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Cancer poses a serious threat to human health and overall well-being.

Conventional cancer treatments predominantly encompass surgical

procedures and radiotherapy. Nevertheless, the substantial side effects and

the emergence of drug resistance in patients significantly diminish their

quality of life and overall prognosis. There is an acute need for innovative,

efficient therapeutic agents to address these challenges. Plant-based herbal

medicines and their derived compounds offer promising potential for cancer

research and treatment due to their numerous advantages. Solanum nigrum

(S. nigrum), a traditional Chinese medicine, finds extensive use in clinical

settings. The steroidal compounds within S. nigrum, particularly steroidal

alkaloids, exhibit robust antitumor properties either independently or when

combined with other drugs. Many researchers have delved into unraveling

the antitumor mechanisms of the active components present in S. nigrum,

yielding notable progress. This literature review provides a comprehensive

analysis of the research advancements concerning the active constituents of

S. nigrum. Furthermore, it outlines the action mechanisms of select

monomeric anticancer ingredients. Overall, the insights derived from this

review offer a new perspective on the development of clinical

anticancer drugs.
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1 Introduction

Cancer remains a leading cause of mortality worldwide (1). There were an

estimated 18.1 million new cancer cases and 9.9 million cancer deaths globally in

2020 (2). According to Cancer Facts & Figures 2023 released by American Cancer

Society, over 1.9 million new cancer cases are expected to be diagnosed, and

approximately 609,820 deaths from cancer are expected in the US in 2023 (3).

Furthermore, global projections indicate that the cancer burden is expected to

increase by 50% in 2040 compared with that in 2020, primarily due to an aging
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population (4). Fortunately, there is promising hope in the battle

against cancer, with natural medicines derived from plants and

microrganisms offering new avenues of exploration. Solanum

nigrum (S. nigrum), a frequently used herb with antitumor

potential in clinical practice, has garnered attention. Within S.

nigrum, steroidal alkaloids, particularly steroids, represent the

crucial chemical constituents responsible for the antitumor

properties of S. nigrum (5).

Cancer cells are characterized by distinct traits, including

sustaining proliferative signals, evading growth inhibitors,

resisting programmed cell death, enabling replicative immortality,

inducing angiogenesis, promoting metastasis and invasion,

remodeling cellular metabolism, and acquiring the ability to evade

immune surveillance (6). Patients with primary tumors typically

undergo treatments such as surgery, radiotherapy, and

chemotherapy (7). Chemotherapeutic agents are cytotoxic drugs

commonly used in treating cancer. These drugs target rapidly

growing and proliferating cells and promote some of the key

factors that impair mitosis and enhance apoptosis during cell

division (8). However, chemotherapeutic agents lead to poor

prognoses and adverse side effects (9). Common side effects

include bone marrow suppression, alopecia (hair loss), fatigue,

neuropathy, dermatological issues, and gastrointestinal disorders

(10). Traditional Chinese medicine is gradually gaining recognition

for its relatively low side effects and antitumor properties.

S. nigrum, the largest genus in the Solanaceae family, is an

annual herb widely distributed in China (11). It can be used for

medicinal purposes, either in its fresh or in its dried form. S. nigrum

is known for its diverse therapeutic effects, including heat-clearing

and toxin-removing properties, reduction of swelling and lumps,

anti-inflammatory and diuretic effects, and helping produce saliva

and slake thirst (12). In the Ayurvedic tradition of India, S. nigrum

has been used to treat intestinal diseases, ulcers, diarrhea, and skin

conditions (13). Modern pharmacological studies have provided

evidence of S. nigrum’s antitumor, anti-inflammatory, antioxidant,

and antihypertensive properties (14). Furthermore, various active

molecules extracted from S. nigrum exhibit anticancer effects.

