included after selection. Risk scores were calculated

based on the following formula: risk score = o
n

i=1
bi*li, where n

represents the number of genes included to construct the signature

and bi and Li represent the regression coefficient and gene expression

value, respectively. Patients with COAD were divided into high- and

low-risk groups based on their calculated risk scores. Differences in the

expression of these five genes between the two risk groups in the

training group are shown in Figure 3A. Patients with high-risk COAD

had a higher risk of mortality (Figure 3B). The KM plot also suggested

that patients with low risk scores had a better prognosis than those

with high risk scores (Figure 3C). ROC analysis was performed to

examine the prediction efficiency of the risk score, showing AUCs for

1-, 3-, and 5-year survival of 0.596, 0.659, and 0.675, respectively

(Figure 3D). These results were validated in the testing group

(Figures 3E–H). PDHA1, PDHB, LIPT1, DLD, DLAT, DBT, ATP7B,

FDX1, ATP7A, and LIAS showed higher expression levels in the low-

risk group than in the high-risk group (p < 0.05) (Figure 4A). The risk

score was correlated with tumor stage (Figure 4B) and infiltration
Frontiers in Oncology 07
depth (Figure 4C). Univariate (Figure 4D) andmultivariate (Figure 4E)

Cox regression analyses showed that the risk score is an independent

prognostic factor for predicting the survival of patients with COAD

(p < 0.05). A nomogrammodel was constructed based on the risk score

and other clinical features (Figure 4F). A calibration graph was drawn

to test the prediction efficiency of the nomogram model (Figure 4G);

the predicted survival rates were similar to the actual survival rates.

Prediction efficiency of the established nomogram model was

compared with other clinical features, 1-, 3-, and 5-year AUC

showed that the nomogram had satisfactory efficiency in predicting

patient survival (Figures 4H–J).
3.5 TME evaluation between high- and
low-risk groups

The relationship between the risk score and immune cell

abundance is shown in Figure 5A. M0 macrophages, M1

macrophages, neutrophils, activated natural killer cells, and

follicular helper T cells were positively correlated with the risk

score, whereas memory B cells, resting dendritic cells, eosinophils,

plasma cells, and resting memory CD4+ T cells were negatively

correlated with the risk score. The relationship between the

abundance of immune cells and the five genes in the prognostic

signature is shown in Figure 5B. The high-risk group showed

significantly higher risk scores than the low-risk group, including

the stromal, immune, and ESTIMATE scores (Figure 5C).
3.6 Comparative analysis of mutations,
MSI, and CSC index in high- and
low-risk groups

Somatic mutations in the two risk groups of patients with

COAD were compared. The five most mutated genes in the high-
B C D

E F G H

A

FIGURE 3

Construction and validation of the prognostic signature. (A) Heatmap showed the expression of 5 signature genes in two risk groups in training
cohort. (B) Risk score and survival outcome of each case in training cohort. (C) KM curve showed that patients in high-risk group had a worse
prognosis in training cohort (p < 0.001). (D) The AUCs for 1-, 3- and 5-year survival in training cohort. (E) Heatmap showed the expression of 5
genes in two risk groups in testing cohort. (F) Risk score and survival outcome of each case in testing cohort. (G) KM curve showed that patients in
high-risk group had a worse prognosis in testing cohort (p = 0.041). (H) The AUCs for 1-, 3- and 5-year survival in testing cohort.
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and low-risk groups were APC, TP53, TTN, KRAS, and SYNE1

(Supplementary Figure S4). The correlation between the risk score

and MSI status was analyzed (Figures 5D, E). A high-risk score was

significantly associated with MSI-high status, whereas a low-risk

score was related to microsatellite stable status. In addition, we

evaluated the correlation between the risk score and CSC index

values to assess the correlation between the risk score and CSCs in

COAD. Figure 5F suggests that the risk score was negatively

correlated with the CSC index (R = -0.22, p < 0.001).
3.7 Immune checkpoint expression,
immune subtypes and TIDE score in high-
and low-risk groups

We further explored the potential of the risk score for guiding

clinical therapy for COAD. The expression levels of checkpoint

genes between the high- and low-risk groups were compared.

