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Simulating an intra-fraction
adaptive workflow to enable PTV
margin reduction in MRIgART
volumetric modulated arc
therapy for prostate SBRT
Jeffrey Snyder*, Blake Smith, Joel St. Aubin, Andrew Shepard
and Daniel Hyer

Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City,
IA, United States
Purpose: This study simulates a novel prostate SBRT intra-fraction re-

optimization workflow in MRIgART to account for prostate intra-fraction

motion and evaluates the dosimetric benefit of reducing PTV margins.

Materials andmethods: VMAT prostate SBRT treatment plans were created for

10 patients using two different PTV margins, one with a 5 mmmargin except 3

mm posteriorly (standard) and another using uniform 2 mm margins

(reduced). All plans were prescribed to 36.25 Gy in 5 fractions and adapted

onto each daily MRI dataset. An intra-fraction adaptive workflow was

simulated for the reduced margin group by synchronizing the radiation

delivery with target position from cine MRI imaging. Intra-fraction delivered

dose was reconstructed and prostate DVH metrics were evaluated under

three condit ions for the reduced margin plans: Without motion

compensation (no-adapt), with a single adapt prior to treatment (ATP), and

lastly for intra-fraction re-optimization during delivery (intra). Bladder and

rectum DVH metrics were compared between the standard and reduced

margin plans.

Results: As expected, rectum V18 Gy was reduced by 4.4 ± 3.9%, D1cc was

reduced by 12.2 ± 6.8% (3.4 ± 2.3 Gy), while bladder reductions were 7.8 ± 5.6%

for V18 Gy, and 9.6 ± 7.3% (3.4 ± 2.5 Gy) for D1cc for the reduced margin

reference plans compared to the standard PTV margin. For the intrafraction

replanning approach, average intra-fraction optimization times were 40.0 ± 2.9

seconds, less than the time to deliver one of the four VMAT arcs (104.4 ± 9.3

seconds) used for treatment delivery. When accounting for intra-fractionmotion,

prostate V36.25 Gy was on average 96.5 ± 4.0%, 99.1 ± 1.3%, and 99.6 ± 0.4 for

the non-adapt, ATP, and intra-adapt groups, respectively. The minimum dose

received by the prostate was less than 95% of the prescription dose in 84%, 36%,

and 10% of fract ions , for the non-adapt , ATP, and intra-adapt

groups, respectively.
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Conclusions: Intra-fraction re-optimization improves prostate coverage,

specifically the minimum dose to the prostate, and enables PTV margin

reduction and subsequent OAR sparing. Fast re-optimizations enable

uninterrupted treatment delivery.
KEYWORDS

VMAT (volumetric modulated arc therapy), intra-fraction, MRIgRT, adaptive,
tracking, prostate SBRT treatment, MR-linac
1 Introduction

Prostate cancer is the second most prevalent type of cancer

among men in the United States with an estimated 288,300 newly

diagnosed cases in 2023 (1). Radiation therapy has an important

role in the treatment of prostate cancer with an estimated 60% of

patients requiring radiation therapy at some point over the course

of their disease (2, 3). Treatments have proven to be very effective as

evidenced by the 99% overall survival rate at 10 years for patients

who have localized disease and who are diagnosed at early stage

with low to intermediate risk of recurrence (4).

Studies have shown that the prostate has a low alpha/beta ratio

of approximately 1.5 while nearby critical organs at risk (OAR) such

as the bladder and rectum have alpha over beta ratios in the range of

3 -5 Gy for late toxic effects (5–9). These radiobiological factors

indicate that the prostate is sensitive to high dose per fraction

treatments. This makes prostate SBRT an attractive treatment

option which has now become an increasingly used treatment

method (10). Clinical trials comparing survival and toxicity

profiles have shown non-inferiority for SBRT as compared to

conventional fractionation in the treatment of prostate cancer

(11–13). SBRT also reduces the number of fractions which

improves patient satisfaction and is a more cost-effective

treatment as compared to conventional fractionation (5, 14–16).

While these are positive factors and the toxicity rate for prostate

SBRT is generally considered acceptable, side effects remain. Alongi

et al. reported a 40% incidence of grade 2 Genito-urinary (GU)

toxicities while Kishan et al. reported a 10% incidence of grade 2 or

greater gastrointestinal (GI) toxicity (17, 18). With a high overall

survival rate, a focus on developing treatment strategies which

reduce side effects should remain a priority.