We present a review of the research data from the past decade

obtained from PubMed and Web of Science. We conducted a

thorough analysis to identify the individual active constituents

within S. nigrum. Additionally, we explored the antitumor

properties and underlying mechanisms of S. nigrum in

combination with other drugs against different types of tumors.
2 Chemical composition of S. nigrum

As of 2022, S. nigrum has been found to contain a total of 188

chemicals, encompassing steroidal alkaloids, steroidal saponins,

glycoproteins, organic acids, lignins, polysaccharides, and

polyphenols (15). Among these, steroidal alkaloids and steroidal

saponins are the primary active components responsible for its

antitumor properties. The steroidal alkaloids in S. nigrum primarily

consist of three glycosides: solanines, solasonine, and solamargine

(SM). These glycosides are primarily present in immature fruits and

have been extensively studied in the field of natural products (16).
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Predominantly, the alkaloids found in the entire S. nigrum herb

are steroidal alkaloids, all sharing the fundamental steroidal skeleton

structure of cyclopentanoperhydrophenanthrene. This structural

motif is currently the subject of widespread research as a potential

antitumor active ingredient (17). The fruits of S. nigrum are

particularly rich in steroidal alkaloids, with the highest content

found in the unripe green fruits. As the fruits ripen, their alkaloid

composition undergoes changes, leading to a reduction in alkaloid

content. As early as 1982, Japanese researchers employed ethanol to

isolate two steroidal alkaloids, solasonine and SM, from unripe fruits.

These glycosides are linked by glycosidic bonds and share the same

glycoside, solasodine (18). Since then, numerous steroidal alkaloids

have been identified in S. nigrum fruits, including compounds such

as 7a-OH-kekasianine, 7a-OH SM, 7a-OH solasonine, 12b,27-
dihydroxy solanine-3-O-b-D-glucopyranoside, and 27-solasonine-

3-O-b-D-glucopyranosyl-(1→4)-a-L-rhamnopyranoside-(1→2)-

[a-L-rhamnopyranoside-(1→4)]-b-D-glucopyranoside (19, 20).
3 Pharmacological effects of S. nigrum

Modern pharmacological studies have revealed that S. nigrum

extracts obtained using different solvents yield distinct

pharmacological effects. For example, the aqueous extract of S.

nigrum demonstrates the ability to mitigate angiotensin-II-induced

cardiac hypertrophy and improve cardiac health (21). Furthermore,

the aqueous extract can inhibit the growth of breast, ovarian, and

liver cancer cells by influencing the expression of numerous tumor-

related genes (22–30). Additionally, it augments the tumor-

inhibitory efficacy of cisplatin, adriamycin, and docetaxel on

human ovarian cancer cells (26, 27). Nirmal et al. have

demonstrated the antihistaminic and antiallergic effects of the

petroleum ether extract of S. nigrum fruit, highlighting its

potential as a therapeutical agent for asthma (14).

The ethanolic extract of S. nigrum has exhibited in vitro

inhibitory effects on melanoma cells. In in vivo experiments, a 1%

aqueous extract of S. nigrum significantly reduced tumor mass in

tumor-bearing mice, achieving a tumor inhibition rate exceeding

50%. Additionally, it effectively inhibited lung metastasis in

melanoma (31).

Research on the antitumor effects of individual compounds

within S. nigrum has predominantly focused on solanine,

solasonine, SM, and solasodine. Furthermore, a-solanine has

displayed antitumor effects on non–small cell lung cancer

(NSCLC) (32). Pharmacological studies have demonstrated that

SM exhibits inhibitory effects on gastric, hepatocellular, and lung

cancers (33–35). Notably, uttroside B, a saponin isolated from S.

nigrum, has demonstrated superior anti–liver cancer efficacy over

sorafenib, a first-line anticancer drug and antitumor angiogenesis

targeted drug (36). Furthermore, uttroside B exhibits fewer toxic

effects on normal cells (37). Solasonine has been shown to inhibit

pancreatic cancer cells (38). S. nigrum has a long history of use in

cancer treatment, with its extracts displaying significant antitumor

pharmacological activities. Consequently, further research into the

isolation and purification of the antitumor active components of S.

nigrum holds great significance.
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In this study, we have reviewed research conducted over the

past two decades on the active components of S. nigrum with

antitumor properties. Additionally, we have explored the

mechanisms underlying the antitumor actions of its four key

antitumor monomer active components. The molecular structure

of these four components was shown in Figure 1.
4 Antitumor active monomers from
S. nigrum