Figure 6A shows that immune checkpoint genes, including

CTLA-4 , LAG3 , CD274 , and PDCD1 , were significantly

differentially expressed between the two groups (p < 0.05).

Figure 6B shows the proportion of ISs in the high- and low-risk
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groups; accordingly, there were more IS1 samples in the low-risk

groups and more IS2, IS3, and IS4 samples in the high-risk group.

The TIDE score was used to evaluate the clinical efficacy of

immunotherapy in the different risk groups. A higher TIDE score

indicates a higher likelihood of immune escape, suggesting that

patients are less likely to benefit from ICI therapy. Our results

revealed that the low-risk group had a lower TIDE score, indicating

that patients in the low-risk group would show a greater benefit

from ICI therapy compared to those in the high-risk group

(Figures 6C–E).
3.8 Relationship between risk score and
IC50 of therapeutic drugs

The differences in the IC50 values between the high- and low-

risk groups were analyzed (Figures 7A–F). Lower IC50 values of nine

drugs were associated with the risk score, and the low-risk groups

showed lower IC50 values, suggesting that the low-risk group was

more sensitive to therapeutic drugs. These results provide a

reference for the clinical treatment of COAD. 2D structures of

these drug molecules were also presented (Figure 7G).
B C

D E F

G H I J

A

FIGURE 4

Relationship between risk score, CRGs expression and clinical features in colon cancer patients. Identification of independent prognostic factors in
colon cancer and development of the nomogram model for predicting patient survival. (A) Expression levels of CRGs in two risk groups. Scatters
diagram showed that (B) clinical stage and (C) tumor infiltration depth significantly correlated with the risk score. Forest plots of univariate (D) and
multivariate (E) Cox regression analyses in colon cancer. (F) Nomogram using risk score and other clinical features were constructed for predicting
survival of colon cancer patients. (G) Calibration graphs investigated that the actual survival rates of colon cancer patients were close to the
nomogram-predicted survival rates. (H–J) 1-, 3-, and 5-year AUC showed that the nomogram had satisfactory efficiency in predicting patient
survival. ns, not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.
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3.9 Validation of the risk score in
immunotherapy cohorts

CR/PR patients had lower risk score that SD/PD patients, and

proportion of CR/PR patients was higher in low-risk group in

iMvigor210 (Figure 8A), GSE78220 (Figure 8B), and PRJEB25780

(Figure 8C) cohorts. The results indicated that the risk score can be

used to predict immunotherapy benefits.
3.10 Verifying the expression levels of five
signature genes

Among these five signature genes, HOOK1 and SPINK4 did not

show significant changes in mRNA expression levels between

normal and tumor tissues, whereas LGR5, HOXC6, and CKMT2
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exhibited significantly increased expression in colon cancer tissues

compared with that in normal tissues (Figures 9A–E), suggesting

that these LGR5, HOXC6, and CKMT2 might be potential

therapeutic targets for patients with colon cancer. IHC images of

HOXC6 in colon cancer were not available in HPB database, we

compared the expression differences of other four signature genes at

protein levels, the expression levels were consistent with the results

of qRT-PCR (Figure 9F).
4 Discussion

Trace elements are essential for human health and are involved

in many biological functions, such as enzyme activity, cell signaling,

and oxygen transport (38–40). Copper metabolism plays an

important role in many human diseases, including in malignant

tumors. A recent study (41) was performed to measure blood
B C

D E F

A

FIGURE 5

Evaluation of tumor microenvironment, MSI, and cancer stem cell (CSC) index in high- and low- risk groups. (A) Relationship between risk score and
different immune cell types. (B) Correlation between the abundance of immune cells and seven genes in the prognostic signature. (C) Correlation
between risk score and immune-related scores. (D, E) The relationship between the risk score and microsatellite instability (MSI) status. (F) The
correlation between the risk score and CSC index. ns, not significant; *p < 0.05; **p < 0.01; and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.927608
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.927608
B

