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Philip S. Rosenberg* and Adalberto Miranda-Filho

Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute,
Bethesda, MD, United States
Background: Analysis of Lexis diagrams (population-based cancer incidence and

mortality rates indexed by age group and calendar period) requires specialized

statistical methods. However, existing methods have limitations that can now be

overcome using new approaches.

Methods: We assembled a “toolbox” of novel methods to identify trends and

patterns by age group, calendar period, and birth cohort. We evaluated operating

characteristics across 152 cancer incidence Lexis diagrams compiled fromUnited

States (US) Surveillance, Epidemiology and End Results Program data for 21

leading cancers in men and women in four race and ethnicity groups (the “cancer

incidence panel”).

Results: Nonparametric singular values adaptive kernel filtration (SIFT) decreased

the estimated root mean squared error by 90% across the cancer incidence panel.

A novel method for semi-parametric age-period-cohort analysis (SAGE) provided

optimally smoothed estimates of age-period-cohort (APC) estimable functions

and stabilized estimates of lack-of-fit (LOF). SAGE identified statistically significant

birth cohort effects across the entire cancer panel; LOF had little impact. As

illustrated for colon cancer, newly developed methods for comparative age-

period-cohort analysis can elucidate cancer heterogeneity that would otherwise

be difficult or impossible to discern using standard methods.

Conclusions: Cancer surveillance researchers can now identify fine-scale

temporal signals with unprecedented accuracy and elucidate cancer

heterogeneity with unprecedented specificity. Birth cohort effects are

ubiquitous modulators of cancer incidence in the US. The novel methods

described here can advance cancer surveillance research.
KEYWORDS

cancer surveillance research, Lexis diagram, statistical methods, age-period-cohort
model, SEER program
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1 Introduction

Cancer Surveillance Research (CSR) (1) is an observational

science of cancer occurrences ascertained in population-based

cohorts, notably, cancer registries. CSR is dedicated to tracking

cancer incidence and mortality; quantifying cancer differences;

characterizing cancer’s natural history and its evolution over time;

uncovering etiologic clues; gauging effectiveness of screening and

therapy; and informing cancer control programs.

To date, most CSR studies have relied on specialized

nonparametric statistical tools that are effective and popular (2, 3).

The parametric age-period-cohort (APC) model provides a

complementary approach (4–7). Even so, large scale studies covering

many populations or outcomes (8, 9) are labor intensive and demand

technical expertise, thereby pushing the boundaries of feasibility.

Advances in biostatistics and data science have the potential to

usher a ‘golden age’ where high-quality data are universally

accessible, and contemporary methods from biostatistics and data

science are rapidly and freely deployable. To contribute to this

vision, we survey a “toolbox” of newly developed biostatistical

methods for analyzing population-based cancer incidence and

mortality data. The unique focus of this toolbox is its age-period-

cohort perspective.

This is an opportune time to propose such an upgrade. In the

United States (US), the cancer landscape has evolved over the last

half-century as the US population grew, aged, and changed (10).

Throughout this period, the Surveillance, Epidemiology, and End

Results (SEER) Program accumulated authoritative population-

based data on cancer outcomes (11). Globally, cancer is rapidly

rising in many countries (9). Fortunately, the number of high-

quality population-based cancer registries has also increased over

time (12, 13).

In Section 2, we assemble a panel of examples and illustrate

limitations and pitfalls of traditional methods. In Section 3, we

present promising new methods that complement the traditional

approaches. In Section 4, we provide a summary and outline

avenues for future research.

The new methods leverage four core principles. First, the Lexis

diagram (14) is a fundamental construct that provides a unifying

schema for the data. Second, nonparametric smoothing techniques

for the Lexis diagram (15, 16) enhance our ability to quantify trends.

Third, no analysis of a Lexis diagram is complete without considering

the effects of birth cohort: This is most easily accomplished using

APC models (6, 17, 18). Fourth, newly developed methods for

comparative analysis (19–25) can elucidate heterogeneity between

Lexis diagrams ascertained within strata defined by factors such as

sex, race and ethnicity, geographic region, and tumor characteristics.

We present an overview of these approaches in Figure 1.
2 Materials and methods

2.1 Lexis diagrams

The Lexis diagram (18) is a rectangular grid with binned age

groups along one axis and binned calendar periods along the other.
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Individuals from a surveilled population contribute person-years

(number of people and the amount of time at risk) and events

(incident cancers, or deaths by cause) to each cell. The observed

event counts are modeled as independent Poisson random variables

with or without overdispersion. Cells along the diagonals represent

persons born in the same period (birth cohorts). Lexis diagrams can

be obtained from hundreds of population-based cancer registries

worldwide, from the Surveillance, Epidemiology, and End Results

(SEER) Program (26), the North American Association of Central

Cancer Registries (NAACCR (13)), and the International Agency

for Research on Cancer (Cancer Incidence in Five Continents,

CI5 (27)).