One method which will better spare OAR’s and potentially

reduce treatment related side effects is the reduction of PTV

margins (19). Reducing PTV margins poses challenges as the

prostate exhibits both inter and intra-fraction motion caused by

bladder and rectal filling, bowel movement, and skeletal muscular

motion (20–22). Therefore, caution should be employed when

implementing margin reductions because advanced imaging

technologies and strategies may be required to prevent

underdosage of the target (23, 24). Prostate PTV margins ranging

from 2 mm to greater than 10 mm have been reported in the
02
literature and this variation often coincides with the type of

pretreatment imaging used and whether intra-fraction adaptions

are applied (25). Most commonly, PTV margins fall within the

range of 4 to 6 mm (22, 26–28). Keizer et al. found that PTV margin

reduction below 4 mm would require intra-fraction monitoring and

correction (29). Common intra-fraction monitoring techniques

used in prostate radiotherapy include the use of triggered planar

imaging of implanted fiducials or through electromagnetic tracking

of implanted beacons (30–33). While these methods aid in

monitoring and correcting intra-fraction motion, they have

drawbacks including an invasive seed implantation and an extra

appointment for the patient (34). Additionally, triggered imaging

methodologies add additional non-target specific ionizing radiation,

and electromagnetic beacons cause artifacts limiting the use of MRI

in delineation of the prostate (31, 35). Lastly, these intra-fraction

correction methods can add additional treatment time. Gorovets

et al. reported a maximum fractional treatment time of 45 minutes

when monitoring with kV/MV imaging on a standard linear

accelerator and implementing a 2 mm correction threshold (36).

Furthermore, Kisivan et al. reported that 29% of treatment fractions

would require greater than 1 intra-fraction intervention when using

a 3 mm motion threshold (37).

MRI guided adaptive radiotherapy (MRIgART) has emerged as

a promising technique for treating prostate cancer. MRIgART

enables real time cine imaging and target tracking without

additional ionizing radiation or fiducial markers (38, 39). It is

estimated that one third of prostate patients require adaptive

radiotherapy which can be applied online with MRIgART (40).

The MIRAGE trial compared non-adaptive MRI linac based

treatments using reduced margins versus treatments delivered

with conventional linacs and standard margins, finding that MRI

guided radiotherapy reduced GU and GI toxicities (18).

Additionally, in a meta-analysis of 29 prospective studies, Leeman

et al. found that MRI guided radiotherapy reduced urinary side

effects by 44% and bowel side effects by 60% as compared to

conventional CT guided treatment methods with implanted

fiducials (41). Combining reduced PTV margins and online

adaptive re-planning may further reduce treatment related

toxicities. However, long treatment session times associated with

MRIgART and intra-fraction motion limit the extent to which PTV

margins can be reduced without intra-fraction compensation (29,
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42, 43). MRIgART with daily re-planning commonly uses prostate

PTV margins ranging between 3 and 5 mm (44–48) with 5 mm in

all directions except for 3 mm in the posterior direction remaining a

standard (43, 49–51). While techniques such as gating and/or

baseline shift corrections can be used in conjunction with reduced

PTV margins, this will add additional time to already long

treatment sessions and therefore is impractical for some patients

(42, 43). This may be especially impactful on systems such as the

Elekta Unity which does not support couch movement during

treatment and thus, users must wait for baseline shift plans to be

re-optimized or re-calculated prior to resuming treatment if target

excursions occur (52, 53).

Recently, the use of 2D cine MRI imaging coupled with target

tracking has been used to reconstruct the fractional dose delivered to

the target for prostate and seminal vesicle treatments (29, 48, 54).

Additionally, the feasibility of VMAT treatment delivery techniques

have been shown which reduce delivery time as compared to step-

and-shoot IMRT, the current standard for all MRI-linacs (55, 56).

This study builds on these earlier works by simulating a novel intra-

fraction MRIgART workflow that combines cine MRI target tracking

and VMAT delivery to enable intra-fraction dose re-optimization

without causing delays in treatment. The efficacy of the workflow to

maintain adequate prostate coverage with 2 mm PTV margins while

accounting for intra-fraction motion was also evaluated.
2 Materials and methods

2.1 Patient selection and
reference planning

Ten prostate cancer patients previously treated on our Elekta

Unity MRI linac were enrolled in this retrospective planning study.