C D E

A

FIGURE 6

Immune checkpoint genes expression, immune subtypes distribution and TIDE score of colon cancer patients in two risk groups. (A) The differences
of immune checkpoint gene expression in high-risk and low-risk groups. (B) Heatmap and table showing the distribution of colon cancer immune
subtypes between two risk groups. (C-E) Violin plots showed the relationship between TIDE score and risk groups. ns, not significant;
*p < 0.05; **p < 0.01; and ***p < 0.001.
B C

D E F

G

A

FIGURE 7

(A–F) Six therapeutic drugs showed significant IC50 differences in high- and low-risk groups. (G) 2D structures of these six therapeutic drugs.
***p < 0.001.
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copper levels in 187 patients with CRC and 187 matched controls in

a Polish population; the results showed that high blood copper

levels were associated with an increased occurrence of CRC.

Cuproptosis may be related to various types of cancer; however,

its effects on colon cancer remain largely unknown.
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Thirteen CRGs were identified in a previous study (27). Some

CRGs were correlated with malignant tumors. FDX1 was reported

to be related to the prognosis of patients with lung cancer (42). The

antisense regulation of GCSH can determine the viability of breast

cancer cells (43). Increased expression of ATP7A correlates with
B C D E

F

A

FIGURE 9

Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of HOOK1 (A), LGR5 (B), HOXC6 (C), CKMT2 (D) and SPINK4 (E) expression in
8 pairs of colon cancer tissues and adjacent non-cancer tissues, and the immunohistochemical stainings shows expression of HOOK1, LGR5,
CKMT2, and SPINK4 at protein levels (F). ns, not significant; **p < 0.01 and ***p < 0.001.
B CA

FIGURE 8

(A–C) CR/PR patients had lower risk score in all the three immunotherapy cohorts, and low risk group showed higher proportion of responders to
anti-PD-1 and anti-PD-L1 immunotherapy. ns, not significant; *p < 0.05 and **p < 0.01.
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platinum resistance in esophageal squamous cell cancer (44).

APT7A and ATP7B have also been reported as predictive markers

of platinum resistance in ovarian cancer (45). Genetic and

transcriptional alterations of 13 CRGs in colon cancer were

explored, and we determined the relevant biological functions and

pathways of these CRGs. The prognostic values of CRGs were also

analyzed, and eight CRGs were correlated with the survival of

patients with colon cancer.

Expression and clinical data were used to classify patients with

colon cancer into two distinct CRG clusters based on their CRG

expression levels. CRG cluster A showed higher immune cell

infiltration levels. Tumor-infiltrating immune cells can affect the

response to anti-checkpoint blockade. A previous study (46)

reported that tumor-infiltrating CD4+ T cells can upregulate

some immune checkpoint genes, including PD-1, T-cell

immunoglobulin, mucin domain-3, cytotoxic T lymphocyte

associated protein-4, and lymphocyte-activation-gene-3. PRDEGs

between CRG clusters A and B were identified, and patients were

divided into three distinct gene clusters according to the expression

values of the PRDEGs. Patients with gene cluster A had the longest

survival time, whereas those in cluster C had the worst outcomes.

Multivariate Cox and LASSO regression analyses were

performed to screen for CRGs to construct a prognostic risk

signature. The risk score was calculated based on the expression

levels of five genes: HOOK1, LGR5, HOXC6, CKMT2, and SPINK4.

HOOK1 expression is related to histologic variants, the maximum

tumor diameter, and intrathyroidal dissemination in patients with

thyroid carcinoma (47). LGR5 has been identified as a strong CSC

biomarker in CRC (48). Overexpression of HOXC6 is significantly

associated with high immunogenicity in non-metastatic CRC (49).

High SPINK4 expression is associated with advanced

clinicopathological features and a poor response to neoadjuvant

concurrent chemoradiotherapy in patients with rectal cancer (50).