Using SEER’s Thirteen Registries Database (28), we constructed

a panel of 152 cancer incidence Lexis diagrams covering 50 single-

years of age (ages 35 – 84), 27 calendar years (1992 – 2018), and 76

single-year birth cohorts (1908 – 1983) for 21 leading cancers in

women and men within four race and ethnicity categories: non-

Hispanic White (NHW), non-Hispanic Black (NHB), Hispanic

(HIS), and Asian and Pacific Islander (API). The 21 cancer sites

are: esophagus, stomach, gallbladder, liver, pancreas, colon, rectum,

kidney, bladder, leukemia, non-Hodgkin Lymphoma (NHL),

myeloma, brain, thyroid, lung, melanoma, breast, ovary, corpus,

cervix, and prostate.
2.2 Classic methods

Lexis diagrams are analyzed using four classic methods:

canonical plots for visualization of age-specific rates (29, 30); age-

standardized rates (31) (ASRs) for dimension reduction; estimated

annual percentage change (EAPC) of the ASRs for trend estimation

(32); and JoinPoint analysis for gradient estimation (33, 34), e.g., to

identify changes in the EAPC of the ASR over time. These popular

statistical tools have limits that warrant attention, summarized

in Figure 2.

2.2.1 To lump or to split?
The most granular possible Lexis diagrams obtainable from

population-based cancer registries encapsulate the rates for single-

years of age within single calendar years (1x1s). If the data are

sparse, we can bin the 1x1s to 2x2s or 5x5s. The CI5 database (12)

provides five-by-ones (5x1s): five-year age groups within single

calendar years. The novel methods described in this report require

equal bin widths for age and period. So, for 5x1s, we must bin the

single calendar years into five-year periods or interpolate to single

years of age from the age quinquennium within each calendar year.

While feasible, interpolation can introduce bias, complicating the

interpretation of the results.

Hence, we face a choice: We can analyze 5x5s, 2x2s, or 1x1s.

Going one way or the other makes an implicit bias-variance trade-

off. Opting to lump may introduce bias, but the granular data

are noisy.

2.2.2 ASRs and EAPCs: more than one
There are four widely recognized standard populations (e.g., US

2000 Census, Canadian, WHO World 2000, and Uniform), and
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four well-posed estimators of trend (32). Essentially all studies select

only one of these 16 possibilities. Are conclusions sensitive to

this choice?

Figure 3 calculates 16 estimators of EAPC for colon cancer

incidence in NHW, NHB, API and HIS women and men. The

estimates in each stratum are heterogeneous (Panels A –H), and the

EAPC spread – the range between the left- and right-facing triangles

– ranges from 1.5 to 2 percent across the panels. Similar

heterogeneity is seen across the Cancer Incidence Panel

(Figure 4): the EAPC spread varies by around 2% on average in

both females (Panel A) and males (Panel B). This amount of

heterogeneity is substantial, given that EAPCs and EAPC

differences in excess of ± 0.5% are generally considered notable.

One appeal of the APC Net Drift parameter described in Section

2.3.1 is there is only one.

2.2.3 The problem with JoinPoint is scalability
JoinPoint is a signature method of CSR (33). Whereas the EAPC

estimates the average rate of change over time, JoinPoint estimates

the gradient, i.e., the instantaneous rate of change. Typically,

JoinPoint is applied to age-standardized or age-group-specific

(a.k.a. truncated) rates over time (35). JoinPoint can also be used

in conjunction with APC models, for example, to identify changes

in birth cohort effects. In principle, JoinPoint can be applied to any

series of n observations yi at time point ti,   i = 1,…,   n, with a full-
Frontiers in Oncology 03
rank variance-covariance matrix S. In the context of CSR, the time

series are equally spaced.

JoinPoint fits a piecewise linear spline to the data, where the

number and locations of the knots, or join-points are estimated

from the data. The corresponding gradient curve, a step function,

obtains from the slopes of the fitted linear spline. To fit a JoinPoint

model, we must specify 4 constraints: 1) the minimum number of

segments kmin, the maximum number of segments kmax , the

minimum number of time points per segment a, and the

maximum number of time points per segment b.