All patients provided informed prospective consent to use their

treatment images and this study was conducted in accordance with

the International Council for Harmonization ICH E6 (R2) Good

Clinical Practice as adopted by the United States FDA, which aligns

with the principles of Helsinki. Each patient received a simulation CT

scan with 2 mm slice thickness as well as a diagnostic T2 MRI image

to aid in the delineation of the prostate. In this study, all patients were

simulated to be low risk prostate cancer patients without seminal

vesicle or nodal involvement. A SpaceOAR hydrogel spacer was

placed for all patients except for patient 7 who declined. The

SpaceOAR increases the separation between the prostate and

rectum and aids in the reduction of rectal dose (57). The gross

tumor volume consisted of the prostate and no additional expansion

was used for the CTV (GTV = CTV). A research Monaco treatment

planning system (version 6.09.00) was used to generate reference

MRIgART VMAT treatment plans using two separate PTV margins.

The standard PTV margin group consisted of a 5 mm expansion of

the CTV in all directions except for 3 mm posteriorly, while the

reduced PTV margin group used a uniform 2 mm expansion of the

CTV. A previously commissioned clinical beam model was used to

generate all plans within this study (52). For this study, all plans were

optimized to deliver 36.25 Gy in 5 treatment sessions and normalized

for 95% PTV coverage. OAR dose limits for planning followed our
Frontiers in Oncology 03
institutional standard which is based off of the criteria published by

the PACE B clinical trial and Tanaka et al. (26, 58).
2.2 Cine MRI target tracking

Cine MRI images were acquired during radiation delivery for

each fraction and all patients enrolled in this study. The cine MRI

consisted of a balanced T1/T2 fast spin echo (TE 3.8 ms, TR 1.92

ms, flip angle: 40 degrees) imaging sequence which comes standard

on the Unity system (59). The cine MRI sequence had temporal

resolution of 200 msec with coronal and sagittal images being

acquired in an interleaved fashion. The pixel size of the cine MRI

images was 1.13 mm with a 5 mm slice thickness (60).

A preclinical motion management research package (MMRP) was

used to retrospectively analyze and track the position of the prostate in

each frame of the cine MRI acquisitions. Details of the target tracking

algorithm have been previously published (39, 60, 61). Briefly, the

algorithm begins by using 2D-3D template matching. In this stage the

first 60 cine MRI images (30 sagittal and 30 coronal) are used to

generate a single average 2D coronal and 2D sagittal image which serve

as the template images. These template images are then registered to a

coronal and sagittal slice which is extracted from the 3DMRI dataset at

the centroid location of the prostate. This registration can be manually

edited by the user if necessary. In the next stage, live cine MRI images

are automatically registered to the average 2D template images

generated during the first stage (2D-2D). The total offset of the

prostate in each cine frame is then equal to the summation of the

initial 2D-3D registration plus the registration value of the 2D-2D

matching. An example of the target tracking interface and live prostate

identification by the MMRP algorithm is shown in Figure 1.
2.3 Online adaptive planning procedure
incorporating target tracking

Both the standard PTV margin group and the reduced PTV

margin group began with a standard adapt-to-shape workflow in

the online environment (62). Briefly, a 2 min T2 weighted MRI

image was acquired at the beginning of each treatment fraction. The

prostate and OARs were contoured on each daily MRI dataset (50

fractions in total). Once contouring was completed a full

optimization of the VMAT plans was performed using a pseudo

gradient descent and optimal fluence levels optimizer within the

research Monaco TPS (43). The standard margin plans were

optimized with 1% statistical uncertainty per plan, 3 mm dose

grid, and were scaled for 95% PTV coverage. Each reference plan

was generated using two counterclockwise treatment fields with the

first beam going from 179° to 21° and the second VMAT arc

treating from 5° to 180°. This is equivalent to a single full VMAT

arc, but without treating through the cryostat pipe of the MR linac

(59). All plans used a minimum segment width of 0.75 cm and a

maximum of 90 control points per beam. For the standard PTV

margin group no further adaptation was performed and this group

serves as a control for comparison with the intra-fraction re-

optimization reduced PTV margin group as described below.
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For the reduced margin group, a novel workflow was performed

which consisted of breaking the online treatment session into 4

sequential sub-fractions per treatment session. Each sub-fraction

was planned to deliver a uniform 25% (1.8125 Gy) of the total

treatment session dose. Essentially four subsequent VMAT arcs

were used to deliver the total SBRT dose per fraction of 7.25 Gy. In

this workflow, a re-optimization is performed in parallel with the

delivery of each arc such that a new fully re-optimized plan that

includes any intrafraction drift of the target is ready for delivery at

the immediate conclusion of the current arc. Thus, intra-fraction

adaptive plans will be delivered without any pauses in treatment

delivery. Figure 2 shows a diagram depicting this workflow.