Based on the calculated risk score, the patients were divided into

high- and low-risk groups. Low-risk patients had a significantly

longer survival time compared to high-risk patients. The

relationship between the risk score and two CRG clusters, three

gene clusters, CRGs expression, and clinical features was analyzed.

CRG cluster A had higher risk score compared to the CRG cluster B;

gene cluster C showed the highest risk score, whereas gene cluster A

had the lowest risk score. Ten CRGs showed higher expression levels

in the low-risk group. The risk score was correlated with tumor stage

and tumor infiltration depth, indicating that the risk score can be

used to predict the occurrence and development of colon cancer.

Analysis of the role of clinical variables and the risk score for

predicting the prognosis of patients with colon cancer patients

showed that the risk score remained significant after these analyses,

suggesting that the calculated risk score was an independent

prognostic factor for predicting patient survival. Nomograms are

widely used as tools in oncology, particularly for survival prediction

(51, 52). A nomogram model was developed based on the risk score

and other clinical characteristics, and calibration graphs showed that

the predicted survival rates were similar to the actual survival rates,

indicating that the nomogram model has a high prediction efficiency.

The TME consists of cellular components, including fibroblasts,

endothelial cells, and immune cells, such as macrophages, myeloid-
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derived suppressor cells, and lymphocytes, and non-cellular

components, including matrix proteins, cytokines, growth factors,

nucleic acids, and metabolites (53). A previous study (54) suggested

that the TME plays an important role in tumor development,

progression, and resistance to therapeutic drugs. The correlation

between the risk score and immune cells was analyzed, and five

types of immune cells were positively related to the Wisk score,

whereas the other five types of immune cells were negatively correlated

with the risk score. CKMT2, HOOK1, HOXC6, LGR5, and SPINK4

were significantly associated with various types of immune cells. An

immune score based on immunogenomic analysis can indicate the

efficacy of immunotherapy and chemotherapy (55). TME scores,

including stromal, immune, and ESTIMATE scores, showed

significant differences in high- and low-risk groups, suggesting that

the risk score can be used to predict the response to immunotherapy

and chemotherapy in patients with colon cancer.

MSI is caused by different mismatch repair mechanisms, which

are strongly associated with the response to PD-1 blockade therapy

(56). Patients with MSI-high/different mismatch repair CRC do not

greatly benefit from neoadjuvant chemoradiotherapy or neoadjuvant

chemotherapy (57). A high-risk score was found be significantly

associated with an MSI-high status in patients with colon cancer,

suggesting that high-risk patients would benefit less from neoadjuvant

chemoradiotherapy or neoadjuvant chemotherapy. CSCs are a subset

of tumor cells associated with tumor metastasis, recurrence, and drug

resistance. CSCs exhibit self-renewal and differentiation abilities

similar to those of normal stem cells (58). The risk score was related

to the CSC index, indicating that the risk score is related to colon

cancer progression. Differences in immune checkpoint gene

expression between the high- and low-risk groups were also

analyzed. The expression levels of the checkpoints significantly

differed between the two groups. The correlations between risk

groups and previously identified immune subtypes of colon cancer

indicated that there was more wound healing and fewer lymphocyte

depletion, inflammatory, and IFN-g-dominant samples in the high-

risk group compared to in the low-risk group. The high-risk group

showed a higher TIDE score, indicating a higher likelihood of immune

escape, and high-risk patients were less likely to benefit from ICI

therapy. The low-risk group had lower IC50 values for nine types of

therapeutic drugs, suggesting that low-risk patients may be more

sensitive to immunotherapeutic and chemotherapeutic drugs. To

validate our findings in an external cohort, the relationship between

the risk score and patient survival and response to immunotherapy

was explored using immunotherapy cohorts. Patients with complete/

partial responses had lower risk scores, indicating that low-risk

patients would achieve better immunotherapeutic effects in response

to immunotherapy compared to those of high-risk patients. These

results validated the efficiency of the risk score for predicting patient

outcomes and responses to immunotherapy.