4.1 Solanine

Solanine, also referred to as a-solanine, possesses a range of

beneficial properties, including antidiabetic, antiallergic, anti-

inflammatory, antiviral, antibacterial, antiprotozoan, and

antifungal activities. Its anticancer potential is evident through its

ability to induce apoptosis and hinder cell growth, migration, and

invasion both in vitro and in vivo (39). Notably, its therapeutic

efficacy against liver cancer has been thoroughly investigated.
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4.1.1 Anti–liver cancer activity of solanine
Matrix metalloproteinases (MMPs) play a pivotal role in tumor

growth and metastasis. Solanine effectively inhibits MMPs, thereby

impeding tumor development and stemness. This action involves

the downregulation of E-cadherin and upregulation of N-cadherin,

resulting in reduced tumor invasiveness and proliferation of HepG2

cells (40). miR-21, a well-established cancer marker, exhibits high

expression levels in invasive cancer cells. Remarkably, solanine

treatment significantly reduces miR-21 expression, subsequently

inhibiting the migration and invasion of liver cancer cells (40).

Additionally, solanine intervenes in the immune escape mediated

by liver cancer Treg cells through the transforming growth factor

(TGF)-b/Smad signaling pathway, ultimately enhancing the

immune response (41). In synergy with cisplatin, solanine induces

apoptosis, intensifies cell cycle arrest in liver cancer cells, enhances

caspase-3 and caspase-7 activity, and attenuates the expression of

Bcl-2 and survivin, thereby promoting apoptosis and inhibiting

cancer cell growth (42). Furthermore, solanine fosters the

expression of ASK1 and TBP-2 and augments their kinase

activities by inducing reactive oxygen species (ROS) production

in HepG2 cells, ultimately driving apoptosis in these cells (43).
B
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FIGURE 1

Key antitumor monomer of S. nigrum. (A) Solanine; (B) Solamargine; (C) Solasonine; (D) Solasodine.
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4.1.2 Anti–esophageal cancer activity of solanine
In a study by Wu et al., solanine effectively suppresses the

proliferation, migration, and invasion of esophageal cancer cells

(EC9706 and Eca109) in vitro in a dose- and time-dependent

manner. Moreover, solanine triggers apoptosis by activating

caspase-3 and caspase-7 and suppresses MMP-2 and MMP-9

expression in a dose-dependent manner. The administration of

solanine significantly elevates E-cadherin expression levels,

suggesting its ability to inhibit metastasis by influencing cellular

protein hydrolysis activation and adhesion capabilities. Solanine

treatment also reduces the expression of the apoptosis-related

protein Bcl-2, enhances Bax expression, and promotes apoptosis,

thus emerging as a potential agent for esophageal cancer prevention

and treatment (39). Additionally, solanine downregulates survivin

expression by upregulating miR-138 expression, consequently

enhancing the radiosensitivity of EC cells and positioning

solanine as a promising radiosensitizer (44).

4.1.3 Anti–breast cancer activity of solanine
Solanine treatment is further characterized by increased Bax

expression, decreased Bcl-2 levels, and diminished platelet–

endothelial cell adhesion molecule (CD31) expression in cancer

cells. These actions contribute significantly to anti-angiogenesis,

leading to the reduction or disappearance of mammary tumors and

the inhibition of tumor progression in mice (45). The anticancer

effects of solanine may involve the inhibition of the NF-kB pathway

(46). Subsequently, a specialized nanoparticle (DNS) with high

solubility capacity was developed. DNS treatment upregulated

Bcl-2 expression while downregulating Bax, MMP-2, MMP-9,

mTOR, and Akt levels in cancer cells. These findings underscore

solanine’s antiangiogenic effect on cancer cells through the

activation of the PI3K-Akt pathway (47). Hence, solanine

emerges as a promising candidate drug for breast cancer treatment.

4.1.4 Other antitumor activities of solanine
S100P overexpression is known to play a role in promoting

tumorigenesis and metastasis in various cancer models (48). S100P
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is overexpressed in colorectal cancer cells. However, solanine

counters this effect by inhibiting S100P expression. Solanine-

induced inhibition results in cell cycle arrest at the G0/G1 phase,

increased production of ROS, and apoptosis induction in tumor

cells. Additionally, solanine has demonstrated its ability to suppress

cancer cell proliferation, migration, and stemness by reducing the

activity and expression of MMP-2 and MMP-9 (49, 50). Moreover,

solanine has been found to elevate ROS levels in lung cancer A549,

prostate cancer DU145 cells, and squamous carcinoma KB cells. It

activates cellular autophagy by downregulating Akt/mTOR

expression (51).