The aim of this workflow is to compensate for intra-fraction

motion of the prostate and maintain prostate coverage with reduced

PTV margins. To accomplish this goal, the position of the prostate,

as identified by the tracking algorithm and cine MRI, would need to

be synchronized with the radiation treatment delivery. Immediately

after the original ATS optimization, an adapt-to-position (ATP) re-

optimization technique would applied which shifts the MLC’s based

on the current position of the prostate and re-weights each IMRT

segment to reproduce the dose distribution of the daily ATS plan

(ATP “optimize weights”) (62). This step would account for intra-

fraction motion of the prostate which occurred during the re-

contouring and original optimization timeframe. The first VMAT

treatment arc would then be delivered following the ATP re-

optimization. The Monaco treatment planning system reports the

delivery time of each treatment beam and in this workflow a re-

optimization would be triggered 65 seconds prior to the completion

of the active VMAT arc. 65 seconds was chosen in this work and

represents a conservative value to ensure that the plan would be

finished optimizing and exporting prior to the completion of the

active arc. Thus, the second arc begins delivery with a newly

adapted sub-fraction plan which is corrected for intra-fraction
Frontiers in Oncology 04
motion. This process repeats until all four VMAT sub-fractions

have been delivered. All plans using the reduced PTV margins were

calculated with 2% statistical uncertainty per sub-fraction, 3 mm

dose grid, and were scaled to 95% PTV coverage. The use of 2%

statistical uncertainty speeds up optimization and because 4

repeated Monte Carlo calculations will be done, the final

composite dose from all 4 fractions will have an inherent 1%

statistical uncertainty per plan, which is commonly reported in

clinical use. In addition, the use of 2% statistical uncertainty has

been shown to have negligible dosimetric impact as compared to

plans that use 1% statistical uncertainty per plan (63). The

optimization and the reported delivery times for each sub-fraction

were recorded. In total, an additional 200 intra-fractional adaptive

plans were created in this study.
2.4 Sub-fraction workflow composite dose
calculation and OAR comparison

Sub-fraction doses from each treatment session were rigidly

registered back onto the daily MRI dataset. These sub-fraction doses

were then summed to generate a composite daily fractional dose on

the daily MRI dataset which was equal to 7.25 Gy per fraction,

matching the standard margin dose and fractionation scheme. OAR

doses from the composite reduced margin group were compared

against the daily adapted ATS plans for the standard margin group.

OAR dose metrics were evaluated at critical constraint values as

specified by the PACE B trial (58). OAR metrics evaluated include

V18 Gy, D1cc, D5cc for bladder and V18 Gy, and D1cc for the

rectum. The tracking algorithm used in this study tracked the

prostate only and is not capable of accounting for deformations

like those commonly seen for the bladder and rectum. For these

reasons, all reported OAR doses in this this study are as calculated
FIGURE 1

Screen Capture depicting the motion tracking software interface. The green contour represents the position of the prostate as identified by the
tracking algorithm in the live cine MRI in a sagittal and coronal plane. The bottom of the image depicts the tracked position of the prostate in the
right/left, ant/post, and sup/inf positions on the current frame as well as history of previous tracked positions.
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on the daily MRI dataset and do not account for intra-fractional

motion. Differences between the standard and reduced PTV margin

groups were evaluated for statistical significance for each individual

DVH metric using a two sided t-test and 0.05 significance level.
2.5 Intra-fraction prostate motion and
dose reconstruction

Sub-fraction doses were first rigidly registered onto the daily

MRI dataset. Next, intra-fraction dose was accumulated following

the methodology provided by Snyder et al. (39). Briefly, the prostate

position as a function of time defined from the cine MRI images and

target tracking was synchronized with the radiation therapy

treatment delivery. The DICOM coordinates from each of the

eight treatment arcs were shifted to account for the prostates

average position during the delivery of that beam. In this

scenario, the isocenter position of each beam was shifted to

represent the effective motion of the beam with respect to the

fixed reference of the prostate on the daily MRI image (39). The

shifted beam doses were then summed and composite doses were

viewed within Velocity (Varian Medical Systems Inc., Palo Alter,

CA, version 3.2.1).