However, our study had some limitations. First, our analysis

was based on public datasets and retrospectively collected samples,

which may have caused inherent case selection bias. Second, further

in vitro and in vivo experiments are required to validate our

findings. Finally, clinical features related to surgery, neoadjuvant

chemotherapy, and tumor markers were not considered. Thus,

more clinical cases must be evaluated to confirm our conclusions.
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The cuproptosis-based molecular subtypes and prognostic

signature may be useful for predicting survival, TME, and guiding

clinical therapy for colon cancer. Our findings may improve the

understanding of cuproptosis in colon cancer and suggest more

effective treatment strategies. However, additional experiments

should be performed and clinical cases must be evaluated to

validate our findings and further explore the effects of cuproptosis

on colon cancer.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving human participants were reviewed and

approved by The Ethics Committee of The First Affiliated Hospital

of Anhui Medical University. The patients/participants provided

their written informed consent to participate in this study.
Author contributions

XW, XZ and XH are responsible for writing and submitting the

manuscript. YL, ZW, SC, and RS are responsible for data collection

and analysis. QH, ZY and MW are responsible for the production of

pictures. HZ andWC are responsible for the ideas and guidance. All

authors contributed to the art ic le and approved the

submitted version.
Funding

The work was supported by the Research Fund of Anhui

Institute of Translational Medicine (2021zhyx-C30).
Frontiers in Oncology 13
Acknowledgments

We acknowledged TCGA and GEO database for providing their

platform and contributors for uploading their meaningful datasets.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.927608/

full#supplementary-material

SUPPLEMENTARY TABLE 1

Clinical information of 952 colon cancer patients from TCGA and

GEO database.

SUPPLEMENTARY TABLE 2

List of 13 cuproptosis-related genes.

SUPPLEMENTARY TABLE 3

Primer sequences for PCR amplification.

SUPPLEMENTARY TABLE 4

Data and scripts used in the study were uploaded to jianguoyun, the link
is included.
References
1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing
importance of cancer as a leading cause of premature death worldwide. Cancer (2021)
127(16):3029–30. doi: 10.1002/cncr.33587

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

3. Doonan BB, Schaafsma E, Pinto JT, Wu JM, Hsieh TC. Application of open-
access databases to determine functional connectivity between resveratrol-binding
protein QR2 and colorectal carcinoma. In Vitro Cell Dev Biol Anim (2017) 53
(7):575–8. doi: 10.1007/s11626-017-0174-x

4. Bhandari A, Woodhouse M, Gupta S. Colorectal cancer is a leading cause of
cancer incidence and mortality among adults younger than 50 years in the USA: A
SEER-based analysis with comparison to other young-onset cancers. J Investig Med
(2017) 65(2):311–5. doi: 10.1136/jim-2016-000229
5. Russo AG, Andreano A, Sartore-Bianchi A, Mauri G, Decarli A, Siena S.
Increased incidence of colon cancer among individuals younger than 50 years: A 17
years analysis from the cancer registry of the municipality of Milan, Italy. Cancer
Epidemiol (2019) 60:134–40. doi: 10.1016/j.canep.2019.03.015

6. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al.
Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-
Deficient/Microsatellite instability-high metastatic colorectal cancer. J Clin Oncol
(2018) 36(8):773–9. doi: 10.1200/JCO.2017.76.9901

7. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al
Nivolumab in patients with metastatic DNA mismatch repair-deficient or
microsatellite instability-high colorectal cancer (CheckMate 142): An open-label,
multicentre, phase 2 study. Lancet Oncol (2017) 18(9):1182–91. doi: 10.1016/S1470-
2045(17)30422-9