For knot locations restricted to ti,   i = 1,…,   n, the set of

possible JoinPoint models corresponds to the set of doubly

restricted integer combinations of n, RIC(n, kmin, kmax , a, b) (36).

Efficient formulas and code exist for enumerating RICs (37). As n

increases, it becomes increasingly difficult to fit the model without

imposing strong restrictions on kmax and a, because the RIC

numbers become too big.

Suppose we wish to fit a JoinPoint model for 76 single-year birth

cohorts, e.g., 1908 – 1983, as in Section 2.1. To fit up to 5 segments

each with 10 or more cohorts, JoinPoint must evaluate RIC(76, 1, 5

, 10, 76) = 37, 730   models. To allow for up to 10 segments each

with 5 or more cohorts – an interesting and plausible scenario – the

number is 177,817,540, which is not feasible.

JoinPoint was designed to analyze ASRs for epochs up to several

decades long. For this purpose, JoinPoint provides a popular and
FIGURE 1

New Tools for Next-Generation Surveillance Research.
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enduring standard that has recently been improved (34). For

applications to longer time series, for example, daily COVID

counts, the scalability issue abrogates its appeal as a flexible and

adaptive nonparametric estimator of gradients. Fortunately, recent

work in this area using stochastic optimization is promising (38).

2.2.4 Standard methods are not designed to
detect interactions

Tailored statistical approaches to identify age-period

interactions are limited. One exception is the method of Kim

et al. (39) for comparing two JoinPoint models.

Savvy epidemiologists have discovered several notable age-

period interactions using classic methods alone (40–43). New

methods could accelerate the pace of discovery.
2.3 The age-period-cohort model

The APC model is a standard in the field. Fundamentally, it

expands the scope of inference. Using the APC model, we can

quantify age-period interactions and characterize the longitudinal

experience of birth cohorts. Even so, its use in cancer incidence

studies has been relatively limited compared to studies that use

classic descriptive methods alone, despite freely available software

(6, 18). Why is this so? There are several concerns, summarized

in Figure 5.

Perhaps the biggest are:
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1. What about the “identifiability problem”?

2. When is the model appropriate?

3. How can you determine whether the model’s fit

is adequate?
2.3.1 Identifiability
The statistical identifiability problem arises because an

individual’s year of birth can be determined by subtracting their

attained age from the current calendar year. This relationship has

an important consequence: when we model event rates in a

population, it is impossible to separate the log-linear trend

associated with the year of birth, the parameter gL, from the log-

linear trend associated with calendar year, the parameter pL. We

can, however, estimate their sum, (pL + gL), which is called the Net

Drift. In our view, the impossibility of estimating the constituents

pL and gL in (pL + gL) reflects an intrinsic limitation of observational

epidemiologic cohort studies (44). Similarly, the identifiable cross-

sectional age trend is (aL + pL) not aL, and the identifiable

longitudinal age trend is (aL − gL) not aL.

Estimable Functions (EFs) are linear combinations of model

parameters that are invariant with respect to the particular

identifiability constraints imposed on the parameters to fit the

model (4, 5, 45).

Despite the identifiability problem, the New APC Model (7)

provides an expansive array of informative EF based on the

intercept m, the identifiable trend parameters (aL − gL), (aL + pL)
FIGURE 2

Classic Methods: Limitations.
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and (pL + gL), the global curvature parameters for age, period and

cohort, qa , qp , and qg , respectively, and the corresponding higher

order deviations �ga* ,  
�gp* , and

�gc* . Local Drifts (model-based

estimates of the age-specific trends over time) are especially

valuable. Please refer to Sections 3 and 5 of the introductory

paper for a summary of the parameters, and Table 1 for a

summary of essential EF (7).
2.3.2 When is the model appropriate?
“All models are wrong, some are useful” (46). In our context,

lack-of-fit (LOF) implies that some birth cohort effects vary over

time and age, for example, one generation has higher risk than

another for early onset of a cancer, but lower risk for late onset.

In principle, the APC model is well suited for cancer incidence if

one accepts “the primacy of birth cohort effects.” This concept

asserts that: 1) Most cancers (47) have exogenous risk factors (or

endogenous risk factors modulated by environmental exposures)

and long latency periods from initiation to promotion and

progression (48); 2) Exposures in a population typically wax and

wane over time. 3) The interplay between biology and tumor

natural history induces risk heterogeneity across generations.
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From this perspective, the APC model is a natural choice for

modeling cancer incidence because estimable birth cohort effects

quantify net changes in incidence from one birth cohort to the next.
2.3.3 Current methods to assess lack-of-fit
are limited

Current methods to assess LOF include estimating over-

dispersion parameters, comparing observed and fitted values, and

examining residuals (49). In those cases where the LOF is notable,

one remedy is to split the rate matrix into blocks within which the

LOF is nominal. See the supplement to Best et al. (49) for details.