To evaluate the utility of the intra-fraction adaptive workflow,

the motion trace from the cine MRI images were simulated under

three scenarios, as depicted in Figure 3. In the first scenario, the

motion trace was unaltered from the clinical delivery and thus

represents no adaptation. This case reflects motion which occurs

throughout the adaptive process time including contouring and

ATS optimization. This is referred to as the “no-adapt” group. In

the second scenario, the motion trace was modified to reflect

performing an ATP virtual couch shift immediately prior to

treatment. This strategy has been a previously reported workflow

for MRIgART (29). In this scenario, no other intra-fraction

corrections are considered and no further modifications were
Frontiers in Oncology 05
made to the prostate motion trace. This scenario is referred to as

“ATP”. The last scenario represents the full intra-fraction re-

optimization technique proposed in this study. This scenario

begins like the “ATP” group, but the prostate motion trace is

further modified to reflect each time point when a new intra-

fraction re-optimized plan were to begin. Therefore, this scenario

includes four updates to the original prostate motion trace which

correspond to time points at which the newly adapted plans begin.

This scenario is referred to as “intra-adapt”. Of note, the first 25% of

the treatment session motion traces are the same for the “ATP” and

“intra-adapt” groups.

The effect of intra-fraction motion on the dose received by the

prostate was compared for each scenario. Coverage metrics include

prostate V36.25 Gy, minimum dose received by the prostate, and

PTV V36.25 Gy. Statistical significance was assessed using a one-

way ANOVA and a Bonferroni post hoc analysis.
3 Results

3.1 OAR dosimetric comparison of reduced
and standard PTV margins

All plans in this study meet the mandatory dosimetric

constraints for prostate SBRT as defined by our institutional

standards. This includes all reference plans, all ATS plans in the

standard PTV margin group, and all the composite sub-fraction

workflow adapted plans in the reduced margin group. The average

separation between the prostate and rectum created by the

SpaceOAR was 0.9 ± 0.4 cm (range 0.3 – 1.6 cm). The intra-

fraction composite plans in the reduced margin group had

statistically significant reductions in all DVH points analyzed in

this study including bladder V18 Gy, D1cc, D5cc, and rectum V18

Gy and D1cc. Bladder DVH metrics were reduced by 7.8 ± 5.6% for

V18 Gy (p<0.001), 9.6 ± 7.3% (3.4 ± 2.5 Gy) for D1cc (p<0.001),
FIGURE 2

Overview of intra-fraction adaptive workflow incorporating near real time optimization in parallel with dose delivery. Cine MRI imaging starts at the
onset of the intital dose optimizations and remains running throughout the entirety of the treatment session.
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and 21.9 ± 10.3% (6.9 ± 3.0 Gy) for D5cc (p<0.001). Rectum V18 Gy

was reduced by 4.4 ± 3.9% (p<0.001) and D1cc was reduced by 12.2

± 6.8% (3.4 ± 2.3 Gy) (p<0.001). All of these DVHmetrics are based

on OAR contours generated on the daily MRI datasets and do not

account for intra-fraction motion. Per patient bladder DVHmetrics

are displayed in the box and whisker plot in Figure 4 and per patient

rectum metrics are shown in Figure 5.
3.2 Intra-fraction re-optimization timing
and prostate motion trace

The average time to complete intra-fraction re-optimizations

among all 200 sub-fractions was 40.0 ± 2.9 seconds while the

average time to deliver a single sub-fraction was estimated to be

104.4 ± 9.3 seconds. With this approach, every re-optimization

would be completed prior to the completion of the sub-fraction

currently being delivered. Thus, the proposed intra-fraction

optimization workflow would not cause any interruptions in

treatment delivery. The average per patient re-optimization times

among all 20 fractions and sub-fraction delivery times are shown

in Table 1.