8. Harris ZL, Gitlin JD. Genetic and molecular basis for copper toxicity. Am J Clin
Nutr (1996) 63(5):836S–41S. doi: 10.1093/ajcn/63.5.836
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.927608/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.927608/full#supplementary-material
https://doi.org/10.1002/cncr.33587
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1007/s11626-017-0174-x
https://doi.org/10.1136/jim-2016-000229
https://doi.org/10.1016/j.canep.2019.03.015
https://doi.org/10.1200/JCO.2017.76.9901
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1093/ajcn/63.5.836
https://doi.org/10.3389/fonc.2023.927608
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.927608
9. Gunjan D, Shalimar, Nadda N, Kedia S, Nayak B, Paul SB, et al. Hepatocellular
carcinoma: An unusual complication of longstanding Wilson disease. J Clin Exp
Hepatol (2017) 7(2):152–4. doi: 10.1016/j.jceh.2016.09.012

10. Dìez M, Cerdàn FJ, Arroyo M, Balibrea JL. Use of the copper/zinc ratio in the
diagnosis of lung cancer. Cancer (1989) 63(4):726–30. doi: 10.1002/1097-0142
(19890215)63:4<726::aid-cncr2820630421>3.0.co;2-p

11. Jin Y, Zhang C, Xu H, Xue S, Wang Y, Hou Y, et al. Combined effects of serum
trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer:
A hospital based case-control study in China. Cancer Epidemiol (2011) 35(2):182–7.
doi: 10.1016/j.canep.2010.06.004

12. Oyama T, Matsuno K, Kawamoto T, Mitsudomi T, Shirakusa T, Kodama Y.
Efficiency of serum copper/zinc ratio for differential diagnosis of patients with and without
lung cancer. Biol Trace Elem Res (1994) 42(2):115–27. doi: 10.1007/BF02785383

13. Stepien M, Jenab M, Freisling H, Becker NP, Czuban M, Tjønneland A, et al.
Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European
prospective investigation into cancer and nutrition cohort. Carcinogenesis (2017) 38
(7):699–707. doi: 10.1093/carcin/bgx051

14. Sohrabi M, Gholami A, Azar MH, Yaghoobi M, Shahi MM, Shirmardi S, et al.
Trace element and heavy metal levels in colorectal cancer: Comparison between
cancerous and non-cancerous tissues. Biol Trace Elem Res (2018) 183(1):1–8.
doi: 10.1007/s12011-017-1099-7

15. Ribeiro SM,Moya AM, Braga CB, Domenici FA, FeitosaMR, Feres O, et al. Copper-
zinc ratio and nutritional status in colorectal cancer patients during the perioperative
period. Acta Cir Bras (2016) 31 Suppl 1:24–8. doi: 10.1590/S0102-86502016001300006

16. Nayak SB, Bhat VR, Upadhyay D, Udupa SL. Copper and ceruloplasmin status
in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol (2003) 47
(1):108–10.

17. Margalioth EJ, Schenker JG, Chevion M. Copper and zinc levels in normal and
malignant tissues. Cancer (1983) 52(5):868–72. doi: 10.1002/1097-0142(19830901)
52:5<868::aid-cncr2820520521>3.0.co;2-k

18. Yaman M, Kaya G, Yekeler H. Distribution of trace metal concentrations in
paired cancerous and non-cancerous human stomach tissues. World J Gastroenterol
(2007) 13(4):612–8. doi: 10.3748/wjg.v13.i4.612

19. Ding X, Jiang M, Jing H, ShengW,Wang X, Han J, et al. Analysis of serum levels
of 15 trace elements in breast cancer patients in Shandong, China. Environ Sci Pollut
Res Int (2015) 22(10):7930–5. doi: 10.1007/s11356-014-3970-9

20. Adeoti ML, Oguntola AS, Akanni EO, Agodirin OS, Oyeyemi GM. Trace elements;
copper, zinc and selenium, in breast cancer afflicted female patients in LAUTECH osogbo,
Nigeria. Indian J Cancer (2015) 52(1):106–9. doi: 10.4103/0019-509X.175573

21. Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH. Serum and tissue trace elements
in patients with breast cancer in Taiwan. Biol Trace Elem Res (2002) 89(1):1–11.
doi: 10.1385/BTER:89:1:1

22. Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ, Ragunatha S. Serum
levels of metal ions in female patients with breast cancer. J Clin Diagn Res (2015) 9(1):
BC25–c27. doi: 10.7860/JCDR/2015/11627.5476