These methods are labor intensive and may not be sensitive,

especially for cancers with relatively few events.
3 Results: tools for next-generation
surveillance research

Recent advances overviewed in Figure 1 mitigate the limits and

concerns summarized in Figures 2, 5. In brief: The SIFT method
B C D

E F G H

A

FIGURE 3

Estimated Annual Percentage Change (EAPC) for Colon Cancer. EAPC for colon cancer stratified by sex and race and ethnicity in Panels (A–H). Each
panel presents a Forest Plot of 16 estimators based on four standard populations (Uniform, World, 2011 CAN, and 2000 US) and four trend
estimators: Adaptive (ADP); Two-Point (2PT); Linear Model Estimator (LME) without overdispersion (LMEOD−); and LME with overdispersion (LMEOD−).
Females (F): (A–D). Males (M): (E–H). Non-Hispanic White (NHW) (A, E), non-Hispanic Black (NHB) (B, F), Asian and Pacific Islander (API) (C, G), and
Hispanic (D, H). Lowest lower limits and highest upper limits are highlighted by left- and right-facing triangles, respectively.
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(Section 3.1 – 3.2) mitigates the limits noted in Figure 2. The New

APC Model (Section 3.3) eases concerns about identifiability

(Figure 5.1); SAGE (Section 3.4) addresses worry about lack-of-fit

(Figure 5.2) and instability (Figure 5.3); and sophisticated methods

are now available for comparative analysis (Figure 5.4).
Frontiers in Oncology 06
3.1 Sifting through the data

Cancer rates are intrinsically “noisy” (31), and this random

variation can mask important signals. The newly developed SIFT

(singular values adaptive kernel filtration) method produces
BA

FIGURE 4

EAPC Spread in 152 Cancers. EAPC spread: Range between lowest lower limit and highest upper limit over 16 EAPC estimators as described in the
legend to Figure 3. Panel (A), Females. Panel (B), Males. Values by race and ethnicity (API, HIS, NHB, NHW) within cancer sites as labelled. Yellow
reference intervals show median and inter-quartile range for 80 Lexis diagrams in females (A) and 72 in males (B). Cancer sites: Cervix, Corpus,
Ovary, Breast, Melanoma, Lung, Thyroid, Brain, Myeloma, NHL, Leukemia, Bladder, Kidney, Rectum, Colon, Pancreas, Liver, Gallbladder, Stomach,
Esophagus, Prostate.
FIGURE 5

Age-Period-Cohort Models: Limitations.
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smoothed Lexis diagrams with an optimal bias-variance trade-off

(50). SIFT incorporates two key innovations. First, for any candidate

kernel function, SIFT discards superfluous “high-frequency” basis

vectors from the corresponding smoothing matrix based on the bias-

corrected Akaike information criterion. Second, because the optimal

kernel for any given rate matrix is unknown, SIFT estimates the

optimal kernel by model averaging over a panel of candidate kernels

with diverse shapes and bandwidths.

SIFT has excellent performance for 1x1 and 2x2 rate matrices

(50). Sifted Lexis diagrams are muchmore accurate on a cell-by-cell

basis. How much better is it to analyze sifted data versus raw data?

We can answer this question more definitively using the Cancer

Incidence Panel described in Section 2.1.

For any given Lexis diagram, denote the expected rate per

100,000 person-years in age group a during calendar period p as

E(lap) = 105 � E(yap)
PYap

, where yap is the observed number of events

and PYap is the corresponding person-years. For the raw data, the

Poisson signal-to-noise ratio is SNRRaw =
E(lap)

Var(lap)1=2
= E(yap)

1=2.

Hence, the noise-to-signal percent or relative error is NSPRaw =

100� SNR−1
Raw %.

From the same data, SIFT produces smoothed rates lSIFT (a, p)
and corresponding variances v̂ l

SIFT (a, p). Hence, the median

estimated NSP for the sifted data is NSPSIFT = 100� median
cells   (a,p)f g

½v̂ l
SIFT (a, p)�1=2
lSIFT (a, p)

%.