Figure 3 shows an example of a single fraction motion trace for

patient 5 in the anterior (–) and posterior (+) directions. The

motion trace with no adaptions reaches an excursion of nearly 4

mm with respect to the originally planned prostate position, while

the ATP group had a maximum excursion of 3 mm and the intra-

adapt group had an excursion of less than 2 mm. This is a

representative fraction from this study. The no-adapt motion

trace does not start at 0 mm at time point zero because of

prostate drift that occurred during the adaptive planning process.

The Intra-adapt and ATP groups also do not start at time point zero

because the adaptions do not instantaneously take effect.

Optimization is initiated and during the re-planning process the

prostate position can drift before the new sub-fraction is ready for

delivery. Figure 3 highlights the benefits of using the intra-adaptive

workflow to reduce prostate excursions from the planned position

during treatment delivery.
Frontiers in Oncology 06
Figure 6 shows the composite motion traces from all 50

fractions of the no-adapt (A-C), ATP (D-F), and intra-adapt (G-

I) groups. The average position of the prostate among all fractions

for each time point is depicted by the blue line and the standard

deviation at each time point is shown by the yellow color wash.

During planning and treatment delivery the average position of the

prostate had a systematic drift in the inferior direction as noted by

the negative values in Figure 6C and a small systematic drift in the

posterior direction (Figure 6B). The standard deviation in the

position of the target at the onset of treatment was greatest for

the no adapt-group, attributed to the fact that the motion was not

accounted for with an ATP plan directly prior to treatment. At the

final time point in in Figure 6 (treatment completion), the

magnitude and standard deviation of the prostate as compared to

the initial planned position was -0.39 ± 1.72 mm (Left/Right), 0.09 ±

1.72 mm (Ant/Post), and -1.86 ± 2.82 mm (sup/inf) for the no-

adapt group, 0.03 ± 0.44 mm (Left/Right), 0.17 ± 0.98 mm (Ant/

Post), and -0.62 ± 1.68 mm (sup/inf) for the ATP group, and -0.02 ±

0.21 mm (Left/Right), 0.19 ± 0.46 mm (Ant/Post), and -0.33 ± 0.65

mm (sup/inf) for the intra-adapt group. This shows that the intra-

adapt workflow effectively corrects the systematic prostate drift

observed in the no-adapt group. The intra-adapt workflow also has

the smallest variability in prostate position at the end of each

treatment session delivery, as indicated by the intra-adapt group

having the smallest standard deviation in each of the three principal

motion directions.
3.3 Intra-fraction reconstructed prostate
and PTV dose coverage

The delivered dose of the day was reconstructed while

accounting for intra-fraction motion of the prostate. The

percentage of the prostate covered by the prescription isodose line

(V36.25 Gy) was on average 96.5 ± 4.0%, 99.1 ± 1.3%, and 99.6 ± 0.4

for the non-adapt, ATP, and intra-adapt groups, respectively. The

minimum dose received by the prostate was on average 31.5 ± 4.7

Gy, 34.4 ± 1.7 Gy and 35.1 ± 0.8 Gy for the non-adapt, ATP, and
FIGURE 3

Prostate motion trace for patient 5 fraction number 4 in the Anterior (-) and Posterior (+) direction. The position of the prostate is plotted as a
function of time for the unaltered no adapt motion trace (red), motion trace where adaption was only applied prior the start of treatment (ATP)
(yellow), and for the full intra-fraction adaptive workflow (intra-adapt) (navy blue). The green dashed horizontal line depicts the uniform 2 mm PTV
margin expansion from the originally planned prostate position.
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intra-adapt groups, respectively. The minimum dose received by the

prostate was less than 95% of the prescription dose in 84%, 36%,

and 10% of fractions, for the non-adapt, ATP, and intra-adapt

groups, respectively. The PTV V36.25 Gy was on average 90.0 ±

4.7%, 94.6 ± 2.4%, and 95.6 ± 1.2 for the non-adapt, ATP, and intra-

adapt groups, respectively. For all metrics evaluated, the intra-adapt

group had the smallest variability, thus having smaller deviations

with respect to prescribed dose on the static daily MRI image.