23. Feng JF, Lu L, Zeng P, Yang YH, Luo J, Yang YW, et al. Serum total oxidant/
antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol
(2012) 17(6):575–83. doi: 10.1007/s10147-011-0327-y
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45. Lukanović D, Herzog M, Kobal B, Černe K. The contribution of copper efflux
transporters ATP7A and ATP7B to chemoresistance and personalized medicine in
ovarian cancer. BioMed Pharmacother (2020) 129:110401. doi: 10.1016/
j.biopha.2020.110401

46. Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E.
Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in
colorectal cancer patients. Front Immunol (2019) 10:2936. doi: 10.3389/
fimmu.2019.02936

47. Cao J, Huang YQ, Jiao-Sun, Lan XB, GeMH. Clinicopathological and prognostic
significance of SHP2 and Hook1 expression in patients with thyroid carcinoma. Hum
Pathol (2018) 81:105–12. doi: 10.1016/j.humpath.2018.06.016

48. Kamakura M, Uehara T, Iwaya M, Asaka S, Kobayashi S, Nakajima T, et al.
LGR5 expression and clinicopathological features of the invasive front in the fat
infiltration area of pancreatic cancer. Diagn Pathol (2022) 17(1):21. doi: 10.1186/
s13000-022-01203-w

49. Qi L, Ye C, Zhang D, Bai R, Zheng S, Hu W, et al. The effects of differentially-
expressed homeobox family genes on the prognosis and HOXC6 on immune
microenvironment orchestration in colorectal cancer. Front Immunol (2021)
12:781221. doi: 10.3389/fimmu.2021.781221

50. Chen TJ, Tian YF, Chou CL, Chan TC, He HL, Li WS, et al. High SPINK4
expression predicts poor outcomes among rectal cancer patients receiving CCRT. Curr
Oncol (2021) 28(4):2373–84. doi: 10.3390/curroncol28040218

51. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a
nomogram for cancer prognosis. J Clin Oncol (2008) 26(8):1364–70. doi: 10.1200/
JCO.2007.12.9791

52. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology:
More than meets the eye. Lancet Oncol (2015) 16(4):e173–80. doi: 10.1016/S1470-2045
(14)71116-7

53. Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of
the tumor microenvironment by natural agents: implications for cancer prevention and
therapy. Semin Cancer Biol (2022) 80:237–55. doi: 10.1016/j.semcancer.2020.05.009

54. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates
cancer progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-5472.CAN-
18-3962

55. Dai GP, Wang LP, Wen YQ, Ren XQ, Zuo SG. Identification of key genes for
predicting colorectal cancer prognosis by integrated bioinformatics analysis. Oncol Lett
(2020) 19(1):388–98. doi: 10.3892/ol.2019.11068

56. Kok M, Chalabi M, Haanen J. How I treat MSI cancers with advanced disease.
ESMO Open (2019) 4(Suppl 2):e000511. doi: 10.1136/esmoopen-2019-000511

57. Zhang X, Wu T, Cai X, Dong J, Xia C, Zhou Y, et al. Neoadjuvant
immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: New
strategies and unveiled opportunities. Front Immunol (2022) 13:795972.
doi: 10.3389/fimmu.2022.795972

58. Singh S, Chellappan S. Lung cancer stem cells: Molecular features and
therapeutic targets. Mol Aspects Med (2014) 39:50–60. doi: 10.1016/j.mam.2013.08.003
frontiersin.org