The above-mentioned studies collectively highlight solanine’s

inhibitory effect on various human cancer cells, positioning it as a

potential effective antitumor drug in the future. This anticancer

activity is attributed to solanine’s ability to modulate different

cellular targets, which vary among different cancer cells and at

different concentrations. The above antitumor mechanism of

solanine was shown in Figure 2.
4.2 Solamargine

SM is a small-molecule steroidal alkaloid isolated from

nightshade plants. Its fundamental chemical structure comprises

one glycosidic element linked to three sugar groups through a

glycosidic bond, with a molecular formula of C45H73NO15 (52). SM

is widely acknowledged as a potent active ingredient in antitumor

therapy. SM exhibits robust anticancer activity against various types

of cancer, including gastric, lung, liver, and prostate cancers;

melanoma; cholangiocarcinoma; and hypopharyngeal squamous

cell carcinoma.

4.2.1 Anti–gastric cancer activity of solamargine
SM exerts significant inhibitory effects on gastric cancer cells

(33, 53). It induces the expression of caspase-7 and disrupts the G2/

M cell cycle to promote cancer cell apoptosis. Furthermore, it

upregulates the expression of lncNEAT1_2 and lncPINT by
FIGURE 2

Antitumor mechanism of Solanine.
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inhibiting the Erk1/2 MAPK signaling pathway, leading to

suppressed viability of gastric cancer cells. In vivo studies have

demonstrated a marked increase in early apoptotic cells and a

significant reduction in tumor volume following SM treatment,

establishing SM’s potential as a therapeutic agent for gastric

cancer (33).

4.2.2 Anti–lung cancer activity of solamargine
In lung cancer, SM acts by inhibiting the expression of SP1 and

p65 proteins through the suppression of the PI3K-Akt signaling

pathway. This leads to a dose-dependent suppression of the growth

of H299 and A549 human lung cancer cells (35). Additionally, SM

inhibits DNMT1 protein expression by increasing Erk1/2

phosphorylation, subsequently suppressing c-Jun protein

expression and tumor proliferation (54).

HOX transcript antisense RNA (HOTAIR) is often

overexpressed in lung cancer and correlates with metastasis and

poor prognosis. It promotes the proliferation, survival, invasion,

metastasis, and drug resistance of lung cancer cells (55). SM inhibits

the proliferation and induces apoptosis of NSCLC cells through

inhibition of long-stranded non-coding RNA (HOTAIR).

Additionally, SM promotes the expression of miR-214-3p while

inhibiting the expression of its downstream target PDPK1. The

interplay between HOTAIR and miR-214-3p inhibits NSCLC cell

growth (56). Furthermore, the combination of SM and cisplatin

exhibits synergistic effects in inhibiting cisplatin-resistant lung

cancer cell lines (57), enhancing the antitumor effects of gefitinib

and erlotinib (58).

4.2.3 Anti–liver cancer activity of solamargine
Higher expression of Ki67 and PCNA in cells typically indicates

increased cell proliferation (59). Treatment of the HepG2 cell line

with SM led to reduced expression of Ki67, PCNA, and Bcl-2

proteins while elevating the expression levels of Bax, caspase-3, and

caspase-9. As a result, SM is believed to inhibit liver cancer cell

proliferation and induce apoptosis by activating the Bcl-2/Bax and

caspase signaling pathways (60). Moreover, at high concentrations,

SM may effectively treat liver cancer by modulating the LIF/miR-

192-5p/CYR61/Akt axis, inducing autophagy and apoptosis. At low

concentrations, SM can repolarize M2macrophages into an M1-like

phenotype through LIF/p-Stat3 signaling, inhibiting epithelial–

mesenchymal transition (EMT) in hepatoma cells, thereby

reducing the invasion and migration abilities of hepatoblastoma

cells (34, 61).