Figure 6 compares NSPs for raw 1x1 data (solid red line) versus

sifted data (females, light blue circles; males, magenta squares) for

all 152 Lexis diagrams in the Cancer Incidence Panel. NSPs are

plotted versus the Lexis diagram’s mean number of events per cell

on a log-log scale. For typical 1x1 Lexis diagrams with around 5

events per cell, the NSP is ~50% for the raw data versus ~5% for the

sifted data – a 90% reduction. As indicated by the least squares lines

for Females (light blue line) and males (magenta line), substantial

reductions are expected regardless of the mean number of events

per cell. On average, The NSP was reduced by 86% across the panel.

Suppose we eschew sifting, and instead chunk the data from

1x1s to 5x5s. Chunking will indeed reduce the NSP – by 80% -

almost as much as SIFT. To see this, compare the red reference line

when the mean number of events is 1 versus 25, or 5 versus 125, etc.

Unfortunately, we lose temporal resolution. By aggregating 25 cells

into one, we throw away four-fifths of our information about age

and period effects (one 5-year time point versus five 1-year time

points), and eight-ninths of our information about birth cohort

effects (1 diagonal in a 1x1 cell versus 9 diagonals in a 5x5 cell).

Fortunately, as demonstrated in Figure 6, there is no need to do so.

For 5x1 data, rather than chunking up to 5x5s, one might

consider interpolating down to 1x1s (51). In our view, this approach

merits development: At this point, the optimal interpolation scheme

remains unclear.
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3.2 An abundance of features

A Feature is a linear or log-linear combination of the rates. The

class of features includes averages, gradients, and trends, in any

combination (50). ASRs and EAPCs are features, as are the curves

graphed in canonical plots. Features can be calculated from

observed data or sifted data. A key point is, Features calculated

from sifted data are much more accurate. Furthermore, one way to

overcome the scalability issue of the JoinPoint approach (Section

2.2.3) is to extract empirical gradients from the sifted data.

Features can also be calculated from fitted rates obtained via

APC models. The essential distinction between Features and EFs is,

Features describe expected values of observed rates, whereas EFs are

estimated from model parameters and therefore describe expected

values of adjusted rates.
3.3 Best practices for APC analysis

Despite the limitations noted in Section 2.3, the APC model

greatly expands the scope of inference. When birth cohort effects are

present time trends necessarily vary by age (7). Since many, perhaps

most cancers are influenced by birth cohort effects (Sections 2.3.2 and

3.4), this implies that ASRs and ASR features (EAPC, JoinPoint) at

best describe the average trend, which may not provide a reasonable

summary of the trends within any given age group. In our view, one

should always examine either Local Drifts (an EF) or age-specific

temporal trends (a Feature; Section 3.2).

When the effects of LOF are modest, one can emphasize

conclusions based on EFs, including Local Drifts. Indeed, under

the model, Local Drifts are a consequence of changes in the gradient

of the Fitted Cohort Pattern (FCP; the rate at arbitrary reference age

a0 in each birth cohort). Hence, the latter provide an explanation for

the former.

In 1987, Clayton and Schifflers (52) presented a popular

“checklist” for fitting classic APC models. In Figure 7 we present a

checklist for interpretingmodel outputs from the New APCModel. A

key distinction is our checklist puts Local Drifts front and center.
3.4 Semi-parametric age-period-
cohort analysis

We have in hand two powerful and complementary approaches

– the New APC Model and SIFT – parametric and nonparametric.

Can we combine them?

One natural way to do so is to de-noise the raw data using SIFT,

and then partition the sifted values into a component arising from

the APC model plus a residual component that represents the LOF.

We will call this procedure SAGE, an acronym for Semi-Parametric

Age-Period-Cohort Analysis. Algorithm 1 presents the details.
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From the raw data y with variance-covariance matrix Vy:

1. Calculate n = log y and variance-covariance matrix

Vn = Vy ∘ (yy 0 )∘
−1

2. SIFT the log-transformed data to obtain nSIFT and

V̂ n
SIFT

3. Construct an APC design matrix X incorporating

identifiability constraints

PartitionX into two sets of columns,X = ½XQ ⋮X (�a ,�p ,�g ) �:
•XQ for the intercept and the linear and quadratic

terms

Q ≡ (m, (aL − gL), (pL + gL),   qa , qp , qg )
tiers in Oncology 08
• X (�a ,�p ,�g ) for the higher order deviations �ga*
,   �gp*

, and

�gc*
4. Evaluate regression matrix R = (X0X )−1½XQ ⋮X (�a ,�p ,�g )�

0

• Calculate b̂ SIFT = RnSIFT = (Q , �a , �p , �g ) 0 and V̂ b
SIFT = R

V̂ n
SIFTR 0

•From these outputs calculate Estimable Functions

5. From the Hat matrix H = XR   calculate

• Fitted values ĥ SIFT =  HnSIFT = ĥ Q
SIFT + ĥ (�a ,�p ,�g )