https://doi.org/10.1016/j.jceh.2016.09.012
https://doi.org/10.1002/1097-0142(19890215)63:4%3C726::aid-cncr2820630421%3E3.0.co;2-p
https://doi.org/10.1002/1097-0142(19890215)63:4%3C726::aid-cncr2820630421%3E3.0.co;2-p
https://doi.org/10.1016/j.canep.2010.06.004
https://doi.org/10.1007/BF02785383
https://doi.org/10.1093/carcin/bgx051
https://doi.org/10.1007/s12011-017-1099-7
https://doi.org/10.1590/S0102-86502016001300006
https://doi.org/10.1002/1097-0142(19830901)52:5%3C868::aid-cncr2820520521%3E3.0.co;2-k
https://doi.org/10.1002/1097-0142(19830901)52:5%3C868::aid-cncr2820520521%3E3.0.co;2-k
https://doi.org/10.3748/wjg.v13.i4.612
https://doi.org/10.1007/s11356-014-3970-9
https://doi.org/10.4103/0019-509X.175573
https://doi.org/10.1385/BTER:89:1:1
https://doi.org/10.7860/JCDR/2015/11627.5476
https://doi.org/10.1007/s10147-011-0327-y
https://doi.org/10.1385/BTER:82:1-3:001
https://doi.org/10.1385/BTER:82:1-3:001
https://doi.org/10.1159/000499261
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41589-019-0291-9
https://doi.org/10.1016/j.freeradbiomed.2012.03.017
https://doi.org/10.1002/adma.202204733
https://doi.org/10.1158/1078-0432.CCR-20-2166
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.18632/aging.203352
https://doi.org/10.3389/fonc.2021.654076
https://doi.org/10.1080/2162402X.2021.1987636
https://doi.org/10.1155/2021/6718443
https://doi.org/10.1007/s13205-012-0072-6
https://doi.org/10.1155/2013/192026
https://doi.org/10.3390/biomedicines9111628
https://doi.org/10.3389/fphar.2021.749134
https://doi.org/10.1038/s41598-018-33677-4
https://doi.org/10.7150/jca.16117
https://doi.org/10.1016/j.biopha.2020.110401
https://doi.org/10.1016/j.biopha.2020.110401
https://doi.org/10.3389/fimmu.2019.02936
https://doi.org/10.3389/fimmu.2019.02936
https://doi.org/10.1016/j.humpath.2018.06.016
https://doi.org/10.1186/s13000-022-01203-w
https://doi.org/10.1186/s13000-022-01203-w
https://doi.org/10.3389/fimmu.2021.781221
https://doi.org/10.3390/curroncol28040218
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1016/j.semcancer.2020.05.009
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.3892/ol.2019.11068
https://doi.org/10.1136/esmoopen-2019-000511
https://doi.org/10.3389/fimmu.2022.795972
https://doi.org/10.1016/j.mam.2013.08.003
https://doi.org/10.3389/fonc.2023.927608
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Identification of cuproptosis-based molecular subtypes, construction of prognostic signature and characterization of immune landscape in colon cancer
	1 Introduction
	2 Materials and methods
	2.1 Acquisition of colon adenocarcinoma patient data
	2.2 Genetic and transcriptional alterations of CRGs in COAD
	2.3 Unsupervised clustering analysis of CRGs
	2.4 Construction of cuproptosis-related prognostic risk score
	2.5 Tumor microenvironment evaluation between high- and low-risk groups
	2.6 Mutations, microsatellite instability, and cancer stem cell index between high- and low-risk groups
	2.7 Immune checkpoints expression, immune subtypes, and TIDE score in high- and low-risk groups
	2.8 Relationship between risk score and IC50 of therapeutic drugs
	2.9 Validating the risk score in immunotherapy cohorts
	2.10 Verifying the expression levels of five signature genes

	3 Results
	3.1 Cuproptosis-related genes in COAD
	3.2 Identification of CRG clusters in COAD
	3.3 Identification of gene clusters based on DEGs
	3.4 Identification of gene clusters based on DEGs
	3.5 TME evaluation between high- and low-risk groups
	3.6 Comparative analysis of mutations, MSI, and CSC index in high- and low-risk groups
	3.7 Immune checkpoint expression, immune subtypes and TIDE score in high- and low-risk groups
	3.8 Relationship between risk score and IC50 of therapeutic drugs
	3.9 Validation of the risk score in immunotherapy cohorts
	3.10 Verifying the expression levels of five signature genes

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