MUC1 plays a pivotal role in the transcriptional regulation of

genes associated with tumor invasion, metastasis, angiogenesis,

proliferation, apoptosis, drug resistance, inflammation, and

immune regulation (62–69). According to Tang et al., SM can

hinder the growth of hepatocellular carcinoma (HCC) through the

HOTTIP-TUG1/miR-4726-5p/MUC1 signaling pathway.

Additionally, the combination of SM and sorafenib synergistically

inhibits MUC1 protein expression, enhancing the anticancer effect

of sorafenib (70).
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4.2.4 Other antitumor activities of solamargine
In human castration-resistant prostate cancer (CRPC), SM

promotes the phosphorylation of AMPKa and decreases the

expression of MUC1 and NF-kB p65 proteins. This leads to the

suppression of CRPC cell growth through AMPKa-mediated

inhibition of p65 (71). When combined with docetaxel, SM

enhances the antitumor effect of docetaxel (72). According to

Zhang et al., the treatment of human cholangiocarcinoma cells

QBC939 with SM increases the expression of apoptosis-related

proteins, inhibiting cell viability. This suggests that SM may

induce apoptosis in human cholangiocarcinoma QBC939 cells

through the mitochondrial pathway (73).

SM exerts its antitumor effects through multiple mechanisms,

including the tumor suppressor pathway, caspase activation

pathway, mitochondrial pathway, apoptosis receptor pathway,

protein kinase pathway, and signaling pathways that promote

invasion/migration and multidrug resistance (Figure 3).
4.3 Solasonine

Solasonine, with the molecular formula C45H73NO16, is another

typical steroidal alkaloid found in S. nigrum. It is commonly used in

the treatment of skin diseases and various cancers, and extensive

pharmacological studies have been conducted on it.

4.3.1 Anti–liver cancer activity of solasonine
Mortalin, a protein overexpressed in various cancers, sequesters

p53 into the cytoplasm, preventing its translocation to the nucleus

and inhibiting its cellular functions. Inhibiting the mortalin-p53

interaction is a novel strategy against tumors (74). Solasonine

inhibits this interaction, inducing apoptosis in HCC cell lines

expressing p53 (HepG2) or in those not expressing p53 (Hep3b).

Thus, the apoptotic activity of solasonine can be mediated through

both p53-dependent and p53-independent pathways (75). SP1, a

direct target of miR-375-3p, can be co-regulated by miR-375-3p and

CCAT1. Solasonine can inhibit CCAT1 and SP1 by activating miR-

375-3p. Subsequently, IRF5 protein expression is suppressed,

inhibiting the proliferation of HepG2 liver cancer cells. Therefore,

IRF5 may be a potential target for the treatment of liver cancer

(76–79).

4.3.2 Anti-osteosarcoma activity of solasonine
Tumor cells ferment large amounts of glucose into lactic acid

even in the presence of oxygen, a phenomenon known as the

Warburg effect or aerobic glycolysis, to supply energy (80).

Glycolysis is believed to be driven by oncogenic signaling

pathways. The Wnt/b-catenin pathway is essential for the

development of various embryos. Aberrant activation of this

pathway is associated with the development and progression of

many human malignancies. Wnt/b-catenin/Snail has been shown to
activate EMT, which is closely associated with tumor cell invasion

and metastasis (81). According to Wang et al., solasonine
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upregulates E-cadherin expression and downregulates N-cadherin

expression, inhibiting EMT in cells and effectively restraining the

migration and invasion of osteosarcoma cells. This inhibition of

aerobic glycolysis in osteosarcoma cells, along with reduced lactate

secretion and glucose consumption and increased ROS production

in cell supernatants, is mediated by solasonine through the Wnt/b-
Catenin/Snail pathway in an ALDOA-dependent manner. These

effects inhibit cancer cell proliferation and migration in both in vivo

and in vitro settings (82).