SIFT with

V̂ h
SIFT = HV̂ n

SIFTH 0

• Lack-of-Fit LOFSIFT =  (I −H)nSIFT with V̂ LOF
SIFT = (I −

H)V̂ n
SIFT(I −H) 0
FIGURE 6

Relative Error in 152 Cancers: Raw versus Sifted Data. Scatter Plot of median noise-to-signal percent versus mean number of events per cell for 80
Lexis diagrams in females (light blue circles) and 72 in males (magenta squares). Light blue and magenta dashed lines: least squares fit. Solid red line:
reference curve for raw data assuming Poisson error. Data are plotted on a log-log scale.
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• Note that nSIFT ≡ ĥ SIFT + LOFSIFT

• From ĥ SIFT and nSIFT calculate Features of interest
Algorithm 1. Semi-Parametric Age-Period-Cohort Analysis (SAGE).

SAGE advances our understanding of the data in two ways.

First, we are better able to examine LOF and gauge its impact on

Features. Second, when the model appears adequate, we can draw

conclusions from the EF. These estimates will be smoother and have

narrower confidence limits than corresponding estimates obtained

by fitting the APC model to the raw data.

To illustrate, we applied SAGE to colon cancer incidence among

NHWwomen and visualized the outputs using heat maps (Figure 8,

Panel A). Panel A.1 shows the raw data, A.6 the sifted values

(“SAGE”), and A.7 the SIFT residuals (“Pure Error”). Panels A.2 –

A5 present the partitions described in Step 5 of the SAGE algorithm.

The full APC model (A.4) is the sum of contributions from the key

parameters (A.2) and higher-order deviations (A.3).

Panel B plots higher-order deviations and LOF using surface

plots to better gauge their relative magnitudes. The former is

substantially larger. Panel C shows the estimated period trend by

age from the APC model (solid blue) and the APC model plus LOF

(dash red). There are small gaps between the curves, especially at

around age 50, when the model appears to under-estimate the

empirical trend by around 0.5% per year. The median absolute
tiers in Oncology 09
deviation (MAD) between the parametric and nonparametric

curves is 0.17% per year.

We applied SAGE to all Lexis diagrams in the Cancer Incidence

Panel. Comparing the period trends by age (APCmodel versus APC

Model plus LOF), the MAD never exceeded 0.6% per year in

Females (Figure 9A) or 0.8% per year in Males (Figure 9B). On

average, the MAD was 0.16% per year in Females and 0.19% per

year in Males.

We also fitted JoinPoint models to the FCPs from SAGE,

allowing up to 5 segments each with 10 or more birth cohorts.

Figure 10 presents the number of segments identified by the

JoinPoint permutation test (33) in Females (Figure 10A) and

Males (Figure 10B). In every case, the number of segments was 3

or more.
3.5 Comparative age-period-
cohort analysis

The APC model describes a single Lexis diagram. Most

studies involve ensembles of G ≥ 2 Lexis diagrams defined by

strata such as sex, race and ethnicity, geographic region, tumor

characteristics, etc. A key goal is to compare and contrast EF

between strata. One can think of the strata as covariates.
FIGURE 7

The New Age-Period-Cohort Model: 12 Principles.
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B C

A

FIGURE 8

Semi-parametric Age-Period-Cohort (SAGE) Analysis. SAGE analysis of colon cancer incidence in Non-Hispanic White Females. (A): Heat Maps of
raw data (A.1), pure error (A.7), and decomposition of sifted data (A.6) into APC model components (A.2–A.4) and Lack-of-Fit (LOF; A.5). (B): Surface
Plots of APC higher-order deviations (left panel) versus LOF (right panel). (C): Age-specific period trends with (dashed red curve) and without (solid
blue curve) LOF. The median absolute deviation (MAD) between the curves in 0.17%.
BA

FIGURE 9

Impact of Lack-of-Fit (LOF) on Local Drifts in 152 Cancers. Median Absolute Deviation (MAD) between Local Drifts and Age-Specific Period Trends
from SAGE analysis. See the Legend to Figure 8 for details. (A), Females. (B), Males. Values by race and ethnicity (API, HIS, NHB, NHW) within cancer
sites as labelled. Yellow reference lines show median of MAD values for Females and Males.
Frontiers in Oncology frontiersin.org10

https://doi.org/10.3389/fonc.2023.1332429
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rosenberg and Miranda-Filho 10.3389/fonc.2023.1332429
However, the Lexis diagram can be analyzed on four different

time scales (6), and the event rates can be proportional with

respect to one time scale but not the others (53).