Figure 7 displays the per patient intra-fraction accumulated

DVH statistics for prostate V36.25 Gy (A), PTV V36.25 Gy (B), and

the minimum dose received by the prostate (C). The box and

whisker plot represents the statistics from each of the 5 fractions for

each patient.
4 Discussions

Reducing margins in prostate radiotherapy remains a

challenge due to intra-fraction motion. MRIgART can track

targets without using invasive fiducial implants or additional
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ionizing radiation which is advantageous over tracking

methodologies on conventional linear accelerators. However,

the Elekta Unity MR linac design does not support couch

motion (52) and therefore intra-fraction baseline shift

corrections require a re-calculation and/or re-optimization.

Reduced PTV margins will necessitate more frequent intra-

fraction adaptions and re-optimizations. This may significantly

decrease the beam-on duty cycle and add extra time to the

treatment delivery. MRIgART already has a limitation of long

treatment session times, therefore intra-fraction adaptive

techniques which add extra treatment time are not desirable.

This study overcomes that limitation by simulating the feasibility

of an intra-fraction re-optimization workflow based on the

position of the target extracted from the 2D cine images

acquired during treatment delivery that can be performed in

parallel with radiation delivery such that no beam pauses

are required.

The commonly used Van Herk PTV margin methodology is

designed to ensure that 90% of patients receive a minimum CTV

dose of at least 95% of the prescription dose (64). In this study we
A

B

C

FIGURE 4

Box and Whisker plots comparing standard and reduced margin plans at key bladder dosimetric constraint values including V18 Gy (A), D1cc (B), and
D5cc (C).
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found that this minimum dose metric was not met in 84%, 36%,

and 10% of fractions when using the no-adapt, ATP, and intra-

adapt methodologies with a 2 mm margin. Thus, our study has

shown that 2 mm margins are not feasible for the no-adapt and

ATP methodologies. This is similar to findings presented by

Keizer et al. who reported that PTV margin reductions below 4

mm would require intra-fraction adaptions for prostate

MRIgART treatments (29). Previously reported MRIgART

motion management studies have focused on step-and-shoot

IMRT deliveries while this study simulated a VMAT delivery

technique. Willigenburg et al. reported prostate step-and-shoot

delivery times of 11.0 minutes (65) while this study had an

average total treatment session delivery time of 7.0 minutes.

Despite the shorter treatment times afforded by VMAT, 2 mm

margins were still not feasible without further intra-fraction

corrections. However, by using the intra-adapt workflow, 2

mm PTV margins are feasible based on the Van Herk

definition. While the intra-adapt workflow does add additional

complexity, the ability to reduce PTV margins highlights

its utility.

PTV margin reductions have been previously shown to provide

superior OAR sparing in prostate SBRT (23). This study found

statistically significant reductions for all DVH metrics in the

reduced margin group as compared to the standard PTV margin

group. This will likely lead to decreased GU and GI toxicities as

demonstrated by the MIRAGE trial (18). Improved OAR sparing

may be even more critical in studies which attempt to perform even
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TABLE 1 Intra-fraction workflow timing.

Intra-fraction
optimization
time (sec)

Estimated sub-
fraction delivery

time (sec)

total
treatment
delivery
time (sec)

Patient
1

41.8 ± 2.7 111.6 ± 17.0 446.3 ± 68.0

Patient
2

41.6 ± 2.8 108.4 ± 5.1 433.5 ± 20.6

Patient
3

39.7 ± 1.7 104.4 ± 4.4 417.6 ± 17.6

Patient
4

37.9 ± 1.8 104.0 ± 4.5 416.0 ± 18.1

Patient
5

40.0 ± 1.3 102.3 0± 4.6 409.2 ± 18.3

Patient
6

35.3 ± 2.4 110.6 0± 11.1 442.3 ± 44.4

Patient
7

40.0 ± 1.8 95.3 0± 3.9 381.4 ± 15.7

Patient
8

42.1 ± 1.4 93.7 0± 2.8 374.6 ± 11.2

Patient
9

43.2 ± 1.2 101.1 0± 3.5 404.4 ± 14.0

Patient
10

38.9 ± 1.3 113.1 0± 6.2 452.6 ± 24.9
A

B

FIGURE 5

Box and Whisker plots comparing standard and reduced margin plans at key rectum dosimetric constraint values including V18 Gy (A), and D1cc (B).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1325105
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Snyder et al. 10.3389/fonc.2023.1325105
more extreme hypofractionation and treat the prostate in one to two

fractional doses (66, 67). Reducing margins to better spare OARs is

also of paramount importance in SBRT re-irradiation in the

recurrent prostate setting (68).