4.3.3 Other antitumor activities of solasonine
Solasonine, either alone or in combination, can trigger

apoptosis in the SGC-7901 human gastric cancer cell line through

the mitochondrial apoptosis pathway. Furthermore, when

combined with cisplatin, solasonine enhances cisplatin’s activity,

resulting in improved therapeutic outcomes (83). Moreover,

solasonine is effective at inhibiting cancer cell proliferation and

increasing sensitivity to chemotherapeutic drugs by targeting miR-

486-5p, thereby increasing its expression. miR-486-5p, which post-

transcriptionally regulates PI3KR1, plays a regulatory role in gastric

cancer. These findings underscore solasonine ‘s antigastric cancer

effects by modulating the miR-486-5p/PI3KR1 axis (84). The above

antitumor mechanism of solasonine was shown in Figure 4.
4.4 Solasodine

Solasodine, with a molecular formula of C27H43NO2, is a

steroidal alkaloidal sapogenin known for its pharmacological

effects such as antioxidant properties (85) and anticonvulsant
Frontiers in Oncology 06
activity (86). Many studies have highlighted the potent

cytotoxicity of solasonine against various types of tumor cells,

which is described in the subsequent sections.
4.4.1 Anti–pancreatic cancer activity
of solasodine

In clinical treatment, solasodine (CTX) is commonly employed

due to its potent anticancer activity against pancreatic cancer (87).

In a SW1990 tumor-bearing mouse model, solasodine exhibited

superior efficacy in inhibiting tumor growth over CTX, while

exerting lower toxicity to normal cells. Solasodine achieved this

by inhibiting the Cox-2/Akt/GSK3b signaling pathway in

pancreatic cancer cells, leading to increased expression of cyt-C,

caspase-9, caspase-3, and Bax and decreased expression of Bcl-2 in a

dose-dependent manner. Additionally, solasodine stimulated the

immune response, significantly elevating serum levels of TNF-a, IL-
2, and IFN-g in tumor-bearing mice in vivo (88).

4.4.2 Anti–gastric cancer activity of solasodine
Solasodine demonstrated a dose-dependent downregulated

expression of caspase-3, caspase-7, caspase-9, and poly-ADP-ribose

polymerase (PARP) in GC cells HGC27. It also reduced the levels of

GPX4 and SLC7A11, although it did not alter the levels of ROS and

malondialdehyde. Moreover, solasodine promoted apoptosis and

ferroptosis in cancer cells, effectively inhibiting tumor growth.

Through the inhibition of the RhoA/STAT 3/NF-kB pathway and

reduction of CLDN 2 through the AMPK pathway, solasodine

suppressed metastasis and inhibited EMT in GC cells. Hence,

solasodine presents itself as a potential antitumor drug for GC (89).
FIGURE 3

Antitumor mechanism of Solamargine.
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4.4.3 Anti–colorectal cancer activity
of solasodine

Solasodine can inhibit human colorectal cancer cells by

targeting the AKT/GSK-3b/b-catenin axis and inducing apoptosis

in rectal cancer cells through the activation of the caspase cascade

(90). Treatment of rectal cancer HCT 116 cells with varying

concentrations of solasodine resulted in reduced protein levels of

tumor stemness markers, including CD133, CD44, Nanog, Oct-4,

and Sox-2. Additionally, these treatments inhibited TGF-b1-
induced invasion and migration of HCT 116 cells. These results

suggest that solasodine can reverse the stemness of colorectal cancer

cells in vitro and in vivo, while also suppressing the metastasis and

invasion of cancer cells, thereby exerting its anticancer effects (91).
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In conclusion, solasodine exhibits potent antitumor effects and

holds promise as a potentially active drug for cancer treatment. The

above antitumor mechanism of solasonine was shown in Figure 5.
5 Future prospects

Traditional Chinese medicine has emerged as a significant

strategy for cancer treatment, offering a novel therapeutic

approach characterized by its ability to target multiple

components, affect various signaling pathways, and reduce side

effects. Astragalus membranaceus, S. nigrum, Lotus plumule, and

Ligusticum wallichii are prominent traditional Chinese medicines
FIGURE 5

Antitumor mechanism of Solasodine.
FIGURE 4

Antitumor mechanism of Solasonine.
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widely utilized in clinical antitumor treatments. Due to its inherent

toxicity, S. nigrum is frequently combined with other drugs in

clinical settings, resulting in remarkable antitumor effects,

substantial medicinal value, and promising prospects for further

development. In recent years, fewer in-depth studies have explored

the pharmacological mechanisms of the active monomer

components within S. nigrum. Therefore, future research should

prioritize investigating this aspect. Combining individual

components with traditional chemotherapeutic drugs such as

solanine, SM, and cisplatin, has proven to enhance tumor

suppression efficiency and mitigate drug resistance in tumor cells.