Recently, we developed a comparative method that can identify

whether the stratum-specific hazard rates in an ensemble of G ≥ 2

Lexis diagrams are proportional overall, or within calendar periods, age

groups, or birth cohorts (25). Proportionality imposes meaningful

constraints on the stratum-specific EF. For example, when the

hazard rates are proportional within calendar periods, the Local

Drifts for each stratum are all equal. Alternatively, when the hazards

are proportional within age groups, the stratum-specific Local Drifts

are parallel. Such constraints can highlight important signals that

otherwise might be missed by inspection of outputs from

separate models.

To illustrate, we carried out an exploratory comparative

analysis of colon cancer incidence by sex, race, and ethnicity.

The analysis partitioned the 8 strata into 4 subsets: non-

proportionality in NHW women and men, age proportionality

in NHB, API and HIS women, and absolute proportionality in

NHB, API and HIS men. From these partitions we extracted

FCPs and ran JoinPoint models (Figure 11). In each stratum,

colon cancer incidence bottomed out among Baby Boomers

(1946 – 1964 birth cohorts), then increased year-over-year

among members of Generation X (1965 – 1980 birth cohorts).

It is computationally feasible to evaluate partitions when the

number of strata is small to moderate, 2 ≤ G ≤ 10. When G > 10,

Bayesian methods provide a valuable approach. Bayesian spatial

age-period-cohort analysis is one promising application (21).

Bayesian methods can be used to characterize the distribution of
Frontiers in Oncology 11
Features. In practice it appears essential to take birth cohort effects

into account (Figure 10). One way to do so is to carry out the

Bayesian analyses separately within age strata (22).
3.6 Cancer forecasts

Forecasts of cancer incidence obtained from APC models are

popular because the underlying assumptions of the model are often

reasonable (Section 2.3.2) (54). APC-based forecasts extrapolate

parameter estimates from observed to future age and period cells

(44, 54). Consequently, Incidence forecasts are EF. Different

scenarios can be modeled by varying the extrapolation scheme

used to account for future period and cohort deviations. Best et al.

(49) extrapolate future period effects using the global curvature for

period, and future cohort effects using the most recent segment

from a join-point analysis of the FCP, i.e., by extrapolating from the

experience of the youngest observed birth cohorts.
4 Discussion

The novel statistical approaches we describe here do not replace

classic analytical tools and methods for cancer rates: they build

upon them. Each method starts with one or more Lexis diagrams.

SIFT and SAGE increase accuracy by leveraging the power of

contemporary nonparametric smoothing. Indeed, SIFT is our

recommended smoother for 1x1 and 2x2 data because it offers

remarkable increases in precision across a broad spectrum of
BA

FIGURE 10

Birth Cohort Effects in 152 Cancers. Number of segments identified by JoinPoint analysis of Fitted Cohort Patterns from SAGE. (A), Females. (B),
Males. Values by race and ethnicity (API, HIS, NHB, NHW) within cancer sites as labelled.
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cancers (Figure 6). The New APC Model and SAGE elucidate birth

cohort effects: The latter provides appealingly smooth Estimable

Functions (EF). Comparative APC Analysis ascertains cancer

heterogeneity across ages, periods, and birth cohorts for a small

to moderate number of strata, and Bayesian methods when the

number of strata is moderate to large. Taken together, the new

methods summarized in Figure 1 mitigate the limits highlighted in

Figures 2–5.

With these new tools in hand, our ability to detect fine-scale

temporal signals in granular data with one- or two-year age and

period intervals is greatly enhanced. Indeed, smoothing Lexis

diagrams up front using a contemporary non-parametric

procedure such as SIFT has compelling advantages. Accuracy is

greatly increased (Figure 6), and you can extract all of the standard

Features from the sifted data (e.g., canonical plots, ASRs, EAPC,

and JoinPoint). You can also extract novel Features defined by

averages, trends, and gradients. One particularly valuable Feature is

the sifted estimates of the age-specific trends over time, a model-free

analogue of the APC Local Drifts.