Prior studies have shown that intra-fraction motion can

degrade OAR sparing in MRIgRT by comparing pre and post

image MRI scans. Brennan et al. found that urethral sparing was

achieved in 92% of fractions as defined in the pre MRI scan but that

number degraded to 66% of fractions meeting the same dosimetric

constraint on the post MRI image (69). Similarly Dang et al. found

that intra-fraction motion caused a statistically significant increase

in the bladder D5cc dose (70). While the primary focus of this study

was to reconstruct the daily delivered dose to the prostate, it is our

hypothesis that the proposed intra-fraction re-planning workflow

will also reduce the degradation in OAR sparing caused by intra-

fraction motion. Future studies should be designed to test this

which use intra-fraction imaging to specifically track these OARs

and which are capable of tracking non-rigid structures.
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Recently, a sub-fraction workflow in MRIgART was

proposed by Willigenburg et al. (65). In this study, a 3D MRI

image was acquired in parallel with IMRT treatment delivery and

an ATP adaptation was performed based on the target position

on the intra-fraction 3D MRI scan while the first half of

treatment was being delivered. The novelty of our work comes

from the increased efficiency of using cine MRI imaging to

perform multiple re-optimizations within one treatment

session while allowing continuous live tracking of the prostate

such that the beam can be paused should any large sudden

motions occur. The proposed workflow incorporates VMAT and

enables uninterrupted treatment from arc to arc. In this work

sub-fractions took on average 94.5 seconds to deliver while

optimization was performed in 40.1 seconds on average. This

differential highlights that an even larger number of sub-

fractions could be implemented for patients who experience

consistently large intrafraction motion without causing

treatment pauses while waiting for the new treatment plan.
A B

D E F

G IH

C

FIGURE 6

Prostate Motion Traces where the average prostate position (blue) is shown as a function of time over all treatment fractions and the standard
deviation at each time point is shown in yellow. Motion traces for the non-adapt group are shown for left (+)/right (-) (A), ant (-)/post (+) (B), and
sup (+)/inf (-) (C). Motion traces for the ATP group are shown for left/right (D), sup/inf (E), and ant/post (F). Motion traces for the intra-adapt group
are shown for left/right (G), sup/inf (H), and ant/post (I).
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The ability to efficiently perform multiple sub-fraction

adaptations showed the feasibility of using 2 mm margins

while Wiligenburg’s sub-fraction workflow, while beneficial,

still required PTV margins up to 2.6 mm. Since each VMAT

arc delivers a uniform 25% of the treatment session dose, no

intra-fraction deformable dose accumulation was needed. This is

a similar strategy to that employed by Willigneburg (65) and

simplifies the online re-optimization.

While this work focused on using SBRT to treat the entire

prostate it can also be extended to simultaneous integrated boost

techniques in cases where the GTV is identifiable. Currently, the

balanced cine MRI imaging sequence would not provide adequate

contrast to track the GTV directly, but this intrafraction sub-

fraction workflow could be employed if the prostate and GTV are

assumed to move as a rigid body throughout the course of each

fraction. Cine MRI imaging sequences with different weightings

may enable direct tracking of the gross tumor within the prostate in

the future.
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One of the limitations of this study is the relatively small

number of patients evaluated. However, this study was able to

achieve statistically significant differences in OAR sparing and

target coverage between each adaptive strategy and PTV margin

group. While the number of patients was small, a total of 320 plans

were evaluated between reference and adaptive plans.
5 Conclusion

When using reduced PTV margins, intra-fraction adaptation is

needed to account for prostate motion and to prevent underdosage

to the prostate and PTV. Reduced PTV margins provide superior

OAR sparing as compared to standard margin expansions. The

intra-fraction workflow described in this study provides a novel

methodology to counteract prostate intra-fraction motion without

reducing treatment duty cycle and while allowing continuous CINE

imaging for motion monitoring. Uniform 2 mm PTV margins are
A

B

C

FIGURE 7

Box and Whisker plots measuring the dosimetric impact of prostate intra-fraction motion during treatment delivery. Dose and coverage statistics are
shown for the prostate V36.25 Gy (A), PTV V36.25 Gy (B), and the minimum dose received by the prostate (C).
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feasible with the described intra-fraction VMAT arc re-

optimization strategy.
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