This innovative approach opens up a fresh avenue for investigating
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the anticancer properties of S. nigrum. Notably, a series of

derivatives have recently been identified based on the active

monomer components, demonstrating significant anticancer

pharmacological activities. The development of new derivatives

and targeted dosage forms also holds substantial research potential.
6 Conclusion

This study provides a comprehensive review of the four anti-

tumor active components found in the Chinese medicinal herb S.

nigrum, along with their molecular mechanisms of action (Table 1).
TABLE 1 Antitumor mechanism of four key components of S. nigrum.

Compounds
Subjects
(cells/

animals)
Concentration

Safe
dose for
animals
(mg/kg)

Research mechanisms Tumor type References

Solanine HepG2, H22,
Hepatoma
patients

0-20 mM 37.5 MMP-2, MMP-9 synthetic signaling pathway,
Synthetic signaling pathway, miR-21, TGFb/
Smad signaling pathway, inhibition of Treg

cells, Caspase pathway, ROS pathway

Hepatoma [36-39]

EC9706,
KYSE30

0-6 mM 0-3.5 miR-138, Caspase pathway Esophageal cancer [35, 40]

4T1 0-50 mM 0-100 Apoptosis pathway Breast cancer [41-43]

SW480,
SW620,
HT-29,
RKO,

HCT116

0-32 mM 5-10 MMP-2, MMP-9 synthetic signaling pathway,
Caspase pathway, Apoptosis, ROS

pathway, S100P

Colorectal cancer [45, 46]

Solamargine H1650,
H1975, PC9,
A549, H1299

0-6 mM 4-8 Inhibition of prostaglandin E2, c-Jun signaling
pathway, HOTAIR

Lung cancer [50, 52]

SMMC7721,
HepG2

0-20 mM / Bcl-2/Bax and caspase pathway, LIF/miR-192-
5p/CYR61/Akt, LIF/p-Stat3, Suppression of

MUC1 gene expression

Hepatoma [30, 56, 57]

DU145, PC3 0-10 mM 5-10 Suppression of MUC1 gene expression, p56
signaling pathway

Prostate cancer [67]

QBC939 0-10 mM / Apoptosis pathway Cholangiocarcinoma [69]

Solasonine HepG2,
Hep3b,

QGY7703,
LO2

0-50 mM 10-100 mortalin-p53 signaling pathway, miR-375-3p Hepatocellular
carcinoma

[71-75]

HOS, U2OS 0-40 mM 0-50 Wnt/b-Catenin/Snail pathway Osteosarcoma [89]

SGC-7901,
SNU1, SNU5

0-40 mM / Mitochondrial pathway, Endoplasmic
reticulum stress pathway, Caspase pathway,

miR-486-5p/PI3KR1 axis

Gastric cancer [79,80]

Solasodine SW1990,
PANC1

0-40 mg/mL 0-15700 f Cox-2/Akt/GSK3b signal pathway, Caspase
pathway, Stimulating immunity

Pancreatic Cancer [83]

HGC27,
SGC7901,
NCI–

N87, AGS

0-10 mM 20 AMPK/STAT3/NF-kB/CLDN2
signalling pathway

Gastric cancer [85]

HCT16, HT-
29, SW480

10-80 mM 30-50 MMP-2, MMP-9, MMP-14 synthetic signaling
pathway, AKT/GSK-3b/b-catenin

signaling pathway

Colorectal cancer [86, 87]
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S. nigrum is widely utilized in clinical Chinese medicine and

traditional folk Chinese herbal formulas. A wealth of evidence

supports the notion that the active components in S. nigrum can

effectively inhibit cancer cells, reverse drug resistance in tumors,

and reduce the stemness of tumor stem cells. The antitumor effects

and mechanisms of S. nigrum primarily encompass the inhibition of

cell proliferation, cell cycle arrest, induction of apoptosis,

suppression of EMT and tumor metastasis, reversal of drug

resistance, and enhancement of the efficacy of radiotherapy and

targeted therapy. This review delves into the antitumor mechanisms

of the active monomer components in S. nigrum, offering valuable

theoretical insights for the rational utilization and further

development of S. nigrum in cancer treatment.
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