The APC Model provides a conceptual framework for

interpreting cancer incidence based on a principle we call “the

primacy of birth cohort effects”. The APC model can be applied to

cancer mortality, with the proviso that trends in mortality reflect

changes in both cancer incidence and cancer survival. For mortality

analysis it is especially crucial to assess LOF because many

treatments are used to a greater or lesser extent according to the

patient’s age at diagnosis.
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The SAGE method illustrated in Figure 8 provides a valuable

new tool for “stress-testing” an APC model. If the LOF is large

relative to the higher-order deviations, one can step away from

model-based EF and base conclusions on Features, which are

model-free constructs. This strategy improves the overall

reliability of the analysis.

Using SAGE, we surveyed 152 cancer incidence Lexis diagrams

across 21 leading sites in men and women in four race and ethnicity

groups. The LOF had remarkably little impact on the Local Drifts

(Figure 9). This is not surprising if the underlying expected rates are

smooth functions, which is a standard assumption. In that case, it is

straightforward to show that the 6 key parameters of the New APC

Model describe a second-order Taylor expansion of the Lexis diagram

around the middle cell located at (�a*,
�p*). Furthermore, given the

“primacy of birth cohort effects,” it is not entirely unexpected that

birth cohort effects are statistically significant in every case (Figure 10).

When birth cohort effects are present – which, for US incidence,

appears to be most of the time – the EAPC cannot represent the

time trend in every age group. Consequently, unless the LOF is

substantial, one should always examine birth cohort effects. This is

easily done using the New APC Model, but it is much harder to do

so using canonical plots or other classic descriptive methods. This is

because we observe the oldest cohorts only at older ages and the

youngest cohorts only at younger ages: the data are not balanced

over cohorts. For the practitioner, our synopsis of “best practices”

(Figure 7) should provide a handy “cheat sheet” for applications

using the New APC Model or SAGE.
B C D

E F G H

A

FIGURE 11

Fitted Cohort Patterns (FCPs) for Colon Cancer. FCP: Expected rate at age 60 by birth cohort. Separate APC models (grey circles); joint APC model
identified by exploratory comparative analysis (stars); JoinPoint analysis of the joint model (black curves with grey pointwise 95 percent confidence
limits). Females (F): (A–D). Males (M): (E–H). Non-Hispanic White (NHW) (A, E), non-Hispanic Black (NHB) (B, F), Asian and Pacific Islander (API) (C, G)
and Hispanic (HIS) (D, H). In each panel, x-axis ticks show estimated join-points. Baby-Boomer (blue) and Gen-X (yellow) birth cohorts are highlighted.
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Frequentist statistical methods are now available for

comparative studies with a small to moderate number of stratum-

specific Lexis diagrams, two through around 10, and Bayesian

methods when the number of strata is larger (10 up to several

hundred). As illustrated in Figure 11 for colon cancer, Comparative

Analysis can identify patterns and signals in birth cohort effects

within and between strata that would otherwise be difficult or

impossible to detect. Using this approach, we discovered that

members of Generation X born between 1965 – 1980 are at

increased risk of colon cancer compared to Baby Boomers born

between 1946 – 1964. This unfavorable trend was seen across both

sexes and in all four race and ethnicity groups.

For each new tool in Figure 1, the requisite statistical software is

now available or soon will be. It is now technically possible to

integrate advances in statistical methodology and data science and

put powerful new tools in the hands of cancer surveillance

researchers. Doing so could facilitate a ‘golden age’ in CSR.

Furthermore, these tools can be combined in novel ways,

effectively making new tools. Feature extraction from sifted data

(50) and SAGE (Figure 8) are two examples.

Whereas forecasts of cancer incidence are EF and therefore fall

within the purview of the methods summarized in Figure 1,

forecasts of cancer burden – the absolute numbers of new cases –

requires a combination approach that integrates population

forecasts from the Census Bureau with incidence forecasts from

APC models (49, 54–56). In principle, cancer prevalence (past,

current, and future numbers of persons living with a cancer) can

also be estimated using combination methods that integrate survival

analysis of cancer cases with APC models of cancer incidence. This

would require a separate toolbox of survival methods including

cause-specific hazard functions (57, 58) and cumulative incidence

of competing risks (59, 60).

Knowing that something is possible does not make it happen –

that will require serious work in the area of implementation science,

for example, to accelerate computational algorithms for SIFT,

SAGE, and Comparative Analysis, scale up the JoinPoint method

for longer time series, streamline access to data using Findable,

Accessible, Interoperable, Reusable (FAIR) principles (61), and

develop interfaces that integrate FAIR data, analysis tools, and

workflows (62). In light of recent increases in cancer incidence

occurring in the US (63) and globally (9), we believe such efforts are

warranted to advance cancer control and cancer research.
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